////////////////////////////////////////////////////////////////////// // LibFile: bottlecaps.scad // Bottle caps and necks for PCO18XX standard plastic beverage bottles. // Includes: // include // include ////////////////////////////////////////////////////////////////////// include include include include // Section: PCO-1810 Bottle Threading // Module: pco1810_neck() // Usage: // pco1810_neck([wall]) // Description: // Creates an approximation of a standard PCO-1810 threaded beverage bottle neck. // Arguments: // wall = Wall thickness in mm. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "tamper-ring" = Centered at the top of the anti-tamper ring channel. // "support-ring" = Centered at the bottom of the support ring. // Example: // pco1810_neck(); // Example: Standard Anchors // pco1810_neck() show_anchors(custom=false); // Example: Custom Named Anchors // expose_anchors(0.3) // pco1810_neck() // show_anchors(std=false); module pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP) { inner_d = 21.74; neck_d = 26.19; neck_h = 5.00; support_d = 33.00; support_width = 1.45; support_rad = 0.40; support_h = 21.00; support_ang = 16; tamper_ring_d = 27.97; tamper_ring_width = 0.50; tamper_ring_r = 1.60; tamper_base_d = 25.71; tamper_base_h = 14.10; threadbase_d = 24.51; thread_pitch = 3.18; flank_angle = 20; thread_od = 27.43; lip_d = 25.07; lip_h = 1.70; lip_leadin_r = 0.20; lip_recess_d = 24.94; lip_recess_h = 1.00; lip_roundover_r = 0.58; $fn = segs(support_d/2); h = support_h+neck_h; thread_h = (thread_od-threadbase_d)/2; anchors = [ named_anchor("support-ring", [0,0,neck_h-h/2]), named_anchor("tamper-ring", [0,0,h/2-tamper_base_h]) ]; attachable(anchor,spin,orient, d1=neck_d, d2=lip_recess_d+2*lip_leadin_r, l=h, anchors=anchors) { down(h/2) { rotate_extrude(convexity=10) { polygon(turtle( state=[inner_d/2,0], [ "untilx", neck_d/2, "left", 90, "move", neck_h - 1, "arcright", 1, 90, "untilx", support_d/2-support_rad, "arcleft", support_rad, 90, "move", support_width, "arcleft", support_rad, 90-support_ang, "untilx", tamper_base_d/2, "right", 90-support_ang, "untily", h-tamper_base_h, // Tamper ring holder base. "right", 90, "untilx", tamper_ring_d/2, "left", 90, "move", tamper_ring_width, "arcleft", tamper_ring_r, 90, "untilx", threadbase_d/2, "right", 90, "untily", h-lip_h-lip_leadin_r, // Lip base. "arcright", lip_leadin_r, 90, "untilx", lip_d/2, "left", 90, "untily", h-lip_recess_h, "left", 90, "untilx", lip_recess_d/2, "right", 90, "untily", h-lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d/2 ] )); } up(h-lip_h) { bottom_half() { difference() { thread_helix( d=threadbase_d-0.1, pitch=thread_pitch, thread_depth=thread_h+0.1, flank_angle=flank_angle, twist=810, higbee=thread_h*2, anchor=TOP ); zrot_copies(rots=[90,270]) { zrot_copies(rots=[-28,28], r=threadbase_d/2) { prismoid([20,1.82], [20,1.82+2*sin(29)*thread_h], h=thread_h+0.1, anchor=BOT, orient=RIGHT); } } } } } } children(); } } function pco1810_neck(wall=2, anchor="support-ring", spin=0, orient=UP) = no_function("pco1810_neck"); // Module: pco1810_cap() // Usage: // pco1810_cap([wall], [texture]); // Description: // Creates a basic cap for a PCO1810 threaded beverage bottle. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "inside-top" = Centered on the inside top of the cap. // Examples: // pco1810_cap(); // pco1810_cap(texture="knurled"); // pco1810_cap(texture="ribbed"); // Example: Standard Anchors // pco1810_cap(texture="ribbed") show_anchors(custom=false); // Example: Custom Named Anchors // expose_anchors(0.3) // pco1810_cap(texture="ribbed") // show_anchors(std=false); module pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) { cap_id = 28.58; tamper_ring_h = 14.10; thread_pitch = 3.18; flank_angle = 20; thread_od = cap_id; thread_depth = 1.6; $fn = segs(33/2); w = cap_id + 2*wall; h = tamper_ring_h + wall; anchors = [ named_anchor("inside-top", [0,0,-(h/2-wall)]) ]; attachable(anchor,spin,orient, d=w, l=h, anchors=anchors) { down(h/2) zrot(45) { difference() { union() { if (texture == "knurled") { knurled_cylinder(d=w, helix=45, l=tamper_ring_h+wall, anchor=BOTTOM); cyl(d=w-1.5, l=tamper_ring_h+wall, anchor=BOTTOM); } else if (texture == "ribbed") { zrot_copies(n=30, r=(w-1)/2) { cube([1, 1, tamper_ring_h+wall], anchor=BOTTOM); } cyl(d=w-1, l=tamper_ring_h+wall, anchor=BOTTOM); } else { cyl(d=w, l=tamper_ring_h+wall, anchor=BOTTOM); } } up(wall) cyl(d=cap_id, h=tamper_ring_h+wall, anchor=BOTTOM); } up(wall+2) thread_helix(d=thread_od-thread_depth*2, pitch=thread_pitch, thread_depth=thread_depth, flank_angle=flank_angle, twist=810, higbee=thread_depth, internal=true, anchor=BOTTOM); } children(); } } function pco1810_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) = no_function("pco1810_cap"); // Section: PCO-1881 Bottle Threading // Module: pco1881_neck() // Usage: // pco1881_neck([wall]) // Description: // Creates an approximation of a standard PCO-1881 threaded beverage bottle neck. // Arguments: // wall = Wall thickness in mm. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "tamper-ring" = Centered at the top of the anti-tamper ring channel. // "support-ring" = Centered at the bottom of the support ring. // Example: // pco1881_neck(); // Example: // pco1881_neck() show_anchors(custom=false); // Example: // expose_anchors(0.3) // pco1881_neck() // show_anchors(std=false); module pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) { inner_d = 21.74; neck_d = 26.19; neck_h = 5.00; support_d = 33.00; support_width = 0.58; support_rad = 0.30; support_h = 17.00; support_ang = 15; tamper_ring_d = 28.00; tamper_ring_width = 0.30; tamper_ring_ang = 45; tamper_base_d = 25.71; tamper_base_h = 11.20; tamper_divot_r = 1.08; threadbase_d = 24.20; thread_pitch = 2.70; flank_angle = 15; thread_od = 27.4; lip_d = 25.07; lip_h = 1.70; lip_leadin_r = 0.30; lip_recess_d = 24.94; lip_recess_h = 1.00; lip_roundover_r = 0.58; $fn = segs(support_d/2); h = support_h+neck_h; thread_h = (thread_od-threadbase_d)/2; anchors = [ named_anchor("support-ring", [0,0,neck_h-h/2]), named_anchor("tamper-ring", [0,0,h/2-tamper_base_h]) ]; attachable(anchor,spin,orient, d1=neck_d, d2=lip_recess_d+2*lip_leadin_r, l=h, anchors=anchors) { down(h/2) { rotate_extrude(convexity=10) { polygon(turtle( state=[inner_d/2,0], [ "untilx", neck_d/2, "left", 90, "move", neck_h - 1, "arcright", 1, 90, "untilx", support_d/2-support_rad, "arcleft", support_rad, 90, "move", support_width, "arcleft", support_rad, 90-support_ang, "untilx", tamper_base_d/2, "arcright", tamper_divot_r, 180-support_ang*2, "left", 90-support_ang, "untily", h-tamper_base_h, // Tamper ring holder base. "right", 90, "untilx", tamper_ring_d/2, "left", 90, "move", tamper_ring_width, "left", tamper_ring_ang, "untilx", threadbase_d/2, "right", tamper_ring_ang, "untily", h-lip_h-lip_leadin_r, // Lip base. "arcright", lip_leadin_r, 90, "untilx", lip_d/2, "left", 90, "untily", h-lip_recess_h, "left", 90, "untilx", lip_recess_d/2, "right", 90, "untily", h-lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d/2 ] )); } up(h-lip_h) { difference() { thread_helix( d=threadbase_d-0.1, pitch=thread_pitch, thread_depth=thread_h+0.1, flank_angle=flank_angle, twist=650, higbee=thread_h*2, anchor=TOP ); zrot_copies(rots=[90,270]) { zrot_copies(rots=[-28,28], r=threadbase_d/2) { prismoid([20,1.82], [20,1.82+2*sin(29)*thread_h], h=thread_h+0.1, anchor=BOT, orient=RIGHT); } } } } } children(); } } function pco1881_neck(wall=2, anchor="support-ring", spin=0, orient=UP) = no_function("pco1881_neck"); // Module: pco1881_cap() // Usage: // pco1881_cap(wall, [texture]); // Description: // Creates a basic cap for a PCO1881 threaded beverage bottle. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "inside-top" = Centered on the inside top of the cap. // Examples: // pco1881_cap(); // pco1881_cap(texture="knurled"); // pco1881_cap(texture="ribbed"); // Example: Standard Anchors // pco1881_cap(texture="ribbed") show_anchors(custom=false); // Example: Custom Named Anchors // expose_anchors(0.5) // pco1881_cap(texture="ribbed") // show_anchors(std=false); module pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) { $fn = segs(33/2); w = 28.58 + 2*wall; h = 11.2 + wall; anchors = [ named_anchor("inside-top", [0,0,-(h/2-wall)]) ]; attachable(anchor,spin,orient, d=w, l=h, anchors=anchors) { down(h/2) zrot(45) { difference() { union() { if (texture == "knurled") { knurled_cylinder(d=w, helix=45, l=11.2+wall, anchor=BOTTOM); cyl(d=w-1.5, l=11.2+wall, anchor=BOTTOM); } else if (texture == "ribbed") { zrot_copies(n=30, r=(w-1)/2) { cube([1, 1, 11.2+wall], anchor=BOTTOM); } cyl(d=w-1, l=11.2+wall, anchor=BOTTOM); } else { cyl(d=w, l=11.2+wall, anchor=BOTTOM); } } up(wall) cyl(d=28.58, h=11.2+wall, anchor=BOTTOM); } up(wall+2) thread_helix(d=25.5, pitch=2.7, thread_depth=1.6, flank_angle=15, twist=650, higbee=1.6, internal=true, anchor=BOTTOM); } children(); } } function pco1881_cap(wall=2, texture="none", anchor=BOTTOM, spin=0, orient=UP) = no_function("pco1881_cap"); // Section: Generic Bottle Connectors // Module: generic_bottle_neck() // Usage: // generic_bottle_neck([wall], ...) // Description: // Creates a bottle neck given specifications. // Arguments: // wall = distance between ID and any wall that may be below the support // neck_d = Outer diameter of neck without threads // id = Inner diameter of neck // thread_od = Outer diameter of thread // height = Height of neck above support // support_d = Outer diameter of support ring. Set to 0 for no support. // pitch = Thread pitch // round_supp = True to round the lower edge of the support ring // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "support-ring" = Centered at the bottom of the support ring. // Example: // generic_bottle_neck(); module generic_bottle_neck( wall, neck_d = 25, id = 21.4, thread_od = 27.2, height = 17, support_d = 33.0, pitch = 3.2, round_supp = false, anchor = "support-ring", spin = 0, orient = UP ) { inner_d = id; neck_d = neck_d; supp_d = max(neck_d, support_d); thread_pitch = pitch; flank_angle = 15; diamMagMult = neck_d / 26.19; heightMagMult = height / 17.00; sup_r = 0.30 * (heightMagMult > 1 ? heightMagMult : 1); support_r = floor(((supp_d == neck_d) ? sup_r : min(sup_r, (supp_d - neck_d) / 2)) * 5000) / 10000; support_rad = (wall == undef || !round_supp) ? support_r : min(support_r, floor((supp_d - (inner_d + 2 * wall)) * 5000) / 10000); //Too small of a radius will cause errors with the arc, this limits granularity to .0001mm support_width = 1 * (heightMagMult > 1 ? heightMagMult : 1) * sign(support_d); roundover = 0.58 * diamMagMult; lip_roundover_r = (roundover > (neck_d - inner_d) / 2) ? 0 : roundover; h = height + support_width; threadbase_d = neck_d - 0.8 * diamMagMult; $fn = segs(33 / 2); thread_h = (thread_od - threadbase_d) / 2; anchors = [ named_anchor("support-ring", [0, 0, 0 - h / 2]) ]; attachable(anchor, spin, orient, d1 = neck_d, d2 = 0, l = h, anchors = anchors) { down(h / 2) { rotate_extrude(convexity = 10) { polygon(turtle( state = [inner_d / 2, 0], (supp_d != neck_d) ? [ "untilx", supp_d / 2 - ((round_supp) ? support_rad : 0), "arcleft", ((round_supp) ? support_rad : 0), 90, "untily", support_width - support_rad, "arcleft", support_rad, 90, "untilx", neck_d / 2, "right", 90, "untily", h - lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d / 2 ] : [ "untilx", supp_d / 2 - ((round_supp) ? support_rad : 0), "arcleft", ((round_supp) ? support_rad : 0), 90, "untily", h - lip_roundover_r, "arcleft", lip_roundover_r, 90, "untilx", inner_d / 2 ] )); } up(h - pitch / 2 - lip_roundover_r) { difference() { thread_helix( d = threadbase_d - 0.1 * diamMagMult, pitch = thread_pitch, thread_depth = thread_h + 0.1 * diamMagMult, flank_angle = flank_angle, twist = 360 * (height - pitch - lip_roundover_r) * .6167 / pitch, higbee = thread_h * 2, anchor = TOP ); zrot_copies(rots = [90, 270]) { zrot_copies(rots = [-28, 28], r = threadbase_d / 2) { prismoid( [20 * heightMagMult, 1.82 * diamMagMult], [20 * heightMagMult, 1.82 * diamMagMult * .6 + 2 * sin(29) * thread_h], h = thread_h + 0.1 * diamMagMult, anchor = BOT, orient = RIGHT ); } } } } } children(); } } function generic_bottle_neck( neck_d, id, thread_od, height, support_d, pitch, round_supp, wall, anchor, spin, orient ) = no_function("generic_bottle_neck"); // Module: generic_bottle_cap() // Usage: // generic_bottle_cap(wall, [texture], ...); // Description: // Creates a basic threaded cap given specifications. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // --- // height = Interior height of the cap in mm. // thread_od = Outer diameter of the threads in mm. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // neck_od = Outer diameter of neck in mm. // flank_angle = Angle of taper on threads. // pitch = Thread pitch in mm. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Extra Anchors: // "inside-top" = Centered on the inside top of the cap. // Examples: // generic_bottle_cap(); // generic_bottle_cap(texture="knurled"); // generic_bottle_cap(texture="ribbed"); module generic_bottle_cap( wall = 2, texture = "none", height = 11.2, thread_od = 28.58, tolerance = .2, neck_od = 25.5, flank_angle = 15, pitch = 4, anchor = BOTTOM, spin = 0, orient = UP ) { $fn = segs(33 / 2); threadOuterDTol = thread_od + 2 * tolerance; w = threadOuterDTol + 2 * wall; h = height + wall; neckOuterDTol = neck_od + 2 * tolerance; threadDepth = (thread_od - neck_od) / 2 + .8; diamMagMult = (w > 32.58) ? w / 32.58 : 1; heightMagMult = (height > 11.2) ? height / 11.2 : 1; anchors = [ named_anchor("inside-top", [0, 0, -(h / 2 - wall)]) ]; attachable(anchor, spin, orient, d = w, l = h, anchors = anchors) { down(h / 2) { difference() { union() { // For the knurled and ribbed caps the PCO caps in BOSL2 cut into the wall // thickness so the wall+texture are the specified wall thickness. That // seems wrong so this does specified thickness+texture if (texture == "knurled") { knurled_cylinder(d = w + 1.5 * diamMagMult, helix = 45, l = h, anchor = BOTTOM); cyl(d = w, l = h, anchor = BOTTOM); } else if (texture == "ribbed") { zrot_copies(n = 30, r = (w + .2 * diamMagMult) / 2) { cube([1 * diamMagMult, 1 * diamMagMult, h], anchor = BOTTOM); } cyl(d = w, l = h, anchor = BOTTOM); } else { cyl(d = w, l = h, anchor = BOTTOM); } } up(wall) cyl(d = threadOuterDTol, h = h, anchor = BOTTOM); } difference(){ up(wall + pitch / 2) { thread_helix(d = neckOuterDTol, pitch = pitch, thread_depth = threadDepth, flank_angle = flank_angle, twist = 360 * ((height - pitch) / pitch), higbee = threadDepth, internal = true, anchor = BOTTOM); } } } children(); } } function generic_bottle_cap( wall, texture, height, thread_od, tolerance, neck_od, flank_angle, pitch, anchor, spin, orient ) = no_function("generic_bottle_cap"); // Module: bottle_adapter_neck_to_cap() // Usage: // bottle_adapter_neck_to_cap(wall, [texture]); // Description: // Creates a threaded neck to cap adapter // Arguments: // wall = Thickness of wall between neck and cap when d=0. Leave undefined to have the outside of the tube go from the OD of the neck support ring to the OD of the cap. Default: undef // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // cap_wall = Wall thickness of the cap in mm. // cap_h = Interior height of the cap in mm. // cap_thread_od = Outer diameter of cap threads in mm. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // cap_neck_od = Inner diameter of the cap threads. // cap_neck_id = Inner diameter of the hole through the cap. // cap_thread_taper = Angle of taper on threads. // cap_thread_pitch = Thread pitch in mm // neck_d = Outer diameter of neck w/o threads // neck_id = Inner diameter of neck // neck_thread_od = 27.2 // neck_h = Height of neck down to support ring // neck_thread_pitch = Thread pitch in mm. // neck_support_od = Outer diameter of neck support ring. Leave undefined to set equal to OD of cap. Set to 0 for no ring. Default: undef // d = Distance between bottom of neck and top of cap // taper_lead_in = Length to leave straight before tapering on tube between neck and cap if exists. // Examples: // bottle_adapter_neck_to_cap(); module bottle_adapter_neck_to_cap( wall, texture = "none", cap_wall = 2, cap_h = 11.2, cap_thread_od = 28.58, tolerance = .2, cap_neck_od = 25.5, cap_neck_id, cap_thread_taper = 15, cap_thread_pitch = 4, neck_d = 25, neck_id = 21.4, neck_thread_od = 27.2, neck_h = 17, neck_thread_pitch = 3.2, neck_support_od, d = 0, taper_lead_in = 0 ) { neck_support_od = (neck_support_od == undef || (d == 0 && neck_support_od < cap_thread_od + 2 * tolerance)) ? cap_thread_od + 2 * (cap_wall + tolerance) : neck_support_od; cap_neck_id = (cap_neck_id == undef) ? neck_id : cap_neck_id; wall = (wall == undef) ? neck_support_od + neck_d + cap_thread_od + neck_id : wall; $fn = segs(33 / 2); wallt1 = min(wall, (max(neck_support_od, neck_d) - neck_id) / 2); wallt2 = min(wall, (cap_thread_od + 2 * (cap_wall + tolerance) - cap_neck_id) / 2); difference(){ union(){ up(d / 2) { generic_bottle_neck(neck_d = neck_d, id = neck_id, thread_od = neck_thread_od, height = neck_h, support_d = neck_support_od, pitch = neck_thread_pitch, round_supp = ((wallt1 < (neck_support_od - neck_id) / 2) && (d > 0 || neck_support_od > (cap_thread_od + 2 * (cap_wall + tolerance)))), wall = (d > 0) ? wallt1 : min(wallt1, ((cap_thread_od + 2 * (cap_wall + tolerance) - neck_id) / 2)) ); } if (d != 0) { rotate_extrude(){ polygon(points = [ [0, d / 2], [neck_id / 2 + wallt1, d / 2], [neck_id / 2 + wallt1, d / 2 - taper_lead_in], [cap_neck_id / 2 + wallt2, taper_lead_in - d / 2], [cap_neck_id / 2 + wallt2, -d / 2], [0, -d / 2] ]); } } down(d / 2){ generic_bottle_cap(wall = cap_wall, texture = texture, height = cap_h, thread_od = cap_thread_od, tolerance = tolerance, neck_od = cap_neck_od, flank_angle = cap_thread_taper, orient = DOWN, pitch = cap_thread_pitch ); } } rotate_extrude() { polygon(points = [ [0, d / 2 + 0.1], [neck_id / 2, d / 2], [neck_id / 2, d / 2 - taper_lead_in], [cap_neck_id / 2, taper_lead_in - d / 2], [cap_neck_id / 2, -d / 2 - cap_wall], [0, -d / 2 - cap_wall - 0.1] ]); } } } function bottle_adapter_neck_to_cap( wall, texture, cap_wall, cap_h, cap_thread_od, tolerance, cap_neck_od, cap_neck_id, cap_thread_taper, cap_thread_pitch, neck_d, neck_id, neck_thread_od, neck_h, neck_thread_pitch, neck_support_od, d, taper_lead_in ) = no_fuction("bottle_adapter_neck_to_cap"); // Module: bottle_adapter_cap_to_cap() // Usage: // bottle_adapter_cap_to_cap(wall, [texture]); // Description: // Creates a threaded cap to cap adapter. // Arguments: // wall = Wall thickness in mm. // texture = The surface texture of the cap. Valid values are "none", "knurled", or "ribbed". Default: "none" // cap_h1 = Interior height of top cap. // cap_thread_od1 = Outer diameter of threads on top cap. // tolerance = Extra space to add to the outer diameter of threads and neck in mm. Applied to radius. // cap_neck_od1 = Inner diameter of threads on top cap. // cap_thread_pitch1 = Thread pitch of top cap in mm. // cap_h2 = Interior height of bottom cap. Leave undefined to duplicate cap_h1. // cap_thread_od2 = Outer diameter of threads on bottom cap. Leave undefined to duplicate capThread1. // cap_neck_od2 = Inner diameter of threads on top cap. Leave undefined to duplicate cap_neck_od1. // cap_thread_pitch2 = Thread pitch of bottom cap in mm. Leave undefinced to duplicate cap_thread_pitch1. // d = Distance between caps. // neck_id1 = Inner diameter of cutout in top cap. // neck_id2 = Inner diameter of cutout in bottom cap. // taper_lead_in = Length to leave straight before tapering on tube between caps if exists. // Examples: // bottle_adapter_cap_to_cap(); module bottle_adapter_cap_to_cap( wall = 2, texture = "none", cap_h1 = 11.2, cap_thread_od1 = 28.58, tolerance = .2, cap_neck_od1 = 25.5, cap_thread_pitch1 = 4, cap_h2, cap_thread_od2, cap_neck_od2, cap_thread_pitch2, d = 0, neck_id1, neck_id2, taper_lead_in = 0 ) { cap_h2 = (cap_h2 == undef) ? cap_h1 : cap_h2; cap_thread_od2 = (cap_thread_od2 == undef) ? cap_thread_od1 : cap_thread_od2; cap_neck_od2 = (cap_neck_od2 == undef) ? cap_neck_od1 : cap_neck_od2; cap_thread_pitch2 = (cap_thread_pitch2 == undef) ? cap_thread_pitch1 : cap_thread_pitch2; neck_id2 = (neck_id2 == undef && neck_id1 != undef) ? neck_id1 : neck_id2; taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2; $fn = segs(33 / 2); difference(){ union(){ up(d / 2){ generic_bottle_cap( orient = UP, wall = wall, texture = texture, height = cap_h1, thread_od = cap_thread_od1, tolerance = tolerance, neck_od = cap_neck_od1, pitch = cap_thread_pitch1 ); } if (d != 0) { rotate_extrude() { polygon(points = [ [0, d / 2], [cap_thread_od1 / 2 + (wall + tolerance), d / 2], [cap_thread_od1 / 2 + (wall + tolerance), d / 2 - taper_lead_in], [cap_thread_od2 / 2 + (wall + tolerance), taper_lead_in - d / 2], [cap_thread_od2 / 2 + (wall + tolerance), -d / 2], [0, -d / 2] ]); } } down(d / 2){ generic_bottle_cap( orient = DOWN, wall = wall, texture = texture, height = cap_h2, thread_od = cap_thread_od2, tolerance = tolerance, neck_od = cap_neck_od2, pitch = cap_thread_pitch2 ); } } if (neck_id1 != undef || neck_id2 != undef) { neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1; neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2; rotate_extrude() { polygon(points = [ [0, wall + d / 2 + 0.1], [neck_id1 / 2, wall + d / 2], [neck_id1 / 2, wall + d / 2 - taper_lead_in], [neck_id2 / 2, taper_lead_in - d / 2 - wall], [neck_id2 / 2, -d / 2 - wall], [0, -d / 2 - wall - 0.1] ]); } } } } function bottle_adapter_cap_to_cap( wall, texture, cap_h1, cap_thread_od1, tolerance, cap_neck_od1, cap_thread_pitch1, cap_h2, cap_thread_od2, cap_neck_od2, cap_thread_pitch2, d, neck_id1, neck_id2, taper_lead_in ) = no_function("bottle_adapter_cap_to_cap"); // Module: bottle_adapter_neck_to_neck() // Usage: // bottle_adapter_neck_to_neck(); // Description: // Creates a threaded neck to neck adapter. // Arguments: // d = Distance between bottoms of necks // neck_od1 = Outer diameter of top neck w/o threads // neck_id1 = Inner diameter of top neck // thread_od1 = Outer diameter of threads on top neck // height1 = Height of top neck above support ring. // support_od1 = Outer diameter of the support ring on the top neck. Set to 0 for no ring. // thread_pitch1 = Thread pitch of top neck. // neck_od2 = Outer diameter of bottom neck w/o threads. Leave undefined to duplicate neck_od1 // neck_id2 = Inner diameter of bottom neck. Leave undefined to duplicate neck_id1 // thread_od2 = Outer diameter of threads on bottom neck. Leave undefined to duplicate thread_od1 // height2 = Height of bottom neck above support ring. Leave undefined to duplicate height1 // support_od2 = Outer diameter of the support ring on bottom neck. Set to 0 for no ring. Leave undefined to duplicate support_od1 // pitch2 = Thread pitch of bottom neck. Leave undefined to duplicate thread_pitch1 // taper_lead_in = Length to leave straight before tapering on tube between necks if exists. // wall = Thickness of tube wall between necks. Leave undefined to match outer diameters with the neckODs/supportODs. // Examples: // bottle_adapter_neck_to_neck(); module bottle_adapter_neck_to_neck( d = 0, neck_od1 = 25, neck_id1 = 21.4, thread_od1 = 27.2, height1 = 17, support_od1 = 33.0, thread_pitch1 = 3.2, neck_od2, neck_id2, thread_od2, height2, support_od2, pitch2, taper_lead_in = 0, wall ) { neck_od2 = (neck_od2 == undef) ? neck_od1 : neck_od2; neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2; thread_od2 = (thread_od2 == undef) ? thread_od1 : thread_od2; height2 = (height2 == undef) ? height1 : height2; support_od2 = (support_od2 == undef) ? support_od1 : support_od2; pitch2 = (pitch2 == undef) ? thread_pitch1 : pitch2; wall = (wall == undef) ? support_od1 + support_od2 + neck_id1 + neck_id2 : wall; supprtOD2 = (d == 0 && support_od2 != 0) ? max(neck_od1, support_od2) : support_od2; supprtOD1 = (d == 0 && support_od1 != 0) ? max(neck_od2, support_od1) : support_od1; $fn = segs(33 / 2); wallt1 = min(wall, (max(supprtOD1, neck_od1) - neck_id1) / 2); wallt2 = min(wall, (max(supprtOD2, neck_od2) - neck_id2) / 2); taper_lead_in = (d >= taper_lead_in * 2) ? taper_lead_in : d / 2; difference(){ union(){ up(d / 2){ generic_bottle_neck(orient = UP, neck_d = neck_od1, id = neck_id1, thread_od = thread_od1, height = height1, support_d = supprtOD1, pitch = thread_pitch1, round_supp = ((wallt1 < (supprtOD1 - neck_id1) / 2) || (support_od1 > max(neck_od2, support_od2) && d == 0)), wall = (d > 0) ? wallt1 : min(wallt1, ((max(neck_od2, support_od2)) - neck_id1) / 2) ); } if (d != 0) { rotate_extrude() { polygon(points = [ [0, d / 2], [neck_id1 / 2 + wallt1, d / 2], [neck_id1 / 2 + wallt1, d / 2 - taper_lead_in], [neck_id2 / 2 + wallt2, taper_lead_in - d / 2], [neck_id2 / 2 + wallt2, -d / 2], [0, -d / 2] ]); } } down(d / 2){ generic_bottle_neck(orient = DOWN, neck_d = neck_od2, id = neck_id2, thread_od = thread_od2, height = height2, support_d = supprtOD2, pitch = pitch2, round_supp = ((wallt2 < (supprtOD2 - neck_id2) / 2) || (support_od2 > max(neck_od1, support_od1) && d == 0)), wall = (d > 0) ? wallt2 : min(wallt2, ((max(neck_od1, support_od1)) - neck_id2) / 2) ); } } if (neck_id1 != undef || neck_id2 != undef) { neck_id1 = (neck_id1 == undef) ? neck_id2 : neck_id1; neck_id2 = (neck_id2 == undef) ? neck_id1 : neck_id2; rotate_extrude() { polygon(points = [ [0, d / 2], [neck_id1 / 2, d / 2], [neck_id1 / 2, d / 2 - taper_lead_in], [neck_id2 / 2, taper_lead_in - d / 2], [neck_id2 / 2, -d / 2], [0, -d / 2] ]); } } } } function bottle_adapter_neck_to_neck( d, neck_od1, neck_id1, thread_od1, height1, support_od1, thread_pitch1, neck_od2, neck_id2, thread_od2, height2, support_od2, pitch2, taper_lead_in, wall ) = no_fuction("bottle_adapter_neck_to_neck"); // Section: SPI Bottle Threading // Module: sp_neck() // Usage: // sp_neck(diam, type, wall|id, [style], [bead], [anchor], [spin], [orient]) // Description: // Make a SPI (Society of Plastics Industry) threaded bottle neck. You must // supply the nominal outer diameter of the threads and the thread type, one of // 400, 410 and 415. The 400 type neck has 360 degrees of thread, the 410 // neck has 540 degrees of thread, and the 415 neck has 720 degrees of thread. // You can also choose between the L style thread, which is symmetric and // the M style thread, which is an asymmetric buttress thread. You can // specify the wall thickness (measured from the base of the threads) or // the inner diameter, and you can specify an optional bead at the base of the threads. // Arguments: // diam = nominal outer diameter of threads // type = thread type, one of 400, 410 and 415 // wall = wall thickness // --- // id = inner diameter // style = Either "L" or "M" to specify the thread style. Default: "L" // bead = if true apply a bad to the neck. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // sp_neck(48,400,2); // sp_neck(48,400,2,bead=true); // sp_neck(22,410,2); // sp_neck(22,410,2,bead=true); // sp_neck(28,415,id=20,style="M"); // sp_neck(13,415,wall=1,style="M",bead=true); // Thread specs from https://www.isbt.com/threadspecs-downloads.asp _sp_specs = [ [400, //diam T I H S tpi [[ 18, [ 17.68, 8.26, 9.42, 0.94, 8]], [ 20, [ 19.69, 10.26, 9.42, 0.94, 8]], [ 22, [ 21.69, 12.27, 9.42, 0.94, 8]], [ 24, [ 23.67, 13.11, 10.16, 1.17, 8]], [ 28, [ 27.38, 15.60, 10.16, 1.17, 6]], [ 30, [ 28.37, 16.59, 10.24, 1.17, 6]], [ 33, [ 31.83, 20.09, 10.24, 1.17, 6]], [ 35, [ 34.34, 22.23, 10.24, 1.17, 6]], [ 38, [ 37.19, 25.07, 10.24, 1.17, 6]], [ 40, [ 39.75, 27.71, 10.24, 1.17, 6]], [ 43, [ 41.63, 29.59, 10.24, 1.17, 6]], [ 45, [ 43.82, 31.78, 10.24, 1.17, 6]], [ 48, [ 47.12, 35.08, 10.24, 1.17, 6]], [ 51, [ 49.56, 37.57, 10.36, 1.17, 6]], [ 53, [ 52.07, 40.08, 10.36, 1.17, 6]], [ 58, [ 56.06, 44.07, 10.36, 1.17, 6]], [ 60, [ 59.06, 47.07, 10.36, 1.17, 6]], [ 63, [ 62.08, 50.09, 10.36, 1.17, 6]], [ 66, [ 65.07, 53.09, 10.36, 1.17, 6]], [ 70, [ 69.06, 57.07, 10.36, 1.17, 6]], [ 75, [ 73.56, 61.57, 10.36, 1.17, 6]], [ 77, [ 76.66, 64.67, 12.37, 1.52, 6]], [ 83, [ 82.58, 69.93, 12.37, 1.52, 5]], [ 89, [ 88.75, 74.12, 13.59, 1.52, 5]], [100, [ 99.57, 84.94, 15.16, 1.52, 5]], [110, [109.58, 94.92, 15.16, 1.52, 5]], [120, [119.56,104.93, 17.40, 1.52, 5]], ]], [410, //diam T I H S tpi L W [[ 18, [ 17.68, 8.26, 13.28, 0.94, 8, 9.17, 2.13]], [ 20, [ 19.59, 10.26, 14.07, 0.94, 8, 9.17, 2.13]], [ 22, [ 21.69, 12.27, 14.86, 0.94, 8, 9.55, 2.13]], [ 24, [ 23.67, 13.11, 16.41, 1.17, 8, 11.10, 2.13]], [ 28, [ 27.38, 15.60, 17.98, 1.17, 6, 11.76, 2.39]], ]], [415, //diam T I H S tpi L W [[ 13, [ 12.90, 5.54, 11.48, 0.94,12, 7.77, 1.14]], [ 15, [ 14.61, 6.55, 14.15, 0.94,12, 8.84, 1.14]], [ 18, [ 17.68, 8.26, 15.67, 0.94, 8, 10.90, 2.13]], [ 20, [ 19.69, 10.26, 18.85, 0.94, 8, 11.58, 2.13]], [ 22, [ 21.69, 12.27, 21.26, 0.94, 8, 13.87, 2.13]], [ 24, [ 23.67, 13.11, 24.31, 1.17, 8, 14.25, 2.13]], [ 28, [ 27.38, 15.60, 27.48, 1.17, 6, 16.64, 2.39]], [ 33, [ 31.83, 20.09, 32.36, 1.17, 6, 19.61, 2.39]], ]] ]; _sp_twist = [ [400, 360], [410, 540], [415, 720] ]; // profile data: tpi, total width, depth, _sp_thread_width= [ [5, 3.05], [6, 2.39], [8, 2.13], [12, 1.14], // But note style M is different ]; function _sp_thread_profile(tpi, a, S, style) = let( pitch = 1/tpi*INCH, cL = a*(1-1/sqrt(3)), cM = (1-tan(10))*a/2, // SP specified roundings for the thread profile have special case for tpi=12 roundings = style=="L" && tpi < 12 ? 0.5 : style=="M" && tpi < 12 ? [0.25, 0.25, 0.75, 0.75] : style=="L" ? [0.38, 0.13, 0.13, 0.38] : /* style=="M" */ [0.25, 0.25, 0.2, 0.5], path = style=="L" ? round_corners([[-1/2*pitch,-a/2], [-a/2,-a/2], [-cL/2,0], [cL/2,0], [a/2,-a/2], [1/2*pitch,-a/2]], radius=roundings, closed=false,$fn=24) : round_corners( [[-1/2*pitch,-a/2], [-a/2, -a/2], [-cM, 0], [0,0], [a/2,-a/2], [1/2*pitch,-a/2]], radius=roundings, closed=false, $fn=24) ) // Shift so that the profile is S mm from the right end to create proper length S top gap select(right(-a/2+1/2-S,p=path),1,-2)/pitch; function sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient) = no_function("sp_neck"); module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient) { assert(num_defined([wall,id])==1, "Must define exactly one of wall and id"); table = struct_val(_sp_specs,type); dum1=assert(is_def(table),"Unknown SP closure type. Type must be one of 400, 410, or 415"); entry = struct_val(table, diam); dum2=assert(is_def(entry), str("Unknown closure nominal diameter. Allowed diameters for SP",type,": ",struct_keys(table))) assert(style=="L" || style=="M", "style must be \"L\" or \"M\""); T = entry[0]; I = entry[1]; H = entry[2]; S = entry[3]; tpi = entry[4]; a = (style=="M" && tpi==12) ? 1.3 : struct_val(_sp_thread_width,tpi); twist = struct_val(_sp_twist, type); profile = _sp_thread_profile(tpi,a,S,style); depth = a/2; higlen = 2*a; higang = higlen / ((T-2*depth)*PI) * 360; beadmax = type==400 ? (T/2-depth)+depth*1.25 : diam <=15 ? (T-.15)/2 : (T-.05)/2; W = type==400 ? a*1.5 // arbitrary decision for type 400 : entry[6]; // specified width for 410 and 415 beadpts = [ [0,-W/2], each arc(16, points = [[T/2-depth, -W/2], [beadmax, 0], [T/2-depth, W/2]]), [0,W/2] ]; isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y]; extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0; bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L attachable(anchor,spin,orient,r=bead ? beadmax : T/2, l=H+extra_bot){ up((H+extra_bot)/2){ difference(){ union(){ thread_helix(d=T-.01, profile=profile, pitch = INCH/tpi, twist=twist+2*higang, higbee=higlen, anchor=TOP); cylinder(d=T-depth*2,l=H,anchor=TOP); if (bead) down(bead_shift) rotate_extrude() polygon(beadpts); } up(.5)cyl(d=is_def(id) ? id : T-a-2*wall, l=H-extra_bot+1, anchor=TOP); } } children(); } } // Function: sp_diameter() // Usage: // true_diam = sp_diameter(diam,type) // Description: // Returns the actual base diameter (root of the threads) for a SPI plastic bottle neck given the nominal diameter and type number (400, 410, 415). function sp_diameter(diam,type) = let( table = struct_val(_sp_specs,type) ) assert(is_def(table),"Unknown SP closure type. Type must be one of 400, 410, or 415") let( entry = struct_val(table, diam) ) assert(is_def(entry), str("Unknown closure nominal diameter. Allowed diameters for SP",type,": ",struct_keys(table))) entry[0]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap