////////////////////////////////////////////////////////////////////// // LibFile: coords.scad // Coordinate transformations and coordinate system conversions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Coordinate Manipulation // Function: point2d() // Description: // Returns a 2D vector/point from a 2D or 3D vector. // If given a 3D point, removes the Z coordinate. // Arguments: // p = The coordinates to force into a 2D vector/point. // fill = Value to fill missing values in vector with. function point2d(p, fill=0) = [for (i=[0:1]) (p[i]==undef)? fill : p[i]]; // Function: path2d() // Description: // Returns a list of 2D vectors/points from a list of 2D, 3D or higher // dimensional vectors/points. Removes the extra coordinates from // higher dimensional points. The input must be a path, where // every vector has the same length. // Arguments: // points = A list of 2D or 3D points/vectors. function path2d(points) = assert(is_path(points,dim=undef,fast=true),"Input to path2d is not a path") let (result = points * concat(ident(2), repeat([0,0], len(points[0])-2))) assert(is_def(result), "Invalid input to path2d") result; // Function: point3d() // Description: // Returns a 3D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 3D vector/point. // fill = Value to fill missing values in vector with. function point3d(p, fill=0) = [for (i=[0:2]) (p[i]==undef)? fill : p[i]]; // Function: path3d() // Description: // Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points // by removing extra coordinates or adding the z coordinate. // Arguments: // points = A list of 2D, 3D or higher dimensional points/vectors. // fill = Value to fill missing values in vectors with (in the 2D case) function path3d(points, fill=0) = assert(is_num(fill)) assert(is_path(points, dim=undef, fast=true), "Input to path3d is not a path") let ( change = len(points[0])-3, M = change < 0? [[1,0,0],[0,1,0]] : concat(ident(3), repeat([0,0,0],change)), result = points*M ) assert(is_def(result), "Input to path3d is invalid") fill == 0 || change>=0 ? result : result + repeat([0,0,fill], len(result)); // Function: point4d() // Description: // Returns a 4D vector/point from a 2D or 3D vector. // Arguments: // p = The coordinates to force into a 4D vector/point. // fill = Value to fill missing values in vector with. function point4d(p, fill=0) = [for (i=[0:3]) (p[i]==undef)? fill : p[i]]; // Function: path4d() // Description: // Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points. // Arguments: // points = A list of 2D or 3D points/vectors. // fill = Value to fill missing values in vectors with. function path4d(points, fill=0) = assert(is_num(fill) || is_vector(fill)) assert(is_path(points, dim=undef, fast=true), "Input to path4d is not a path") let ( change = len(points[0])-4, M = change < 0 ? select(ident(4), 0, len(points[0])-1) : concat(ident(4), repeat([0,0,0,0],change)), result = points*M ) assert(is_def(result), "Input to path4d is invalid") fill == 0 || change >= 0 ? result : let( addition = is_list(fill) ? concat(0*points[0],fill) : concat(0*points[0],repeat(fill,-change)) ) assert(len(addition) == 4, "Fill is the wrong length") result + repeat(addition, len(result)); // Section: Coordinate Systems // Function: polar_to_xy() // Usage: // polar_to_xy(r, theta); // polar_to_xy([r, theta]); // Description: // Convert polar coordinates to 2D cartesian coordinates. // Returns [X,Y] cartesian coordinates. // Arguments: // r = distance from the origin. // theta = angle in degrees, counter-clockwise of X+. // Examples: // xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365] // xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15] // xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15] function polar_to_xy(r,theta=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta ) rad*[cos(t), sin(t)]; // Function: xy_to_polar() // Usage: // xy_to_polar(x,y); // xy_to_polar([X,Y]); // Description: // Convert 2D cartesian coordinates to polar coordinates. // Returns [radius, theta] where theta is the angle counter-clockwise of X+. // Arguments: // x = X coordinate. // y = Y coordinate. // Examples: // plr = xy_to_polar(20,30); // plr = xy_to_polar([40,60]); function xy_to_polar(x,y=undef) = let( xx = y==undef? x[0] : x, yy = y==undef? x[1] : y ) [norm([xx,yy]), atan2(yy,xx)]; // Function: project_plane() // Usage: With the plane defined by 3 Points // xyz = project_plane(point, a, b, c); // Usage: With the plane defined by Pointlist // xyz = project_plane(point, POINTLIST); // Usage: With the plane defined by Plane Definition [A,B,C,D] Where Ax+By+Cz=D // xyz = project_plane(point, PLANE); // Description: // Converts the given 3D points from global coordinates to the 2D planar coordinates of the closest // points on the plane. This coordinate system can be useful in taking a set of nearly coplanar // points, and converting them to a pure XY set of coordinates for manipulation, before converting // them back to the original 3D plane. The parameter `point` may be a single point or a list of points // The plane may be given in one of three ways: // - by three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`. // - by a list of points passed by `a`, finds three reasonably spaced non-collinear points in the list and uses them as points `a`, `b`, and `c` as above. // - by a plane definition `[A,B,C,D]` passed by `a` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`. // Arguments: // point = The 3D point, or list of 3D points to project into the plane's 2D coordinate system. // a = A 3D point that the plane passes through or a list of points or a plane definition vector. // b = A 3D point that the plane passes through. Used to define the plane. // c = A 3D point that the plane passes through. Used to define the plane. // Example: // pt = [5,-5,5]; // a=[0,0,0]; b=[10,-10,0]; c=[10,0,10]; // xy = project_plane(pt, a, b, c); // xy2 = project_plane(pt, [a,b,c]); function project_plane(point, a, b, c) = is_undef(b) && is_undef(c) && is_list(a)? let( mat = is_vector(a,4)? plane_transform(a) : assert(is_path(a) && len(a)>=3) plane_transform(plane_from_points(a)), pts = is_vector(point)? point2d(apply(mat,point)) : is_path(point)? path2d(apply(mat,point)) : is_region(point)? [for (x=point) path2d(apply(mat,x))] : assert(false, "point must be a 3D point, path, or region.") ) pts : assert(is_vector(a)) assert(is_vector(b)) assert(is_vector(c)) assert(is_vector(point)||is_path(point)) let( u = unit(b-a), v = unit(c-a), n = unit(cross(u,v)), w = unit(cross(n,u)), relpoint = apply(move(-a),point) ) relpoint * transpose([w,u]); // Function: lift_plane() // Usage: With 3 Points // xyz = lift_plane(point, a, b, c); // Usage: With Pointlist // xyz = lift_plane(point, POINTLIST); // Usage: With Plane Definition [A,B,C,D] Where Ax+By+Cz=D // xyz = lift_plane(point, PLANE); // Description: // Converts the given 2D point from planar coordinates to the global 3D coordinates of the point on the plane. // Can be called one of three ways: // - Given three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`. // - Given a list of points, finds three non-collinear points in the list and uses them as points `a`, `b`, and `c` as above. // - Given a plane definition `[A,B,C,D]` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`. // Arguments: // point = The 2D point, or list of 2D points in the plane's coordinate system to get the 3D position of. // a = A 3D point that the plane passes through. Used to define the plane. // b = A 3D point that the plane passes through. Used to define the plane. // c = A 3D point that the plane passes through. Used to define the plane. function lift_plane(point, a, b, c) = is_undef(b) && is_undef(c) && is_list(a)? let( mat = is_vector(a,4)? plane_transform(a) : assert(is_path(a) && len(a)>=3) plane_transform(plane_from_points(a)), imat = matrix_inverse(mat), pts = is_vector(point)? apply(imat,point3d(point)) : is_path(point)? apply(imat,path3d(point)) : is_region(point)? [for (x=point) apply(imat,path3d(x))] : assert(false, "point must be a 2D point, path, or region.") ) pts : assert(is_vector(a)) assert(is_vector(b)) assert(is_vector(c)) assert(is_vector(point)||is_path(point)) let( u = unit(b-a), v = unit(c-a), n = unit(cross(u,v)), w = unit(cross(n,u)), remapped = point*[w,u] ) apply(move(a),remapped); // Function: cylindrical_to_xyz() // Usage: // cylindrical_to_xyz(r, theta, z) // cylindrical_to_xyz([r, theta, z]) // Description: // Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates. // Arguments: // r = distance from the Z axis. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // z = Height above XY plane. // Examples: // xyz = cylindrical_to_xyz(20,30,40); // xyz = cylindrical_to_xyz([40,60,50]); function cylindrical_to_xyz(r,theta=undef,z=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta, zed = theta==undef? r[2] : z ) [rad*cos(t), rad*sin(t), zed]; // Function: xyz_to_cylindrical() // Usage: // xyz_to_cylindrical(x,y,z) // xyz_to_cylindrical([X,Y,Z]) // Description: // Convert 3D cartesian coordinates to cylindrical coordinates. // Returns [radius,theta,Z]. Theta is the angle counter-clockwise // of X+ on the XY plane. Z is height above the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // cyl = xyz_to_cylindrical(20,30,40); // cyl = xyz_to_cylindrical([40,50,70]); function xyz_to_cylindrical(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [norm([p.x,p.y]), atan2(p.y,p.x), p.z]; // Function: spherical_to_xyz() // Usage: // spherical_to_xyz(r, theta, phi); // spherical_to_xyz([r, theta, phi]); // Description: // Convert spherical coordinates to 3D cartesian coordinates. // Returns [X,Y,Z] cartesian coordinates. // Arguments: // r = distance from origin. // theta = angle in degrees, counter-clockwise of X+ on the XY plane. // phi = angle in degrees from the vertical Z+ axis. // Examples: // xyz = spherical_to_xyz(20,30,40); // xyz = spherical_to_xyz([40,60,50]); function spherical_to_xyz(r,theta=undef,phi=undef) = let( rad = theta==undef? r[0] : r, t = theta==undef? r[1] : theta, p = theta==undef? r[2] : phi ) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)]; // Function: xyz_to_spherical() // Usage: // xyz_to_spherical(x,y,z) // xyz_to_spherical([X,Y,Z]) // Description: // Convert 3D cartesian coordinates to spherical coordinates. // Returns [r,theta,phi], where phi is the angle from the Z+ pole, // and theta is degrees counter-clockwise of X+ on the XY plane. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // sph = xyz_to_spherical(20,30,40); // sph = xyz_to_spherical([40,50,70]); function xyz_to_spherical(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [norm(p), atan2(p.y,p.x), atan2(norm([p.x,p.y]),p.z)]; // Function: altaz_to_xyz() // Usage: // altaz_to_xyz(alt, az, r); // altaz_to_xyz([alt, az, r]); // Description: // Convert altitude/azimuth/range coordinates to 3D cartesian coordinates. // Returns [X,Y,Z] cartesian coordinates. // Arguments: // alt = altitude angle in degrees above the XY plane. // az = azimuth angle in degrees clockwise of Y+ on the XY plane. // r = distance from origin. // Examples: // xyz = altaz_to_xyz(20,30,40); // xyz = altaz_to_xyz([40,60,50]); function altaz_to_xyz(alt,az=undef,r=undef) = let( p = az==undef? alt[0] : alt, t = 90 - (az==undef? alt[1] : az), rad = az==undef? alt[2] : r ) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)]; // Function: xyz_to_altaz() // Usage: // xyz_to_altaz(x,y,z); // xyz_to_altaz([X,Y,Z]); // Description: // Convert 3D cartesian coordinates to altitude/azimuth/range coordinates. // Returns [altitude,azimuth,range], where altitude is angle above the // XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and // range is the distance from the origin. // Arguments: // x = X coordinate. // y = Y coordinate. // z = Z coordinate. // Examples: // aa = xyz_to_altaz(20,30,40); // aa = xyz_to_altaz([40,50,70]); function xyz_to_altaz(x,y=undef,z=undef) = let( p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x) ) [atan2(p.z,norm([p.x,p.y])), atan2(p.x,p.y), norm(p)]; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap