////////////////////////////////////////////////////////////////////// // LibFile: math.scad // Math helper functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Math Constants PHI = (1+sqrt(5))/2; // The golden ratio phi. EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b) `y`. // Arguments: // x = The start value to constrain. // y = The end value to constrain. // m = Modulo value. // step = Step by this amount. // Examples: // modrange(90,270,360, step=45); // Returns: [90,135,180,225,270] // modrange(270,90,360, step=45); // Returns: [270,315,0,45,90] // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] function modrange(x, y, m, step=1) = let( a = posmod(x, m), b = posmod(y, m), c = step>0? (a>b? b+m : b) : (a= min, "Max value cannot be smaller than min") let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N)) [for(entry = rvect) floor(entry)]; // Function: gaussian_rands() // Usage: // gaussian_rands(mean, stddev, [N], [seed]) // Description: // Returns a random number with a gaussian/normal distribution. // Arguments: // mean = The average random number returned. // stddev = The standard deviation of the numbers to be returned. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function gaussian_rands(mean, stddev, N=1, seed=undef) = let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed)) [for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])]; // Function: log_rands() // Usage: // log_rands(minval, maxval, factor, [N], [seed]); // Description: // Returns a single random number, with a logarithmic distribution. // Arguments: // minval = Minimum value to return. // maxval = Maximum value to return. `minval` <= X < `maxval`. // factor = Log factor to use. Values of X are returned `factor` times more often than X+1. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function log_rands(minval, maxval, factor, N=1, seed=undef) = assert(maxval >= minval, "maxval cannot be smaller than minval") let( minv = 1-1/pow(factor,minval), maxv = 1-1/pow(factor,maxval), nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed) ) [for (num=nums) -ln(1-num)/ln(factor)]; // Section: GCD/GCF, LCM // Function: gcd() // Usage: // gcd(a,b) // Description: // Computes the Greatest Common Divisor/Factor of `a` and `b`. function gcd(a,b) = assert(is_int(a) && is_int(b),"Arguments to gcd must be integers") b==0 ? abs(a) : gcd(b,a % b); // Computes lcm for two scalars function _lcm(a,b) = assert(is_int(a), "Invalid non-integer parameters to lcm") assert(is_int(b), "Invalid non-integer parameters to lcm") assert(a!=0 && b!=0, "Arguments to lcm must be nonzero") abs(a*b) / gcd(a,b); // Computes lcm for a list of values function _lcmlist(a) = len(a)==1 ? a[0] : _lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])])); // Function: lcm() // Usage: // lcm(a,b) // lcm(list) // Description: // Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should // be non-zero integers. The output is always a positive integer. It is an error to pass zero // as an argument. function lcm(a,b=[]) = !is_list(a) && !is_list(b) ? _lcm(a,b) : let( arglist = concat(force_list(a),force_list(b)) ) assert(len(arglist)>0,"invalid call to lcm with empty list(s)") _lcmlist(arglist); // Section: Sums, Products, Aggregate Functions. // Function: sum() // Description: // Returns the sum of all entries in the given list. // If passed an array of vectors, returns a vector of sums of each part. // If passed an empty list, the value of `dflt` will be returned. // Arguments: // v = The list to get the sum of. // dflt = The default value to return if `v` is an empty list. Default: 0 // Example: // sum([1,2,3]); // returns 6. // sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15] function sum(v, dflt=0) = assert(is_consistent(v), "Input to sum is non-numeric or inconsistent") len(v) == 0 ? dflt : _sum(v,v[0]*0); function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1); // Function: cumsum() // Description: // Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list. // If passed an array of vectors, returns a list of cumulative vectors sums. // Arguments: // v = The list to get the sum of. // Example: // cumsum([1,1,1]); // returns [1,2,3] // cumsum([2,2,2]); // returns [2,4,6] // cumsum([1,2,3]); // returns [1,3,6] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] function cumsum(v,_i=0,_acc=[]) = _i==len(v) ? _acc : cumsum( v, _i+1, concat( _acc, [_i==0 ? v[_i] : select(_acc,-1)+v[_i]] ) ); // Function: sum_of_squares() // Description: // Returns the sum of the square of each element of a vector. // Arguments: // v = The vector to get the sum of. // Example: // sum_of_squares([1,2,3]); // Returns: 14. // sum_of_squares([1,2,4]); // Returns: 21 // sum_of_squares([-3,-2,-1]); // Returns: 14 function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v)); // Function: sum_of_sines() // Usage: // sum_of_sines(a,sines) // Description: // Gives the sum of a series of sines, at a given angle. // Arguments: // a = Angle to get the value for. // sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle. // Examples: // v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]); function sum_of_sines(a, sines) = sum([ for (s = sines) let( ss=point3d(s), v=ss.x*sin(a*ss.y+ss.z) ) v ]); // Function: deltas() // Description: // Returns a list with the deltas of adjacent entries in the given list. // Given [a,b,c,d], returns [b-a,c-b,d-c]. // Arguments: // v = The list to get the deltas of. // Example: // deltas([2,5,9,17]); // returns [3,4,8]. // deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]] function deltas(v) = [for (p=pair(v)) p.y-p.x]; // Function: product() // Description: // Returns the product of all entries in the given list. // If passed an array of vectors, returns a vector of products of each part. // If passed an array of matrices, returns a the resulting product matrix. // Arguments: // v = The list to get the product of. // Example: // product([2,3,4]); // returns 24. // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i])); // Function: mean() // Description: // Returns the mean of all entries in the given array. // If passed an array of vectors, returns a vector of mean of each part. // Arguments: // v = The list of values to get the mean of. // Example: // mean([2,3,4]); // returns 3. // mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5] function mean(v) = sum(v)/len(v); // Section: Matrix math // Function: linear_solve() // Usage: linear_solve(A,b) // Description: // Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined // the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned. // If A is rank deficient or singular then linear_solve returns `undef`. function linear_solve(A,b) = let( dim = array_dim(A), m=dim[0], n=dim[1] ) assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b))) let ( qr = mj ? 0 : qr[1][i][j] ] ] ) [qr[0],Rzero]; function _qr_factor(A,Q, column, m, n) = column >= min(m-1,n) ? [Q,A] : let( x = [for(i=[column:1:m-1]) A[i][column]], alpha = (x[0]<=0 ? 1 : -1) * norm(x), u = x - concat([alpha],replist(0,m-1)), v = u / norm(u), Qc = ident(len(x)) - 2*transpose([v])*[v], Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) ib)? 1 : 0; // Function: compare_lists() // Usage: // compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns <0 if `a`<`b`. // Returns 0 if `a`==`b`. // Returns >0 if `a`>`b`. // Arguments: // a = First list to compare. // b = Second list to compare. function compare_lists(a, b) = a==b? 0 : let( cmps = [ for(i=[0:1:min(len(a),len(b))-1]) let( cmp = compare_vals(a[i],b[i]) ) if(cmp!=0) cmp ] ) cmps==[]? (len(a)-len(b)) : cmps[0]; // Function: any() // Description: // Returns true if any item in list `l` evaluates as true. // If `l` is a lists of lists, `any()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // any([0,false,undef]); // Returns false. // any([1,false,undef]); // Returns true. // any([1,5,true]); // Returns true. // any([[0,0], [0,0]]); // Returns false. // any([[0,0], [1,0]]); // Returns true. function any(l, i=0, succ=false) = (i>=len(l) || succ)? succ : any( l, i=i+1, succ=( is_list(l[i])? any(l[i]) : !(!l[i]) ) ); // Function: all() // Description: // Returns true if all items in list `l` evaluate as true. // If `l` is a lists of lists, `all()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // all([0,false,undef]); // Returns false. // all([1,false,undef]); // Returns false. // all([1,5,true]); // Returns true. // all([[0,0], [0,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns false. // all([[1,1], [1,1]]); // Returns true. function all(l, i=0, fail=false) = (i>=len(l) || fail)? (!fail) : all( l, i=i+1, fail=( is_list(l[i])? !all(l[i]) : !l[i] ) ); // Function: count_true() // Usage: // count_true(l) // Description: // Returns the number of items in `l` that evaluate as true. // If `l` is a lists of lists, this is applied recursively to each // sublist. Returns the total count of items that evaluate as true // in all recursive sublists. // Arguments: // l = The list to test for true items. // nmax = If given, stop counting if `nmax` items evaluate as true. // Example: // count_true([0,false,undef]); // Returns 0. // count_true([1,false,undef]); // Returns 1. // count_true([1,5,false]); // Returns 2. // count_true([1,5,true]); // Returns 3. // count_true([[0,0], [0,0]]); // Returns 0. // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. function count_true(l, nmax=undef, i=0, cnt=0) = (i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt : count_true( l=l, nmax=nmax, i=i+1, cnt=cnt+( is_list(l[i])? count_true(l[i], nmax=nmax-cnt) : (l[i]? 1 : 0) ) ); // Section: Calculus // Function: deriv() // Usage: deriv(data, [h], [closed]) // Description: // Computes a numerical derivative estimate of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. This function uses a symetric derivative approximation // for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm // uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h. function deriv(data, h=1, closed=false) = let( L = len(data) ) closed? [ for(i=[0:1:L-1]) (data[(i+1)%L]-data[(L+i-1)%L])/2/h ] : let( first = L<3? data[1]-data[0] : 3*(data[1]-data[0]) - (data[2]-data[1]), last = L<3? data[L-1]-data[L-2]: (data[L-3]-data[L-2])-3*(data[L-2]-data[L-1]) ) [ first/2/h, for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h, last/2/h ]; // Function: deriv2() // Usage: deriv2(data, [h], [closed]) // Description: // Computes a numerical esimate of the second derivative of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. For internal points this function uses the approximation // f''(t) = (f(t-h)-2*f(t)+f(t+h))/h^2. For the endpoints (when closed=false) the algorithm // when sufficient points are available the method is either the four point expression // f''(t) = (2*f(t) - 5*f(t+h) + 4*f(t+2*h) - f(t+3*h))/h^2 or if five points are available // f''(t) = (35*f(t) - 104*f(t+h) + 114*f(t+2*h) - 56*f(t+3*h) + 11*f(t+4*h)) / 12h^2 function deriv2(data, h=1, closed=false) = let( L = len(data) ) closed? [ for(i=[0:1:L-1]) (data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h ] : let( first = L<3? undef : L==3? data[0] - 2*data[1] + data[2] : L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] : (35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12, last = L<3? undef : L==3? data[L-1] - 2*data[L-2] + data[L-3] : L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] : (35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12 ) [ first/h/h, for(i=[1:1:L-2]) (data[i+1]-2*data[i]+data[i-1])/h/h, last/h/h ]; // Function: deriv3() // Usage: deriv3(data, [h], [closed]) // Description: // Computes a numerical third derivative estimate of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. This function uses a five point derivative estimate, so the input must include five points: // f'''(t) = (-f(t-2*h)+2*f(t-h)-2*f(t+h)+f(t+2*h)) / 2h^3. At the first and second points from the end // the estimates are f'''(t) = (-5*f(t)+18*f(t+h)-24*f(t+2*h)+14*f(t+3*h)-3*f(t+4*h)) / 2h^3 and // f'''(t) = (-3*f(t-h)+10*f(t)-12*f(t+h)+6*f(t+2*h)-f(t+3*h)) / 2h^3. function deriv3(data, h=1, closed=false) = let( L = len(data), h3 = h*h*h ) assert(L>=5, "Need five points for 3rd derivative estimate") closed? [ for(i=[0:1:L-1]) (-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3 ] : let( first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2, second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2, last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2, prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2 ) [ first/h3, second/h3, for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3, prelast/h3, last/h3 ]; // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap