////////////////////////////////////////////////////////////////////// // LibFile: math.scad // Math helper functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Math Constants PHI = (1+sqrt(5))/2; // The golden ratio phi. EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b) `y`. // Arguments: // x = The start value to constrain. // y = The end value to constrain. // m = Modulo value. // step = Step by this amount. // Examples: // modrange(90,270,360, step=45); // Returns: [90,135,180,225,270] // modrange(270,90,360, step=45); // Returns: [270,315,0,45,90] // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] function modrange(x, y, m, step=1) = let( a = posmod(x, m), b = posmod(y, m), c = step>0? (a>b? b+m : b) : (a= min, "Max value cannot be smaller than min") let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N)) [for(entry = rvect) floor(entry)]; // Function: gaussian_rands() // Usage: // gaussian_rands(mean, stddev, [N], [seed]) // Description: // Returns a random number with a gaussian/normal distribution. // Arguments: // mean = The average random number returned. // stddev = The standard deviation of the numbers to be returned. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function gaussian_rands(mean, stddev, N=1, seed=undef) = let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed)) [for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])]; // Function: log_rands() // Usage: // log_rands(minval, maxval, factor, [N], [seed]); // Description: // Returns a single random number, with a logarithmic distribution. // Arguments: // minval = Minimum value to return. // maxval = Maximum value to return. `minval` <= X < `maxval`. // factor = Log factor to use. Values of X are returned `factor` times more often than X+1. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function log_rands(minval, maxval, factor, N=1, seed=undef) = assert(maxval >= minval, "maxval cannot be smaller than minval") let( minv = 1-1/pow(factor,minval), maxv = 1-1/pow(factor,maxval), nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed) ) [for (num=nums) -ln(1-num)/ln(factor)]; // Section: GCD/GCF, LCM // If argument is a list return it. Otherwise return a singleton list containing the argument. function _force_list(x) = is_list(x) ? x : [x]; // Function: gcd() // Usage: // gcd(a,b) // Description: // Computes the Greatest Common Divisor/Factor of `a` and `b`. function gcd(a,b) = assert(is_int(a) && is_int(b),"Arguments to gcd must be integers") b==0 ? abs(a) : gcd(b,a % b); // Computes lcm for two scalars function _lcm(a,b) = assert(is_int(a), "Invalid non-integer parameters to lcm") assert(is_int(b), "Invalid non-integer parameters to lcm") assert(a!=0 && b!=0, "Arguments to lcm must be nonzero") abs(a*b) / gcd(a,b); // Computes lcm for a list of values function _lcmlist(a) = len(a)==1 ? a[0] : _lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])])); // Function: lcm() // Usage: // lcm(a,b) // lcm(list) // Description: // Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should // be non-zero integers. The output is always a positive integer. It is an error to pass zero // as an argument. function lcm(a,b=[]) = !is_list(a) && !is_list(b) ? _lcm(a,b) : let( arglist = concat(_force_list(a),_force_list(b)) ) assert(len(arglist)>0,"invalid call to lcm with empty list(s)") _lcmlist(arglist); // Section: Sums, Products, Aggregate Functions. // Function: sum() // Description: // Returns the sum of all entries in the given list. // If passed an array of vectors, returns a vector of sums of each part. // Arguments: // v = The list to get the sum of. // Example: // sum([1,2,3]); // returns 6. // sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15] function sum(v, _i=0, _acc) = _i>=len(v)? _acc : sum(v, _i=_i+1, _acc=is_undef(_acc)? v[_i] : _acc+v[_i]); // Function: cumsum() // Description: // Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list. // If passed an array of vectors, returns a list of cumulative vectors sums. // Arguments: // v = The list to get the sum of. // Example: // cumsum([1,1,1]); // returns [1,2,3] // cumsum([2,2,2]); // returns [2,4,6] // cumsum([1,2,3]); // returns [1,3,6] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] function cumsum(v,_i=0,_acc=[]) = _i==len(v) ? _acc : cumsum( v, _i+1, concat( _acc, [_i==0 ? v[_i] : select(_acc,-1)+v[_i]] ) ); // Function: sum_of_squares() // Description: // Returns the sum of the square of each element of a vector. // Arguments: // v = The vector to get the sum of. // Example: // sum_of_squares([1,2,3]); // Returns: 14. // sum_of_squares([1,2,4]); // Returns: 21 // sum_of_squares([-3,-2,-1]); // Returns: 14 function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v)); // Function: sum_of_sines() // Usage: // sum_of_sines(a,sines) // Description: // Gives the sum of a series of sines, at a given angle. // Arguments: // a = Angle to get the value for. // sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle. // Examples: // v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]); function sum_of_sines(a, sines) = sum([ for (s = sines) let( ss=point3d(s), v=ss.x*sin(a*ss.y+ss.z) ) v ]); // Function: deltas() // Description: // Returns a list with the deltas of adjacent entries in the given list. // Given [a,b,c,d], returns [b-a,c-b,d-c]. // Arguments: // v = The list to get the deltas of. // Example: // deltas([2,5,9,17]); // returns [3,4,8]. // deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]] function deltas(v) = [for (p=pair(v)) p.y-p.x]; // Function: product() // Description: // Returns the product of all entries in the given list. // If passed an array of vectors, returns a vector of products of each part. // If passed an array of matrices, returns a the resulting product matrix. // Arguments: // v = The list to get the product of. // Example: // product([2,3,4]); // returns 24. // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i])); // Function: mean() // Description: // Returns the mean of all entries in the given array. // If passed an array of vectors, returns a vector of mean of each part. // Arguments: // v = The list of values to get the mean of. // Example: // mean([2,3,4]); // returns 3. // mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5] function mean(v) = sum(v)/len(v); // Section: Determinants // Function: det2() // Description: // Optimized function that returns the determinant for the given 2x2 square matrix. // Arguments: // M = The 2x2 square matrix to get the determinant of. // Example: // M = [ [6,-2], [1,8] ]; // det = det2(M); // Returns: 50 function det2(M) = M[0][0] * M[1][1] - M[0][1]*M[1][0]; // Function: det3() // Description: // Optimized function that returns the determinant for the given 3x3 square matrix. // Arguments: // M = The 3x3 square matrix to get the determinant of. // Example: // M = [ [6,4,-2], [1,-2,8], [1,5,7] ]; // det = det3(M); // Returns: -334 function det3(M) = M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) - M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) + M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]); // Function: determinant() // Description: // Returns the determinant for the given square matrix. // Arguments: // M = The NxN square matrix to get the determinant of. // Example: // M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ]; // det = determinant(M); // Returns: 2267 function determinant(M) = assert(len(M)==len(M[0])) len(M)==1? M[0][0] : len(M)==2? det2(M) : len(M)==3? det3(M) : sum( [for (col=[0:1:len(M)-1]) ((col%2==0)? 1 : -1) * M[col][0] * determinant( [for (r=[1:1:len(M)-1]) [for (c=[0:1:len(M)-1]) if (c!=col) M[c][r] ] ] ) ] ); // Section: Comparisons and Logic // Function: approx() // Usage: // approx(a,b,[eps]) // Description: // Compares two numbers or vectors, and returns true if they are closer than `eps` to each other. // Arguments: // a = First value. // b = Second value. // eps = The maximum allowed difference between `a` and `b` that will return true. // Example: // approx(-0.3333333333,-1/3); // Returns: true // approx(0.3333333333,1/3); // Returns: true // approx(0.3333,1/3); // Returns: false // approx(0.3333,1/3,eps=1e-3); // Returns: true // approx(PI,3.1415926536); // Returns: true function approx(a,b,eps=EPSILON) = let(c=a-b) (is_num(c)? abs(c) : norm(c)) <= eps; function _type_num(x) = is_undef(x)? 0 : is_bool(x)? 1 : is_num(x)? 2 : is_string(x)? 3 : is_list(x)? 4 : 5; // Function: compare_vals() // Usage: // compare_vals(a, b); // Description: // Compares two values. Lists are compared recursively. // If types are not the same, then undef < bool < num < str < list < range. // Arguments: // a = First value to compare. // b = Second value to compare. function compare_vals(a, b) = (a==b)? 0 : let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) : is_list(a)? compare_lists(a,b) : (ab)? 1 : 0; // Function: compare_lists() // Usage: // compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns <0 if `a`<`b`. // Returns 0 if `a`==`b`. // Returns >0 if `a`>`b`. // Arguments: // a = First list to compare. // b = Second list to compare. function compare_lists(a, b) = a==b? 0 : let( cmps = [ for(i=[0:1:min(len(a),len(b))-1]) let( cmp = compare_vals(a[i],b[i]) ) if(cmp!=0) cmp ] ) cmps==[]? (len(a)-len(b)) : cmps[0]; // Function: any() // Description: // Returns true if any item in list `l` evaluates as true. // If `l` is a lists of lists, `any()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // any([0,false,undef]); // Returns false. // any([1,false,undef]); // Returns true. // any([1,5,true]); // Returns true. // any([[0,0], [0,0]]); // Returns false. // any([[0,0], [1,0]]); // Returns true. function any(l, i=0, succ=false) = (i>=len(l) || succ)? succ : any( l, i=i+1, succ=( is_list(l[i])? any(l[i]) : !(!l[i]) ) ); // Function: all() // Description: // Returns true if all items in list `l` evaluate as true. // If `l` is a lists of lists, `all()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // all([0,false,undef]); // Returns false. // all([1,false,undef]); // Returns false. // all([1,5,true]); // Returns true. // all([[0,0], [0,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns false. // all([[1,1], [1,1]]); // Returns true. function all(l, i=0, fail=false) = (i>=len(l) || fail)? (!fail) : all( l, i=i+1, fail=( is_list(l[i])? !all(l[i]) : !l[i] ) ); // Function: count_true() // Usage: // count_true(l) // Description: // Returns the number of items in `l` that evaluate as true. // If `l` is a lists of lists, this is applied recursively to each // sublist. Returns the total count of items that evaluate as true // in all recursive sublists. // Arguments: // l = The list to test for true items. // nmax = If given, stop counting if `nmax` items evaluate as true. // Example: // count_true([0,false,undef]); // Returns 0. // count_true([1,false,undef]); // Returns 1. // count_true([1,5,false]); // Returns 2. // count_true([1,5,true]); // Returns 3. // count_true([[0,0], [0,0]]); // Returns 0. // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. function count_true(l, nmax=undef, i=0, cnt=0) = (i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt : count_true( l=l, nmax=nmax, i=i+1, cnt=cnt+( is_list(l[i])? count_true(l[i], nmax=nmax-cnt) : (l[i]? 1 : 0) ) ); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap