////////////////////////////////////////////////////////////////////// // LibFile: math.scad // Math helper functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Math Constants PHI = (1+sqrt(5))/2; // The golden ratio phi. EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)0 ? // Function: hypot() // Usage: // l = hypot(x,y,); // Description: // Calculate hypotenuse length of a 2D or 3D triangle. // Arguments: // x = Length on the X axis. // y = Length on the Y axis. // z = Length on the Z axis. Optional. // Example: // l = hypot(3,4); // Returns: 5 // l = hypot(3,4,5); // Returns: ~7.0710678119 function hypot(x,y,z=0) = assert( is_vector([x,y,z]), "Improper number(s).") norm([x,y,z]); // Function: factorial() // Usage: // x = factorial(n,); // Description: // Returns the factorial of the given integer value, or n!/d! if d is given. // Arguments: // n = The integer number to get the factorial of. (n!) // d = If given, the returned value will be (n! / d!) // Example: // x = factorial(4); // Returns: 24 // y = factorial(6); // Returns: 720 // z = factorial(9); // Returns: 362880 function factorial(n,d=0) = assert(is_int(n) && is_int(d) && n>=0 && d>=0, "Factorial is defined only for non negative integers") assert(d<=n, "d cannot be larger than n") product([1,for (i=[n:-1:d+1]) i]); // Function: binomial() // Usage: // x = binomial(n); // Description: // Returns the binomial coefficients of the integer `n`. // Arguments: // n = The integer to get the binomial coefficients of // Example: // x = binomial(3); // Returns: [1,3,3,1] // y = binomial(4); // Returns: [1,4,6,4,1] // z = binomial(6); // Returns: [1,6,15,20,15,6,1] function binomial(n) = assert( is_int(n) && n>0, "Input is not an integer greater than 0.") [for( c = 1, i = 0; i<=n; c = c*(n-i)/(i+1), i = i+1 ) c ] ; // Function: binomial_coefficient() // Usage: // x = binomial_coefficient(n,k); // Description: // Returns the k-th binomial coefficient of the integer `n`. // Arguments: // n = The integer to get the binomial coefficient of // k = The binomial coefficient index // Example: // x = binomial_coefficient(3,2); // Returns: 3 // y = binomial_coefficient(10,6); // Returns: 210 function binomial_coefficient(n,k) = assert( is_int(n) && is_int(k), "Some input is not a number.") k < 0 || k > n ? 0 : k ==0 || k ==n ? 1 : let( k = min(k, n-k), b = [for( c = 1, i = 0; i<=k; c = c*(n-i)/(i+1), i = i+1 ) c] ) b[len(b)-1]; // Function: lerp() // Usage: // x = lerp(a, b, u); // l = lerp(a, b, LIST); // Description: // Interpolate between two values or vectors. // If `u` is given as a number, returns the single interpolated value. // If `u` is 0.0, then the value of `a` is returned. // If `u` is 1.0, then the value of `b` is returned. // If `u` is a range, or list of numbers, returns a list of interpolated values. // It is valid to use a `u` value outside the range 0 to 1. The result will be an extrapolation // along the slope formed by `a` and `b`. // Arguments: // a = First value or vector. // b = Second value or vector. // u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results. // Example: // x = lerp(0,20,0.3); // Returns: 6 // x = lerp(0,20,0.8); // Returns: 16 // x = lerp(0,20,-0.1); // Returns: -2 // x = lerp(0,20,1.1); // Returns: 22 // p = lerp([0,0],[20,10],0.25); // Returns [5,2.5] // l = lerp(0,20,[0.4,0.6]); // Returns: [8,12] // l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15] // Example(2D): // p1 = [-50,-20]; p2 = [50,30]; // stroke([p1,p2]); // pts = lerp(p1, p2, [0:1/8:1]); // // Points colored in ROYGBIV order. // rainbow(pts) translate($item) circle(d=3,$fn=8); function lerp(a,b,u) = assert(same_shape(a,b), "Bad or inconsistent inputs to lerp") is_finite(u)? (1-u)*a + u*b : assert(is_finite(u) || is_vector(u) || valid_range(u), "Input u to lerp must be a number, vector, or valid range.") [for (v = u) (1-v)*a + v*b ]; // Section: Undef Safe Math // Function: u_add() // Usage: // x = u_add(a, b); // Description: // Adds `a` to `b`, returning the result, or undef if either value is `undef`. // This emulates the way undefs used to be handled in versions of OpenSCAD before 2020. // Arguments: // a = First value. // b = Second value. function u_add(a,b) = is_undef(a) || is_undef(b)? undef : a + b; // Function: u_sub() // Usage: // x = u_sub(a, b); // Description: // Subtracts `b` from `a`, returning the result, or undef if either value is `undef`. // This emulates the way undefs used to be handled in versions of OpenSCAD before 2020. // Arguments: // a = First value. // b = Second value. function u_sub(a,b) = is_undef(a) || is_undef(b)? undef : a - b; // Function: u_mul() // Usage: // x = u_mul(a, b); // Description: // Multiplies `a` by `b`, returning the result, or undef if either value is `undef`. // This emulates the way undefs used to be handled in versions of OpenSCAD before 2020. // Arguments: // a = First value. // b = Second value. function u_mul(a,b) = is_undef(a) || is_undef(b)? undef : is_vector(a) && is_vector(b)? vmul(a,b) : a * b; // Function: u_div() // Usage: // x = u_div(a, b); // Description: // Divides `a` by `b`, returning the result, or undef if either value is `undef`. // This emulates the way undefs used to be handled in versions of OpenSCAD before 2020. // Arguments: // a = First value. // b = Second value. function u_div(a,b) = is_undef(a) || is_undef(b)? undef : is_vector(a) && is_vector(b)? vdiv(a,b) : a / b; // Section: Hyperbolic Trigonometry // Function: sinh() // Description: Takes a value `x`, and returns the hyperbolic sine of it. function sinh(x) = assert(is_finite(x), "The input must be a finite number.") (exp(x)-exp(-x))/2; // Function: cosh() // Description: Takes a value `x`, and returns the hyperbolic cosine of it. function cosh(x) = assert(is_finite(x), "The input must be a finite number.") (exp(x)+exp(-x))/2; // Function: tanh() // Description: Takes a value `x`, and returns the hyperbolic tangent of it. function tanh(x) = assert(is_finite(x), "The input must be a finite number.") sinh(x)/cosh(x); // Function: asinh() // Description: Takes a value `x`, and returns the inverse hyperbolic sine of it. function asinh(x) = assert(is_finite(x), "The input must be a finite number.") ln(x+sqrt(x*x+1)); // Function: acosh() // Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it. function acosh(x) = assert(is_finite(x), "The input must be a finite number.") ln(x+sqrt(x*x-1)); // Function: atanh() // Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it. function atanh(x) = assert(is_finite(x), "The input must be a finite number.") ln((1+x)/(1-x))/2; // Section: Quantization // Function: quant() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple. // If `x` is a list, then every item in that list will be recursively quantized. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Example: // quant(12,4); // Returns: 12 // quant(13,4); // Returns: 12 // quant(13.1,4); // Returns: 12 // quant(14,4); // Returns: 16 // quant(14.1,4); // Returns: 16 // quant(15,4); // Returns: 16 // quant(16,4); // Returns: 16 // quant(9,3); // Returns: 9 // quant(10,3); // Returns: 9 // quant(10.4,3); // Returns: 9 // quant(10.5,3); // Returns: 12 // quant(11,3); // Returns: 12 // quant(12,3); // Returns: 12 // quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16] // quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] // quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] function quant(x,y) = assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") is_list(x) ? [for (v=x) quant(v,y)] : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") floor(x/y+0.5)*y; // Function: quantdn() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple. // If `x` is a list, then every item in that list will be recursively quantized down. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Examples: // quantdn(12,4); // Returns: 12 // quantdn(13,4); // Returns: 12 // quantdn(13.1,4); // Returns: 12 // quantdn(14,4); // Returns: 12 // quantdn(14.1,4); // Returns: 12 // quantdn(15,4); // Returns: 12 // quantdn(16,4); // Returns: 16 // quantdn(9,3); // Returns: 9 // quantdn(10,3); // Returns: 9 // quantdn(10.4,3); // Returns: 9 // quantdn(10.5,3); // Returns: 9 // quantdn(11,3); // Returns: 9 // quantdn(12,3); // Returns: 12 // quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16] // quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] // quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] function quantdn(x,y) = assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") is_list(x) ? [for (v=x) quantdn(v,y)] : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") floor(x/y)*y; // Function: quantup() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple. // If `x` is a list, then every item in that list will be recursively quantized up. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Examples: // quantup(12,4); // Returns: 12 // quantup(13,4); // Returns: 16 // quantup(13.1,4); // Returns: 16 // quantup(14,4); // Returns: 16 // quantup(14.1,4); // Returns: 16 // quantup(15,4); // Returns: 16 // quantup(16,4); // Returns: 16 // quantup(9,3); // Returns: 9 // quantup(10,3); // Returns: 12 // quantup(10.4,3); // Returns: 12 // quantup(10.5,3); // Returns: 12 // quantup(11,3); // Returns: 12 // quantup(12,3); // Returns: 12 // quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16] // quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] // quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]] function quantup(x,y) = assert(is_finite(y) && !approx(y,0,eps=1e-24), "The multiple must be a non zero number.") is_list(x) ? [for (v=x) quantup(v,y)] : assert( is_finite(x), "The input to quantize must be a number or a list of numbers.") ceil(x/y)*y; // Section: Constraints and Modulos // Function: constrain() // Usage: // constrain(v, minval, maxval); // Description: // Constrains value to a range of values between minval and maxval, inclusive. // Arguments: // v = value to constrain. // minval = minimum value to return, if out of range. // maxval = maximum value to return, if out of range. // Example: // constrain(-5, -1, 1); // Returns: -1 // constrain(5, -1, 1); // Returns: 1 // constrain(0.3, -1, 1); // Returns: 0.3 // constrain(9.1, 0, 9); // Returns: 9 // constrain(-0.1, 0, 9); // Returns: 0 function constrain(v, minval, maxval) = assert( is_finite(v+minval+maxval), "Input must be finite number(s).") min(maxval, max(minval, v)); // Function: posmod() // Usage: // posmod(x,m) // Description: // Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1. // Arguments: // x = The value to constrain. // m = Modulo value. // Example: // posmod(-700,360); // Returns: 340 // posmod(-270,360); // Returns: 90 // posmod(-120,360); // Returns: 240 // posmod(120,360); // Returns: 120 // posmod(270,360); // Returns: 270 // posmod(700,360); // Returns: 340 // posmod(3,2.5); // Returns: 0.5 function posmod(x,m) = assert( is_finite(x) && is_finite(m) && !approx(m,0) , "Input must be finite numbers. The divisor cannot be zero.") (x%m+m)%m; // Function: modang(x) // Usage: // ang = modang(x) // Description: // Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180. // Example: // modang(-700,360); // Returns: 20 // modang(-270,360); // Returns: 90 // modang(-120,360); // Returns: -120 // modang(120,360); // Returns: 120 // modang(270,360); // Returns: -90 // modang(700,360); // Returns: -20 function modang(x) = assert( is_finite(x), "Input must be a finite number.") let(xx = posmod(x,360)) xx<180? xx : xx-360; // Function: modrange() // Usage: // modrange(x, y, m, ) // Description: // Returns a normalized list of numbers from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`. // Arguments: // x = The start value to constrain. // y = The end value to constrain. // m = Modulo value. // step = Step by this amount. // Examples: // modrange(90,270,360, step=45); // Returns: [90,135,180,225,270] // modrange(270,90,360, step=45); // Returns: [270,315,0,45,90] // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] function modrange(x, y, m, step=1) = assert( is_finite(x+y+step+m) && !approx(m,0), "Input must be finite numbers and the module value cannot be zero." ) let( a = posmod(x, m), b = posmod(y, m), c = step>0? (a>b? b+m : b) : (a); // Description: // Return a list of random integers in the range of minval to maxval, inclusive. // Arguments: // minval = Minimum integer value to return. // maxval = Maximum integer value to return. // N = Number of random integers to return. // seed = If given, sets the random number seed. // Example: // ints = rand_int(0,100,3); // int = rand_int(-10,10,1)[0]; function rand_int(minval, maxval, N, seed=undef) = assert( is_finite(minval+maxval+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.") assert(maxval >= minval, "Max value cannot be smaller than minval") let (rvect = is_def(seed) ? rands(minval,maxval+1,N,seed) : rands(minval,maxval+1,N)) [for(entry = rvect) floor(entry)]; // Function: gaussian_rands() // Usage: // gaussian_rands(mean, stddev, , ) // Description: // Returns a random number with a gaussian/normal distribution. // Arguments: // mean = The average random number returned. // stddev = The standard deviation of the numbers to be returned. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function gaussian_rands(mean, stddev, N=1, seed=undef) = assert( is_finite(mean+stddev+N) && (is_undef(seed) || is_finite(seed) ), "Input must be finite numbers.") let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed)) [for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])]; // Function: log_rands() // Usage: // log_rands(minval, maxval, factor, , ); // Description: // Returns a single random number, with a logarithmic distribution. // Arguments: // minval = Minimum value to return. // maxval = Maximum value to return. `minval` <= X < `maxval`. // factor = Log factor to use. Values of X are returned `factor` times more often than X+1. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function log_rands(minval, maxval, factor, N=1, seed=undef) = assert( is_finite(minval+maxval+N) && (is_undef(seed) || is_finite(seed) ) && factor>0, "Input must be finite numbers. `factor` should be greater than zero.") assert(maxval >= minval, "maxval cannot be smaller than minval") let( minv = 1-1/pow(factor,minval), maxv = 1-1/pow(factor,maxval), nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed) ) [for (num=nums) -ln(1-num)/ln(factor)]; // Section: GCD/GCF, LCM // Function: gcd() // Usage: // gcd(a,b) // Description: // Computes the Greatest Common Divisor/Factor of `a` and `b`. function gcd(a,b) = assert(is_int(a) && is_int(b),"Arguments to gcd must be integers") b==0 ? abs(a) : gcd(b,a % b); // Computes lcm for two integers function _lcm(a,b) = assert(is_int(a) && is_int(b), "Invalid non-integer parameters to lcm") assert(a!=0 && b!=0, "Arguments to lcm must be non zero") abs(a*b) / gcd(a,b); // Computes lcm for a list of values function _lcmlist(a) = len(a)==1 ? a[0] : _lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])])); // Function: lcm() // Usage: // lcm(a,b) // lcm(list) // Description: // Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should // be non-zero integers. The output is always a positive integer. It is an error to pass zero // as an argument. function lcm(a,b=[]) = !is_list(a) && !is_list(b) ? _lcm(a,b) : let( arglist = concat(force_list(a),force_list(b)) ) assert(len(arglist)>0, "Invalid call to lcm with empty list(s)") _lcmlist(arglist); // Section: Sums, Products, Aggregate Functions. // Function: sum() // Usage: // x = sum(v, ); // Description: // Returns the sum of all entries in the given consistent list. // If passed an array of vectors, returns the sum the vectors. // If passed an array of matrices, returns the sum of the matrices. // If passed an empty list, the value of `dflt` will be returned. // Arguments: // v = The list to get the sum of. // dflt = The default value to return if `v` is an empty list. Default: 0 // Example: // sum([1,2,3]); // returns 6. // sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15] function sum(v, dflt=0) = v==[]? dflt : assert(is_consistent(v), "Input to sum is non-numeric or inconsistent") _sum(v,v[0]*0); function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1); // Function: cumsum() // Usage: // sums = cumsum(v); // Description: // Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list. // If passed an array of vectors, returns a list of cumulative vectors sums. // Arguments: // v = The list to get the sum of. // Example: // cumsum([1,1,1]); // returns [1,2,3] // cumsum([2,2,2]); // returns [2,4,6] // cumsum([1,2,3]); // returns [1,3,6] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] function cumsum(v) = assert(is_consistent(v), "The input is not consistent." ) _cumsum(v,_i=0,_acc=[]); function _cumsum(v,_i=0,_acc=[]) = _i==len(v) ? _acc : _cumsum( v, _i+1, concat( _acc, [_i==0 ? v[_i] : select(_acc,-1)+v[_i]] ) ); // Function: sum_of_sines() // Usage: // sum_of_sines(a,sines) // Description: // Gives the sum of a series of sines, at a given angle. // Arguments: // a = Angle to get the value for. // sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle. // Examples: // v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]); function sum_of_sines(a, sines) = assert( is_finite(a) && is_matrix(sines,undef,3), "Invalid input.") sum([ for (s = sines) let( ss=point3d(s), v=ss[0]*sin(a*ss[1]+ss[2]) ) v ]); // Function: deltas() // Usage: // delts = deltas(v); // Description: // Returns a list with the deltas of adjacent entries in the given list. // The list should be a consistent list of numeric components (numbers, vectors, matrix, etc). // Given [a,b,c,d], returns [b-a,c-b,d-c]. // Arguments: // v = The list to get the deltas of. // Example: // deltas([2,5,9,17]); // returns [3,4,8]. // deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]] function deltas(v) = assert( is_consistent(v) && len(v)>1 , "Inconsistent list or with length<=1.") [for (p=pair(v)) p[1]-p[0]] ; // Function: product() // Usage: // x = product(v); // Description: // Returns the product of all entries in the given list. // If passed a list of vectors of same dimension, returns a vector of products of each part. // If passed a list of square matrices, returns the resulting product matrix. // Arguments: // v = The list to get the product of. // Example: // product([2,3,4]); // returns 24. // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] function product(v) = assert( is_vector(v) || is_matrix(v) || ( is_matrix(v[0],square=true) && is_consistent(v)), "Invalid input.") _product(v, 1, v[0]); function _product(v, i=0, _tot) = i>=len(v) ? _tot : _product( v, i+1, ( is_vector(v[i])? vmul(_tot,v[i]) : _tot*v[i] ) ); // Function: cumprod() // Description: // Returns a list where each item is the cumulative product of all items up to and including the corresponding entry in the input list. // If passed an array of vectors, returns a list of elementwise vector products. If passed a list of square matrices returns matrix // products multiplying in the order items appear in the list. // Arguments: // list = The list to get the product of. // Example: // cumprod([1,3,5]); // returns [1,3,15] // cumprod([2,2,2]); // returns [2,4,8] // cumprod([[1,2,3], [3,4,5], [5,6,7]])); // returns [[1, 2, 3], [3, 8, 15], [15, 48, 105]] function cumprod(list) = is_vector(list) ? _cumprod(list) : assert(is_consistent(list), "Input must be a consistent list of scalars, vectors or square matrices") is_matrix(list[0]) ? assert(len(list[0])==len(list[0][0]), "Matrices must be square") _cumprod(list) : _cumprod_vec(list); function _cumprod(v,_i=0,_acc=[]) = _i==len(v) ? _acc : _cumprod( v, _i+1, concat( _acc, [_i==0 ? v[_i] : _acc[len(_acc)-1]*v[_i]] ) ); function _cumprod_vec(v,_i=0,_acc=[]) = _i==len(v) ? _acc : _cumprod_vec( v, _i+1, concat( _acc, [_i==0 ? v[_i] : vmul(_acc[len(_acc)-1],v[_i])] ) ); // Function: outer_product() // Usage: // x = outer_product(u,v); // Description: // Compute the outer product of two vectors, a matrix. // Usage: // M = outer_product(u,v); function outer_product(u,v) = assert(is_vector(u) && is_vector(v), "The inputs must be vectors.") [for(ui=u) ui*v]; // Function: mean() // Usage: // x = mean(v); // Description: // Returns the arithmetic mean/average of all entries in the given array. // If passed a list of vectors, returns a vector of the mean of each part. // Arguments: // v = The list of values to get the mean of. // Example: // mean([2,3,4]); // returns 3. // mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5] function mean(v) = assert(is_list(v) && len(v)>0, "Invalid list.") sum(v)/len(v); // Function: convolve() // Usage: // x = convolve(p,q); // Description: // Given two vectors, finds the convolution of them. // The length of the returned vector is len(p)+len(q)-1 . // Arguments: // p = The first vector. // q = The second vector. // Example: // a = convolve([1,1],[1,2,1]); // Returns: [1,3,3,1] // b = convolve([1,2,3],[1,2,1])); // Returns: [1,4,8,8,3] function convolve(p,q) = p==[] || q==[] ? [] : assert( is_vector(p) && is_vector(q), "The inputs should be vectors.") let( n = len(p), m = len(q)) [for(i=[0:n+m-2], k1 = max(0,i-n+1), k2 = min(i,m-1) ) [for(j=[k1:k2]) p[i-j] ] * [for(j=[k1:k2]) q[j] ] ]; // Section: Matrix math // Function: linear_solve() // Usage: // solv = linear_solve(A,b) // Description: // Solves the linear system Ax=b. If `A` is square and non-singular the unique solution is returned. If `A` is overdetermined // the least squares solution is returned. If `A` is underdetermined, the minimal norm solution is returned. // If `A` is rank deficient or singular then linear_solve returns `[]`. If `b` is a matrix that is compatible with `A` // then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you // want to solve Ax=b1 and Ax=b2 that you need to form the matrix `transpose([b1,b2])` for the right hand side and then // transpose the returned value. function linear_solve(A,b,pivot=true) = assert(is_matrix(A), "Input should be a matrix.") let( m = len(A), n = len(A[0]) ) assert(is_vector(b,m) || is_matrix(b,m),"Invalid right hand side or incompatible with the matrix") let ( qr = mj ? 0 : ri[j] ] ] ) [qr[0], Rzero, qr[2]]; function _qr_factor(A,Q,P, pivot, column, m, n) = column >= min(m-1,n) ? [Q,A,P] : let( swap = !pivot ? 1 : _swap_matrix(n,column,column+max_index([for(i=[column:n-1]) sqr([for(j=[column:m-1]) A[j][i]])])), A = pivot ? A*swap : A, x = [for(i=[column:1:m-1]) A[i][column]], alpha = (x[0]<=0 ? 1 : -1) * norm(x), u = x - concat([alpha],repeat(0,m-1)), v = alpha==0 ? u : u / norm(u), Qc = ident(len(x)) - 2*outer_product(v,v), Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i=0 && j>=0, "Swap indices out of bounds") [for(y=[0:n-1]) [for (x=[0:n-1]) x==i ? (y==j ? 1 : 0) : x==j ? (y==i ? 1 : 0) : x==y ? 1 : 0]]; // Function: back_substitute() // Usage: // x = back_substitute(R, b, ); // Description: // Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are // ignored. If transpose==true then instead solve transpose(R)*x=b. // You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to // solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix // is singular (e.g. has a zero on the diagonal) then it returns []. function back_substitute(R, b, transpose = false) = assert(is_matrix(R, square=true)) let(n=len(R)) assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b))) transpose ? reverse(_back_substitute(transpose(R, reverse=true), reverse(b))) : _back_substitute(R,b); function _back_substitute(R, b, x=[]) = let(n=len(R)) len(x) == n ? x : let(ind = n - len(x) - 1) R[ind][ind] == 0 ? [] : let( newvalue = len(x)==0 ? b[ind]/R[ind][ind] : (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind] ) _back_substitute(R, b, concat([newvalue],x)); // Function: det2() // Usage: // d = det2(M); // Description: // Optimized function that returns the determinant for the given 2x2 square matrix. // Arguments: // M = The 2x2 square matrix to get the determinant of. // Example: // M = [ [6,-2], [1,8] ]; // det = det2(M); // Returns: 50 function det2(M) = assert(is_matrix(M,2,2), "Matrix must be 2x2.") M[0][0] * M[1][1] - M[0][1]*M[1][0]; // Function: det3() // Usage: // d = det3(M); // Description: // Optimized function that returns the determinant for the given 3x3 square matrix. // Arguments: // M = The 3x3 square matrix to get the determinant of. // Example: // M = [ [6,4,-2], [1,-2,8], [1,5,7] ]; // det = det3(M); // Returns: -334 function det3(M) = assert(is_matrix(M,3,3), "Matrix must be 3x3.") M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) - M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) + M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]); // Function: determinant() // Usage: // d = determinant(M); // Description: // Returns the determinant for the given square matrix. // Arguments: // M = The NxN square matrix to get the determinant of. // Example: // M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ]; // det = determinant(M); // Returns: 2267 function determinant(M) = assert(is_matrix(M, square=true), "Input should be a square matrix." ) len(M)==1? M[0][0] : len(M)==2? det2(M) : len(M)==3? det3(M) : sum( [for (col=[0:1:len(M)-1]) ((col%2==0)? 1 : -1) * M[col][0] * determinant( [for (r=[1:1:len(M)-1]) [for (c=[0:1:len(M)-1]) if (c!=col) M[c][r] ] ] ) ] ); // Function: is_matrix() // Usage: // is_matrix(A,,,) // Description: // Returns true if A is a numeric matrix of height m and width n. If m or n // are omitted or set to undef then true is returned for any positive dimension. // Arguments: // A = The matrix to test. // m = Is given, requires the matrix to have the given height. // n = Is given, requires the matrix to have the given width. // square = If true, requires the matrix to have a width equal to its height. Default: false function is_matrix(A,m,n,square=false) = is_list(A) && (( is_undef(m) && len(A) ) || len(A)==m) && is_list(A[0]) && (( is_undef(n) && len(A[0]) ) || len(A[0])==n) && (!square || len(A) == len(A[0])) && is_consistent(A); // Function: norm_fro() // Usage: // norm_fro(A) // Description: // Computes frobenius norm of input matrix. The frobenius norm is the square root of the sum of the // squares of all of the entries of the matrix. On vectors it is the same as the usual 2-norm. // This is an easily computed norm that is convenient for comparing two matrices. function norm_fro(A) = assert(is_matrix(A) || is_vector(A)) norm(flatten(A)); // Function: matrix_trace() // Usage: // matrix_trace(M) // Description: // Computes the trace of a square matrix, the sum of the entries on the diagonal. function matrix_trace(M) = assert(is_matrix(M,square=true), "Input to trace must be a square matrix") [for(i=[0:1:len(M)-1])1] * [for(i=[0:1:len(M)-1]) M[i][i]]; // Section: Comparisons and Logic // Function: all_zero() // Usage: // x = all_zero(x, ); // Description: // Returns true if the finite number passed to it is approximately zero, to within `eps`. // If passed a list, recursively checks if all items in the list are approximately zero. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: // all_zero(0); // Returns: true. // all_zero(1e-3); // Returns: false. // all_zero([0,0,0]); // Returns: true. // all_zero([0,0,1e-3]); // Returns: false. function all_zero(x, eps=EPSILON) = is_finite(x)? approx(x,eps) : is_list(x)? (x != [] && [for (xx=x) if(!all_zero(xx,eps=eps)) 1] == []) : false; // Function: all_nonzero() // Usage: // x = all_nonzero(x, ); // Description: // Returns true if the finite number passed to it is not almost zero, to within `eps`. // If passed a list, recursively checks if all items in the list are not almost zero. // Otherwise, returns false. // Arguments: // x = The value to check. // eps = The maximum allowed variance. Default: `EPSILON` (1e-9) // Example: // all_nonzero(0); // Returns: false. // all_nonzero(1e-3); // Returns: true. // all_nonzero([0,0,0]); // Returns: false. // all_nonzero([0,0,1e-3]); // Returns: false. // all_nonzero([1e-3,1e-3,1e-3]); // Returns: true. function all_nonzero(x, eps=EPSILON) = is_finite(x)? !approx(x,eps) : is_list(x)? (x != [] && [for (xx=x) if(!all_nonzero(xx,eps=eps)) 1] == []) : false; // Function: all_positive() // Usage: // all_positive(x); // Description: // Returns true if the finite number passed to it is greater than zero. // If passed a list, recursively checks if all items in the list are positive. // Otherwise, returns false. // Arguments: // x = The value to check. // Example: // all_positive(-2); // Returns: false. // all_positive(0); // Returns: false. // all_positive(2); // Returns: true. // all_positive([0,0,0]); // Returns: false. // all_positive([0,1,2]); // Returns: false. // all_positive([3,1,2]); // Returns: true. // all_positive([3,-1,2]); // Returns: false. function all_positive(x) = is_num(x)? x>0 : is_list(x)? (x != [] && [for (xx=x) if(!all_positive(xx)) 1] == []) : false; // Function: all_negative() // Usage: // all_negative(x); // Description: // Returns true if the finite number passed to it is less than zero. // If passed a list, recursively checks if all items in the list are negative. // Otherwise, returns false. // Arguments: // x = The value to check. // Example: // all_negative(-2); // Returns: true. // all_negative(0); // Returns: false. // all_negative(2); // Returns: false. // all_negative([0,0,0]); // Returns: false. // all_negative([0,1,2]); // Returns: false. // all_negative([3,1,2]); // Returns: false. // all_negative([3,-1,2]); // Returns: false. // all_negative([-3,-1,-2]); // Returns: true. function all_negative(x) = is_num(x)? x<0 : is_list(x)? (x != [] && [for (xx=x) if(!all_negative(xx)) 1] == []) : false; // Function: all_nonpositive() // Usage: // all_nonpositive(x); // Description: // Returns true if the finite number passed to it is less than or equal to zero. // If passed a list, recursively checks if all items in the list are nonpositive. // Otherwise, returns false. // Arguments: // x = The value to check. // Example: // all_nonpositive(-2); // Returns: true. // all_nonpositive(0); // Returns: true. // all_nonpositive(2); // Returns: false. // all_nonpositive([0,0,0]); // Returns: true. // all_nonpositive([0,1,2]); // Returns: false. // all_nonpositive([3,1,2]); // Returns: false. // all_nonpositive([3,-1,2]); // Returns: false. // all_nonpositive([-3,-1,-2]); // Returns: true. function all_nonpositive(x) = is_num(x)? x<=0 : is_list(x)? (x != [] && [for (xx=x) if(!all_nonpositive(xx)) 1] == []) : false; // Function: all_nonnegative() // Usage: // all_nonnegative(x); // Description: // Returns true if the finite number passed to it is greater than or equal to zero. // If passed a list, recursively checks if all items in the list are nonnegative. // Otherwise, returns false. // Arguments: // x = The value to check. // Example: // all_nonnegative(-2); // Returns: false. // all_nonnegative(0); // Returns: true. // all_nonnegative(2); // Returns: true. // all_nonnegative([0,0,0]); // Returns: true. // all_nonnegative([0,1,2]); // Returns: true. // all_nonnegative([0,-1,-2]); // Returns: false. // all_nonnegative([3,1,2]); // Returns: true. // all_nonnegative([3,-1,2]); // Returns: false. // all_nonnegative([-3,-1,-2]); // Returns: false. function all_nonnegative(x) = is_num(x)? x>=0 : is_list(x)? (x != [] && [for (xx=x) if(!all_nonnegative(xx)) 1] == []) : false; // Function: approx() // Usage: // b = approx(a,b,) // Description: // Compares two numbers or vectors, and returns true if they are closer than `eps` to each other. // Arguments: // a = First value. // b = Second value. // eps = The maximum allowed difference between `a` and `b` that will return true. // Example: // approx(-0.3333333333,-1/3); // Returns: true // approx(0.3333333333,1/3); // Returns: true // approx(0.3333,1/3); // Returns: false // approx(0.3333,1/3,eps=1e-3); // Returns: true // approx(PI,3.1415926536); // Returns: true function approx(a,b,eps=EPSILON) = (a==b && is_bool(a) == is_bool(b)) || (is_num(a) && is_num(b) && abs(a-b) <= eps) || (is_list(a) && is_list(b) && len(a) == len(b) && [] == [for (i=idx(a)) if (!approx(a[i],b[i],eps=eps)) 1]); function _type_num(x) = is_undef(x)? 0 : is_bool(x)? 1 : is_num(x)? 2 : is_nan(x)? 3 : is_string(x)? 4 : is_list(x)? 5 : 6; // Function: compare_vals() // Usage: // b = compare_vals(a, b); // Description: // Compares two values. Lists are compared recursively. // Returns <0 if a0 if a>b. Returns 0 if a==b. // If types are not the same, then undef < bool < nan < num < str < list < range. // Arguments: // a = First value to compare. // b = Second value to compare. function compare_vals(a, b) = (a==b)? 0 : let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) : is_list(a)? compare_lists(a,b) : is_nan(a)? 0 : (ab)? 1 : 0; // Function: compare_lists() // Usage: // b = compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns <0 if `a`<`b`. // Returns 0 if `a`==`b`. // Returns >0 if `a`>`b`. // Arguments: // a = First list to compare. // b = Second list to compare. function compare_lists(a, b) = a==b? 0 : let( cmps = [ for(i=[0:1:min(len(a),len(b))-1]) let( cmp = compare_vals(a[i],b[i]) ) if(cmp!=0) cmp ] ) cmps==[]? (len(a)-len(b)) : cmps[0]; // Function: any() // Usage: // b = any(l); // Description: // Returns true if any item in list `l` evaluates as true. // If `l` is a lists of lists, `any()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // any([0,false,undef]); // Returns false. // any([1,false,undef]); // Returns true. // any([1,5,true]); // Returns true. // any([[0,0], [0,0]]); // Returns false. // any([[0,0], [1,0]]); // Returns true. function any(l) = assert(is_list(l), "The input is not a list." ) _any(l); function _any(l, i=0, succ=false) = (i>=len(l) || succ)? succ : _any( l, i+1, succ = is_list(l[i]) ? _any(l[i]) : !(!l[i]) ); // Function: all() // Usage: // b = all(l); // Description: // Returns true if all items in list `l` evaluate as true. // If `l` is a lists of lists, `all()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // all([0,false,undef]); // Returns false. // all([1,false,undef]); // Returns false. // all([1,5,true]); // Returns true. // all([[0,0], [0,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns false. // all([[1,1], [1,1]]); // Returns true. function all(l) = assert( is_list(l), "The input is not a list." ) _all(l); function _all(l, i=0, fail=false) = (i>=len(l) || fail)? !fail : _all( l, i+1, fail = is_list(l[i]) ? !_all(l[i]) : !l[i] ) ; // Function: count_true() // Usage: // n = count_true(l) // Description: // Returns the number of items in `l` that evaluate as true. // If `l` is a lists of lists, this is applied recursively to each // sublist. Returns the total count of items that evaluate as true // in all recursive sublists. // Arguments: // l = The list to test for true items. // nmax = If given, stop counting if `nmax` items evaluate as true. // Example: // count_true([0,false,undef]); // Returns 0. // count_true([1,false,undef]); // Returns 1. // count_true([1,5,false]); // Returns 2. // count_true([1,5,true]); // Returns 3. // count_true([[0,0], [0,0]]); // Returns 0. // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. function _count_true_rec(l, nmax, _cnt=0, _i=0) = _i>=len(l) || (is_num(nmax) && _cnt>=nmax)? _cnt : _count_true_rec(l, nmax, _cnt=_cnt+(l[_i]?1:0), _i=_i+1); function count_true(l, nmax) = is_undef(nmax)? len([for (x=l) if(x) 1]) : !is_list(l) ? ( l? 1: 0) : _count_true_rec(l, nmax); // Section: Calculus // Function: deriv() // Usage: // x = deriv(data, [h], [closed]) // Description: // Computes a numerical derivative estimate of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. This function uses a symetric derivative approximation // for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm // uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h. // . // If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance // between data[i+1] and data[i], and the data values will be linearly resampled at each corner // to produce a uniform spacing for the derivative estimate. At the endpoints a single point method // is used: f'(t) = (f(t+h)-f(t))/h. // Arguments: // data = the list of the elements to compute the derivative of. // h = the parametric sampling of the data. // closed = boolean to indicate if the data set should be wrapped around from the end to the start. function deriv(data, h=1, closed=false) = assert( is_consistent(data) , "Input list is not consistent or not numerical.") assert( len(data)>=2, "Input `data` should have at least 2 elements.") assert( is_finite(h) || is_vector(h), "The sampling `h` must be a number or a list of numbers." ) assert( is_num(h) || len(h) == len(data)-(closed?0:1), str("Vector valued `h` must have length ",len(data)-(closed?0:1))) is_vector(h) ? _deriv_nonuniform(data, h, closed=closed) : let( L = len(data) ) closed ? [ for(i=[0:1:L-1]) (data[(i+1)%L]-data[(L+i-1)%L])/2/h ] : let( first = L<3 ? data[1]-data[0] : 3*(data[1]-data[0]) - (data[2]-data[1]), last = L<3 ? data[L-1]-data[L-2]: (data[L-3]-data[L-2])-3*(data[L-2]-data[L-1]) ) [ first/2/h, for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h, last/2/h ]; function _dnu_calc(f1,fc,f2,h1,h2) = let( f1 = h2

, ) // Description: // Computes a numerical estimate of the second derivative of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. For internal points this function uses the approximation // f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false), // when sufficient points are available, the method is either the four point expression // f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or // f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2 // if five points are available. // Arguments: // data = the list of the elements to compute the derivative of. // h = the constant parametric sampling of the data. // closed = boolean to indicate if the data set should be wrapped around from the end to the start. function deriv2(data, h=1, closed=false) = assert( is_consistent(data) , "Input list is not consistent or not numerical.") assert( is_finite(h), "The sampling `h` must be a number." ) let( L = len(data) ) assert( L>=3, "Input list has less than 3 elements.") closed ? [ for(i=[0:1:L-1]) (data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h ] : let( first = L==3? data[0] - 2*data[1] + data[2] : L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] : (35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12, last = L==3? data[L-1] - 2*data[L-2] + data[L-3] : L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] : (35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12 ) [ first/h/h, for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h, last/h/h ]; // Function: deriv3() // Usage: // x = deriv3(data, , ) // Description: // Computes a numerical third derivative estimate of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. This function uses a five point derivative estimate, so the input data must include // at least five points: // f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end // the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and // f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3. // Arguments: // data = the list of the elements to compute the derivative of. // h = the constant parametric sampling of the data. // closed = boolean to indicate if the data set should be wrapped around from the end to the start. function deriv3(data, h=1, closed=false) = assert( is_consistent(data) , "Input list is not consistent or not numerical.") assert( len(data)>=5, "Input list has less than 5 elements.") assert( is_finite(h), "The sampling `h` must be a number." ) let( L = len(data), h3 = h*h*h ) closed? [ for(i=[0:1:L-1]) (-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3 ] : let( first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2, second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2, last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2, prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2 ) [ first/h3, second/h3, for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3, prelast/h3, last/h3 ]; // Section: Complex Numbers // Function: C_times() // Usage: // c = C_times(z1,z2) // Description: // Multiplies two complex numbers represented by 2D vectors. // Returns a complex number as a 2D vector [REAL, IMAGINARY]. // Arguments: // z1 = First complex number, given as a 2D vector [REAL, IMAGINARY] // z2 = Second complex number, given as a 2D vector [REAL, IMAGINARY] function C_times(z1,z2) = assert( is_matrix([z1,z2],2,2), "Complex numbers should be represented by 2D vectors" ) [ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ]; // Function: C_div() // Usage: // x = C_div(z1,z2) // Description: // Divides two complex numbers represented by 2D vectors. // Returns a complex number as a 2D vector [REAL, IMAGINARY]. // Arguments: // z1 = First complex number, given as a 2D vector [REAL, IMAGINARY] // z2 = Second complex number, given as a 2D vector [REAL, IMAGINARY] function C_div(z1,z2) = assert( is_vector(z1,2) && is_vector(z2), "Complex numbers should be represented by 2D vectors." ) assert( !approx(z2,0), "The divisor `z2` cannot be zero." ) let(den = z2.x*z2.x + z2.y*z2.y) [(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x - z1.x*z2.y)/den]; // For the sake of consistence with Q_mul and vmul, C_times should be called C_mul // Section: Polynomials // Function: quadratic_roots() // Usage: // roots = quadratic_roots(a,b,c,) // Description: // Computes roots of the quadratic equation a*x^2+b*x+c==0, where the // coefficients are real numbers. If real is true then returns only the // real roots. Otherwise returns a pair of complex values. This method // may be more reliable than the general root finder at distinguishing // real roots from complex roots. // Algorithm from: https://people.csail.mit.edu/bkph/articles/Quadratics.pdf function quadratic_roots(a,b,c,real=false) = real ? [for(root = quadratic_roots(a,b,c,real=false)) if (root.y==0) root.x] : is_undef(b) && is_undef(c) && is_vector(a,3) ? quadratic_roots(a[0],a[1],a[2]) : assert(is_num(a) && is_num(b) && is_num(c)) assert(a!=0 || b!=0 || c!=0, "Quadratic must have a nonzero coefficient") a==0 && b==0 ? [] : // No solutions a==0 ? [[-c/b,0]] : let( descrim = b*b-4*a*c, sqrt_des = sqrt(abs(descrim)) ) descrim < 0 ? // Complex case [[-b, sqrt_des], [-b, -sqrt_des]]/2/a : b<0 ? // b positive [[2*c/(-b+sqrt_des),0], [(-b+sqrt_des)/a/2,0]] : // b negative [[(-b-sqrt_des)/2/a, 0], [2*c/(-b-sqrt_des),0]]; // Function: polynomial() // Usage: // x = polynomial(p, z) // Description: // Evaluates specified real polynomial, p, at the complex or real input value, z. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the z^n coefficient. Polynomial coefficients are real. // The result is a number if `z` is a number and a complex number otherwise. function polynomial(p,z,k,total) =     is_undef(k)     ?   assert( is_vector(p) , "Input polynomial coefficients must be a vector." )         assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )         polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])     : k==len(p) ? total     : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]); // Function: poly_mult() // Usage: // x = polymult(p,q) // x = polymult([p1,p2,p3,...]) // Description: // Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first, // computes the coefficient list of the product polynomial. function poly_mult(p,q) =     is_undef(q) ?         len(p)==2 ? poly_mult(p[0],p[1])         : poly_mult(p[0], poly_mult(select(p,1,-1)))     :     assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult") p*p==0 || q*q==0 ? [0] : _poly_trim(convolve(p,q)); // Function: poly_div() // Usage: // [quotient,remainder] = poly_div(n,d) // Description: // Computes division of the numerator polynomial by the denominator polynomial and returns // a list of two polynomials, [quotient, remainder]. If the division has no remainder then // the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero // the returned quotient will be []. function poly_div(n,d) = assert( is_vector(n) && is_vector(d) , "Invalid polynomials." ) let( d = _poly_trim(d), n = _poly_trim(n) ) assert( d!=[0] , "Denominator cannot be a zero polynomial." ) n==[0] ? [[0],[0]] : _poly_div(n,d,q=[]); function _poly_div(n,d,q) = len(n)qlen ? p : q, short = plen>qlen ? q : p ) _poly_trim(long + concat(repeat(0,len(long)-len(short)),short)); // Function: poly_roots() // Usage: // poly_roots(p,) // Description: // Returns all complex roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the z^n coefficient. The tol parameter gives // the stopping tolerance for the iteration. The polynomial // must have at least one non-zero coefficient. Convergence is poor // if the polynomial has any repeated roots other than zero. // Arguments: // p = polynomial coefficients with higest power coefficient first // tol = tolerance for iteration. Default: 1e-14 // Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method // // Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996. // https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method function poly_roots(p,tol=1e-14,error_bound=false) = assert( is_vector(p), "Invalid polynomial." ) let( p = _poly_trim(p,eps=0) ) assert( p!=[0], "Input polynomial cannot be zero." ) p[len(p)-1] == 0 ? // Strip trailing zero coefficients let( solutions = poly_roots(select(p,0,-2),tol=tol, error_bound=error_bound)) (error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]] : [[0,0], each solutions]) : len(p)==1 ? (error_bound ? [[],[]] : []) : // Nonzero constant case has no solutions len(p)==2 ? let( solution = [[-p[1]/p[0],0]]) // Linear case needs special handling (error_bound ? [solution,[0]] : solution) : let( n = len(p)-1, // polynomial degree pderiv = [for(i=[0:n-1]) p[i]*(n-i)], s = [for(i=[0:1:n]) abs(p[i])*(4*(n-i)+1)], // Error bound polynomial from Bini // Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf beta = -p[1]/p[0]/n, r = 1+pow(abs(polynomial(p,beta)/p[0]),1/n), init = [for(i=[0:1:n-1]) // Initial guess for roots let(angle = 360*i/n+270/n/PI) [beta,0]+r*[cos(angle),sin(angle)] ], roots = _poly_roots(p,pderiv,s,init,tol=tol), error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) / abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0 ) error_bound ? [roots, error] : roots; // Internal function // p = polynomial // pderiv = derivative polynomial of p // z = current guess for the roots // tol = root tolerance // i=iteration counter function _poly_roots(p, pderiv, s, z, tol, i=0) = assert(i<45, str("Polyroot exceeded iteration limit. Current solution:", z)) let( n = len(z), svals = [for(zk=z) tol*polynomial(s,norm(zk))], p_of_z = [for(zk=z) polynomial(p,zk)], done = [for(k=[0:n-1]) norm(p_of_z[k])<=svals[k]], newton = [for(k=[0:n-1]) C_div(p_of_z[k], polynomial(pderiv,z[k]))], zdiff = [for(k=[0:n-1]) sum([for(j=[0:n-1]) if (j!=k) C_div([1,0], z[k]-z[j])])], w = [for(k=[0:n-1]) done[k] ? [0,0] : C_div( newton[k], [1,0] - C_times(newton[k], zdiff[k]))] ) all(done) ? z : _poly_roots(p,pderiv,s,z-w,tol,i+1); // Function: real_roots() // Usage: // real_roots(p, , ) // Description: // Returns the real roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the x^n coefficient. This function works by // computing the complex roots and returning those roots where // the imaginary part is closed to zero. By default it uses a computed // error bound from the polynomial solver to decide whether imaginary // parts are zero. You can specify eps, in which case the test is // z.y/(1+norm(z)) < eps. Because // of poor convergence and higher error for repeated roots, such roots may // be missed by the algorithm because their imaginary part is large. // Arguments: // p = polynomial to solve as coefficient list, highest power term first // eps = used to determine whether imaginary parts of roots are zero // tol = tolerance for the complex polynomial root finder function real_roots(p,eps=undef,tol=1e-14) = assert( is_vector(p), "Invalid polynomial." ) let( p = _poly_trim(p,eps=0) ) assert( p!=[0], "Input polynomial cannot be zero." ) let( roots_err = poly_roots(p,error_bound=true), roots = roots_err[0], err = roots_err[1] ) is_def(eps) ? [for(z=roots) if (abs(z.y)/(1+norm(z))