////////////////////////////////////////////////////////////////////// // LibFile: shapes3d.scad // Some standard modules for making 3d shapes with attachment support, and function forms // that produce a VNF. Also included are shortcuts cylinders in each orientation and extended versions of // the standard modules that provide roundovers and chamfers. The sphereoid() module provides // several different ways to make a sphere, and the text modules let you write text on a path // so you can place it on a curved object. // Includes: // include // FileGroup: Basic Modeling // FileSummary: Attachable cubes, cylinders, spheres, ruler, and text. Many can produce a VNF. // FileFootnotes: STD=Included in std.scad ////////////////////////////////////////////////////////////////////// use // Section: Cuboids, Prismoids and Pyramids // Function&Module: cube() // Topics: Shapes (3D), Attachable, VNF Generators // Usage: As Module // cube(size, [center], ...); // Usage: With Attachments // cube(size, [center], ...) { attachments } // Usage: As Function // vnf = cube(size, [center], ...); // See Also: cuboid(), prismoid() // Description: // Creates a 3D cubic object with support for anchoring and attachments. // This can be used as a drop-in replacement for the built-in `cube()` module. // When called as a function, returns a [VNF](vnf.scad) for a cube. // Arguments: // size = The size of the cube. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=FRONT+LEFT+BOTTOM`. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: Simple cube. // cube(40); // Example: Rectangular cube. // cube([20,40,50]); // Example: Anchoring. // cube([20,40,50], anchor=BOTTOM+FRONT); // Example: Spin. // cube([20,40,50], anchor=BOTTOM+FRONT, spin=30); // Example: Orientation. // cube([20,40,50], anchor=BOTTOM+FRONT, spin=30, orient=FWD); // Example: Standard Connectors. // cube(40, center=true) show_anchors(); // Example: Called as Function // vnf = cube([20,40,50]); // vnf_polyhedron(vnf); module cube(size=1, center, anchor, spin=0, orient=UP) { anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]); size = scalar_vec3(size); attachable(anchor,spin,orient, size=size) { _cube(size, center=true); children(); } } function cube(size=1, center, anchor, spin=0, orient=UP) = let( siz = scalar_vec3(size), anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]), unscaled = [ [-1,-1,-1],[1,-1,-1],[1,1,-1],[-1,1,-1], [-1,-1, 1],[1,-1, 1],[1,1, 1],[-1,1, 1], ]/2, verts = is_num(size)? unscaled * size : is_vector(size,3)? [for (p=unscaled) v_mul(p,size)] : assert(is_num(size) || is_vector(size,3)), faces = [ [0,1,2], [0,2,3], //BOTTOM [0,4,5], [0,5,1], //FRONT [1,5,6], [1,6,2], //RIGHT [2,6,7], [2,7,3], //BACK [3,7,4], [3,4,0], //LEFT [6,4,7], [6,5,4] //TOP ] ) [reorient(anchor,spin,orient, size=siz, p=verts), faces]; // Module: cuboid() // // Usage: Standard Cubes // cuboid(size, [anchor=], [spin=], [orient=]); // cuboid(size, p1=, ...); // cuboid(p1=, p2=, ...); // Usage: Chamfered Cubes // cuboid(size, [chamfer=], [edges=], [except=], [trimcorners=], ...); // Usage: Rounded Cubes // cuboid(size, [rounding=], [edges=], [except=], [trimcorners=], ...); // Usage: Attaching children // cuboid(size, [anchor=], ...) [attachments]; // // Description: // Creates a cube or cuboid object, with optional chamfering or rounding of edges and corners. // You cannot mix chamfering and rounding: just one edge treatment with the same size applies to all selected edges. // Negative chamfers and roundings can be applied to create external fillets, but they // but only apply to edges around the top or bottom faces. If you specify an edge set other than "ALL" // with such roundings or chamfers then you will get an error. See // [Specifying Edges](attachments.scad#section-specifying-edges) for information on how to specify edge sets. // Arguments: // size = The size of the cube, a number or length 3 vector. // --- // chamfer = Size of chamfer, inset from sides. Default: No chamfering. // rounding = Radius of the edge rounding. Default: No rounding. // edges = Edges to mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: all edges. // except = Edges to explicitly NOT mask. See [Specifying Edges](attachments.scad#section-specifying-edges). Default: No edges. // trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true` // p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=FRONT+LEFT+BOTTOM`. // p2 = If given with `p1`, defines the cornerpoints of the cuboid. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: Simple regular cube. // cuboid(40); // Example: Cube with minimum cornerpoint given. // cuboid(20, p1=[10,0,0]); // Example: Rectangular cube, with given X, Y, and Z sizes. // cuboid([20,40,50]); // Example: Cube by Opposing Corners. // cuboid(p1=[0,10,0], p2=[20,30,30]); // Example: Chamferred Edges and Corners. // cuboid([30,40,50], chamfer=5); // Example: Chamferred Edges, Untrimmed Corners. // cuboid([30,40,50], chamfer=5, trimcorners=false); // Example: Rounded Edges and Corners // cuboid([30,40,50], rounding=10); // Example: Rounded Edges, Untrimmed Corners // cuboid([30,40,50], rounding=10, trimcorners=false); // Example: Chamferring Selected Edges // cuboid( // [30,40,50], chamfer=5, // edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], // $fn=24 // ); // Example: Rounding Selected Edges // cuboid( // [30,40,50], rounding=5, // edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], // $fn=24 // ); // Example: Negative Chamferring // cuboid( // [30,40,50], chamfer=-5, // edges=[TOP,BOT], except=RIGHT, // $fn=24 // ); // Example: Negative Chamferring, Untrimmed Corners // cuboid( // [30,40,50], chamfer=-5, // edges=[TOP,BOT], except=RIGHT, // trimcorners=false, $fn=24 // ); // Example: Negative Rounding // cuboid( // [30,40,50], rounding=-5, // edges=[TOP,BOT], except=RIGHT, // $fn=24 // ); // Example: Negative Rounding, Untrimmed Corners // cuboid( // [30,40,50], rounding=-5, // edges=[TOP,BOT], except=RIGHT, // trimcorners=false, $fn=24 // ); // Example: Standard Connectors // cuboid(40) show_anchors(); module cuboid( size=[1,1,1], p1, p2, chamfer, rounding, edges=EDGES_ALL, except=[], except_edges, trimcorners=true, anchor=CENTER, spin=0, orient=UP ) { module corner_shape(corner) { e = _corner_edges(edges, corner); cnt = sum(e); r = first_defined([chamfer, rounding]); dummy=assert(is_finite(r) && !approx(r,0)); c = [min(r,size.x/2), min(r,size.y/2), min(r,size.z/2)]; c2 = v_mul(corner,c/2); $fn = is_finite(chamfer)? 4 : segs(r); translate(v_mul(corner, size/2-c)) { if (cnt == 0 || approx(r,0)) { translate(c2) cube(c, center=true); } else if (cnt == 1) { if (e.x) right(c2.x) xcyl(l=c.x, r=r); if (e.y) back (c2.y) ycyl(l=c.y, r=r); if (e.z) up (c2.z) zcyl(l=c.z, r=r); } else if (cnt == 2) { if (!e.x) { intersection() { ycyl(l=c.y*2, r=r); zcyl(l=c.z*2, r=r); } } else if (!e.y) { intersection() { xcyl(l=c.x*2, r=r); zcyl(l=c.z*2, r=r); } } else { intersection() { xcyl(l=c.x*2, r=r); ycyl(l=c.y*2, r=r); } } } else { if (trimcorners) { spheroid(r=r, style="octa"); } else { intersection() { xcyl(l=c.x*2, r=r); ycyl(l=c.y*2, r=r); zcyl(l=c.z*2, r=r); } } } } } size = scalar_vec3(size); edges = _edges(edges, except=first_defined([except_edges,except])); chamfer = approx(chamfer,0) ? undef : chamfer; rounding = approx(rounding,0) ? undef : rounding; assert(is_vector(size,3)); assert(all_positive(size)); assert(is_undef(chamfer) || is_finite(chamfer),"chamfer must be a finite value"); assert(is_undef(rounding) || is_finite(rounding),"rounding must be a finite value"); assert(is_undef(rounding) || is_undef(chamfer), "Cannot specify nonzero value for both chamfer and rounding"); assert(is_undef(p1) || is_vector(p1)); assert(is_undef(p2) || is_vector(p2)); assert(is_bool(trimcorners)); if (!is_undef(p1)) { if (!is_undef(p2)) { translate(pointlist_bounds([p1,p2])[0]) { cuboid(size=v_abs(p2-p1), chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=-[1,1,1]) children(); } } else { translate(p1) { cuboid(size=size, chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=-[1,1,1]) children(); } } } else { if (is_finite(chamfer)) { if (any(edges[0])) assert(chamfer <= size.y/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube length or height."); if (any(edges[1])) assert(chamfer <= size.x/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube width or height."); if (any(edges[2])) assert(chamfer <= size.x/2 && chamfer <=size.y/2, "chamfer must be smaller than half the cube width or length."); } if (is_finite(rounding)) { if (any(edges[0])) assert(rounding <= size.y/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube length or height."); if (any(edges[1])) assert(rounding <= size.x/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube width or height."); if (any(edges[2])) assert(rounding <= size.x/2 && rounding<=size.y/2, "rounding radius must be smaller than half the cube width or length."); } majrots = [[0,90,0], [90,0,0], [0,0,0]]; attachable(anchor,spin,orient, size=size) { if (is_finite(chamfer) && !approx(chamfer,0)) { if (edges == EDGES_ALL && trimcorners) { if (chamfer<0) { cube(size, center=true) { attach(TOP,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP); attach(BOT,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP); } } else { isize = [for (v = size) max(0.001, v-2*chamfer)]; hull() { cube([ size.x, isize.y, isize.z], center=true); cube([isize.x, size.y, isize.z], center=true); cube([isize.x, isize.y, size.z], center=true); } } } else if (chamfer<0) { assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative chamfer with Z aligned edges."); ach = abs(chamfer); cube(size, center=true); // External-Chamfer mask edges difference() { union() { for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(v_mul(vec/2, size+[ach,ach,-ach])) { rotate(majrots[axis]) { cube([ach, ach, size[axis]], center=true); } } } } // Add multi-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { ce = _corner_edges(edges, [xa,ya,za]); if (ce.x + ce.y > 1) { translate(v_mul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) { cube([ach+0.01,ach+0.01,ach], center=true); } } } } } // Remove bevels from overhangs. for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(v_mul(vec/2, size+[2*ach,2*ach,-2*ach])) { rotate(majrots[axis]) { zrot(45) cube([ach*sqrt(2), ach*sqrt(2), size[axis]+2.1*ach], center=true); } } } } } } else { hull() { corner_shape([-1,-1,-1]); corner_shape([ 1,-1,-1]); corner_shape([-1, 1,-1]); corner_shape([ 1, 1,-1]); corner_shape([-1,-1, 1]); corner_shape([ 1,-1, 1]); corner_shape([-1, 1, 1]); corner_shape([ 1, 1, 1]); } } } else if (is_finite(rounding) && !approx(rounding,0)) { sides = quantup(segs(rounding),4); if (edges == EDGES_ALL) { if(rounding<0) { cube(size, center=true); zflip_copy() { up(size.z/2) { difference() { down(-rounding/2) cube([size.x-2*rounding, size.y-2*rounding, -rounding], center=true); down(-rounding) { ycopies(size.y-2*rounding) xcyl(l=size.x-3*rounding, r=-rounding); xcopies(size.x-2*rounding) ycyl(l=size.y-3*rounding, r=-rounding); } } } } } else { isize = [for (v = size) max(0.001, v-2*rounding)]; minkowski() { cube(isize, center=true); if (trimcorners) { spheroid(r=rounding, style="octa", $fn=sides); } else { intersection() { cyl(r=rounding, h=rounding*2, $fn=sides); rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides); rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides); } } } } } else if (rounding<0) { assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative rounding with Z aligned edges."); ard = abs(rounding); cube(size, center=true); // External-Rounding mask edges difference() { union() { for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(v_mul(vec/2, size+[ard,ard,-ard])) { rotate(majrots[axis]) { cube([ard, ard, size[axis]], center=true); } } } } // Add multi-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { ce = _corner_edges(edges, [xa,ya,za]); if (ce.x + ce.y > 1) { translate(v_mul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) { cube([ard+0.01,ard+0.01,ard], center=true); } } } } } // Remove roundings from overhangs. for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(v_mul(vec/2, size+[2*ard,2*ard,-2*ard])) { rotate(majrots[axis]) { cyl(l=size[axis]+2.1*ard, r=ard); } } } } } } else { hull() { corner_shape([-1,-1,-1]); corner_shape([ 1,-1,-1]); corner_shape([-1, 1,-1]); corner_shape([ 1, 1,-1]); corner_shape([-1,-1, 1]); corner_shape([ 1,-1, 1]); corner_shape([-1, 1, 1]); corner_shape([ 1, 1, 1]); } } } else { cube(size=size, center=true); } children(); } } } function cuboid( size=[1,1,1], p1, p2, chamfer, rounding, edges=EDGES_ALL, except_edges=[], trimcorners=true, anchor=CENTER, spin=0, orient=UP ) = no_function("cuboid"); // Function&Module: prismoid() // // Usage: Typical Prismoids // prismoid(size1, size2, h|l, [shift], ...); // Usage: Attaching Children // prismoid(size1, size2, h|l, [shift], ...) [attachments]; // Usage: Chamfered Prismoids // prismoid(size1, size2, h|l, [chamfer=], ...); // prismoid(size1, size2, h|l, [chamfer1=], [chamfer2=], ...); // Usage: Rounded Prismoids // prismoid(size1, size2, h|l, [rounding=], ...); // prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...); // Usage: As Function // vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]); // vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]); // // Description: // Creates a rectangular prismoid shape with optional roundovers and chamfering. // You can only round or chamfer the vertical(ish) edges. For those edges, you can // specify rounding and/or chamferring per-edge, and for top and bottom separately. // // Arguments: // size1 = [width, length] of the bottom end of the prism. // size2 = [width, length] of the top end of the prism. // h|l = Height of the prism. // shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end. // --- // rounding = The roundover radius for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // chamfer = The chamfer size for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // chamfer1 = The chamfer size for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // chamfer2 = The chamfer size for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // See Also: rounded_prism() // // Example: Rectangular Pyramid // prismoid([40,40], [0,0], h=20); // Example: Prism // prismoid(size1=[40,40], size2=[0,40], h=20); // Example: Truncated Pyramid // prismoid(size1=[35,50], size2=[20,30], h=20); // Example: Wedge // prismoid(size1=[60,35], size2=[30,0], h=30); // Example: Truncated Tetrahedron // prismoid(size1=[10,40], size2=[40,10], h=40); // Example: Inverted Truncated Pyramid // prismoid(size1=[15,5], size2=[30,20], h=20); // Example: Right Prism // prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30); // Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]); // Example: Rounding // prismoid(100, 80, rounding=10, h=30); // Example: Outer Chamfer Only // prismoid(100, 80, chamfer=5, h=30); // Example: Gradiant Rounding // prismoid(100, 80, rounding1=10, rounding2=0, h=30); // Example: Per Corner Rounding // prismoid(100, 80, rounding=[0,5,10,15], h=30); // Example: Per Corner Chamfer // prismoid(100, 80, chamfer=[0,5,10,15], h=30); // Example: Mixing Chamfer and Rounding // prismoid( // 100, 80, h=30, // chamfer=[0,5,0,10], // rounding=[5,0,10,0] // ); // Example: Really Mixing It Up // prismoid( // size1=[100,80], size2=[80,60], h=20, // chamfer1=[0,5,0,10], chamfer2=[5,0,10,0], // rounding1=[5,0,10,0], rounding2=[0,5,0,10] // ); // Example(Spin,VPD=160,VPT=[0,0,10]): Standard Connectors // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]) // show_anchors(); module prismoid( size1, size2, h, shift=[0,0], rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, center, anchor, spin=0, orient=UP ) { assert(is_num(size1) || is_vector(size1,2)); assert(is_num(size2) || is_vector(size2,2)); assert(is_num(h) || is_num(l)); assert(is_vector(shift,2)); assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument."); assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument."); assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument."); assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument."); assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument."); assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument."); eps = pow(2,-14); size1 = is_num(size1)? [size1,size1] : size1; size2 = is_num(size2)? [size2,size2] : size2; assert(all_nonnegative(size1)); assert(all_nonnegative(size2)); assert(size1.x + size2.x > 0); assert(size1.y + size2.y > 0); s1 = [max(size1.x, eps), max(size1.y, eps)]; s2 = [max(size2.x, eps), max(size2.y, eps)]; rounding1 = default(rounding1, rounding); rounding2 = default(rounding2, rounding); chamfer1 = default(chamfer1, chamfer); chamfer2 = default(chamfer2, chamfer); anchor = get_anchor(anchor, center, BOT, BOT); vnf = prismoid( size1=size1, size2=size2, h=h, shift=shift, rounding1=rounding1, rounding2=rounding2, chamfer1=chamfer1, chamfer2=chamfer2, l=l, center=CENTER ); attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) { vnf_polyhedron(vnf, convexity=4); children(); } } function prismoid( size1, size2, h, shift=[0,0], rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, center, anchor=DOWN, spin=0, orient=UP ) = assert(is_vector(size1,2)) assert(is_vector(size2,2)) assert(is_num(h) || is_num(l)) assert(is_vector(shift,2)) assert( (is_num(rounding) && rounding>=0) || (is_vector(rounding,4) && all_nonnegative(rounding)), "Bad rounding argument." ) assert( is_undef(rounding1) || (is_num(rounding1) && rounding1>=0) || (is_vector(rounding1,4) && all_nonnegative(rounding1)), "Bad rounding1 argument." ) assert( is_undef(rounding2) || (is_num(rounding2) && rounding2>=0) || (is_vector(rounding2,4) && all_nonnegative(rounding2)), "Bad rounding2 argument." ) assert( (is_num(chamfer) && chamfer>=0) || (is_vector(chamfer,4) && all_nonnegative(chamfer)), "Bad chamfer argument." ) assert( is_undef(chamfer1) || (is_num(chamfer1) && chamfer1>=0) || (is_vector(chamfer1,4) && all_nonnegative(chamfer1)), "Bad chamfer1 argument." ) assert( is_undef(chamfer2) || (is_num(chamfer2) && chamfer2>=0) || (is_vector(chamfer2,4) && all_nonnegative(chamfer2)), "Bad chamfer2 argument." ) let( eps = pow(2,-14), h = first_defined([h,l,1]), shiftby = point3d(point2d(shift)), s1 = [max(size1.x, eps), max(size1.y, eps)], s2 = [max(size2.x, eps), max(size2.y, eps)], rounding1 = default(rounding1, rounding), rounding2 = default(rounding2, rounding), chamfer1 = default(chamfer1, chamfer), chamfer2 = default(chamfer2, chamfer), anchor = get_anchor(anchor, center, BOT, BOT), vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? ( let( corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5, points = [ for (p=corners) point3d(v_mul(s2,p), +h/2) + shiftby, for (p=corners) point3d(v_mul(s1,p), -h/2) ], faces=[ [0,1,2], [0,2,3], [0,4,5], [0,5,1], [1,5,6], [1,6,2], [2,6,7], [2,7,3], [3,7,4], [3,4,0], [4,7,6], [4,6,5], ] ) [points, faces] ) : ( let( path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR), path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR), points = [ each path3d(path1, -h/2), each path3d(move(shiftby, p=path2), +h/2), ], faces = hull(points) ) [points, faces] ) ) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); // Function&Module: octahedron() // Usage: As Module // octahedron(size, ...); // Usage: With Attachments // octahedron(size, ...) { attachments } // Usage: As Function // vnf = octahedron(size, ...); // Description: // When called as a module, creates an octahedron with axis-aligned points. // When called as a function, creates a [[VNF|vnf.scad]] of an octahedron with axis-aligned points. // Arguments: // size = Width of the octahedron, tip to tip. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: // octahedron(size=40); // Example: Anchors // octahedron(size=40) show_anchors(); module octahedron(size=1, anchor=CENTER, spin=0, orient=UP) { vnf = octahedron(size=size); attachable(anchor,spin,orient, vnf=vnf, extent=true) { vnf_polyhedron(vnf, convexity=2); children(); } } function octahedron(size=1, anchor=CENTER, spin=0, orient=UP) = let( s = size / 2, vnf = [ [ [0,0,s], [s,0,0], [0,s,0], [-s,0,0], [0,-s,0], [0,0,-s] ], [ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [5,1,2], [5,2,3], [5,3,4], [5,4,1] ] ] ) reorient(anchor,spin,orient, vnf=vnf, extent=true, p=vnf); // Module: rect_tube() // Usage: Typical Rectangular Tubes // rect_tube(h, size, isize, [center], [shift]); // rect_tube(h, size, wall=, [center=]); // rect_tube(h, isize=, wall=, [center=]); // Usage: Tapering Rectangular Tubes // rect_tube(h, size1=, size2=, wall=, ...); // rect_tube(h, isize1=, isize2=, wall=, ...); // rect_tube(h, size1=, size2=, isize1=, isize2=, ...); // Usage: Chamfered // rect_tube(h, size, isize, chamfer=, ...); // rect_tube(h, size, isize, chamfer1=, chamfer2= ...); // rect_tube(h, size, isize, ichamfer=, ...); // rect_tube(h, size, isize, ichamfer1=, ichamfer2= ...); // rect_tube(h, size, isize, chamfer=, ichamfer=, ...); // Usage: Rounded // rect_tube(h, size, isize, rounding=, ...); // rect_tube(h, size, isize, rounding1=, rounding2= ...); // rect_tube(h, size, isize, irounding=, ...); // rect_tube(h, size, isize, irounding1=, irounding2= ...); // rect_tube(h, size, isize, rounding=, irounding=, ...); // Usage: Attaching Children // rect_tube(h, size, isize, ...) [attachments]; // // Description: // Creates a rectangular or prismoid tube with optional roundovers and/or chamfers. // You can only round or chamfer the vertical(ish) edges. For those edges, you can // specify rounding and/or chamferring per-edge, and for top and bottom, inside and // outside separately. // Arguments: // h|l = The height or length of the rectangular tube. Default: 1 // size = The outer [X,Y] size of the rectangular tube. // isize = The inner [X,Y] size of the rectangular tube. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`. // shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end. // --- // wall = The thickness of the rectangular tube wall. // size1 = The [X,Y] size of the outside of the bottom of the rectangular tube. // size2 = The [X,Y] size of the outside of the top of the rectangular tube. // isize1 = The [X,Y] size of the inside of the bottom of the rectangular tube. // isize2 = The [X,Y] size of the inside of the top of the rectangular tube. // rounding = The roundover radius for the outside edges of the rectangular tube. // rounding1 = The roundover radius for the outside bottom corner of the rectangular tube. // rounding2 = The roundover radius for the outside top corner of the rectangular tube. // chamfer = The chamfer size for the outside edges of the rectangular tube. // chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube. // chamfer2 = The chamfer size for the outside top corner of the rectangular tube. // irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding` // irounding1 = The roundover radius for the inside bottom corner of the rectangular tube. // irounding2 = The roundover radius for the inside top corner of the rectangular tube. // ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer` // ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube. // ichamfer2 = The chamfer size for the inside top corner of the rectangular tube. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `BOTTOM` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Examples: // rect_tube(size=50, wall=5, h=30); // rect_tube(size=[100,60], wall=5, h=30); // rect_tube(isize=[60,80], wall=5, h=30); // rect_tube(size=[100,60], isize=[90,50], h=30); // rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30); // Example: // rect_tube( // size1=[100,60], size2=[70,40], // isize1=[40,20], isize2=[65,35], h=15 // ); // Example: Outer Rounding Only // rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30); // Example: Outer Chamfer Only // rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30); // Example: Outer Rounding, Inner Chamfer // rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30); // Example: Inner Rounding, Outer Chamfer // rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30); // Example: Gradiant Rounding // rect_tube( // size1=100, size2=80, wall=5, h=30, // rounding1=10, rounding2=0, // irounding1=8, irounding2=0 // ); // Example: Per Corner Rounding // rect_tube( // size=100, wall=10, h=30, // rounding=[0,5,10,15], irounding=0 // ); // Example: Per Corner Chamfer // rect_tube( // size=100, wall=10, h=30, // chamfer=[0,5,10,15], ichamfer=0 // ); // Example: Mixing Chamfer and Rounding // rect_tube( // size=100, wall=10, h=30, // chamfer=[0,5,0,10], ichamfer=0, // rounding=[5,0,10,0], irounding=0 // ); // Example: Really Mixing It Up // rect_tube( // size1=[100,80], size2=[80,60], // isize1=[50,30], isize2=[70,50], h=20, // chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8], // chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0], // rounding1=[5,0,10,0], irounding1=[3,0,8,0], // rounding2=[0,5,0,10], irounding2=[0,3,0,8] // ); module rect_tube( h, size, isize, center, shift=[0,0], wall, size1, size2, isize1, isize2, rounding=0, rounding1, rounding2, irounding=0, irounding1, irounding2, chamfer=0, chamfer1, chamfer2, ichamfer=0, ichamfer1, ichamfer2, anchor, spin=0, orient=UP, l ) { h = one_defined([h,l],"h,l"); assert(is_num(h), "l or h argument required."); assert(is_vector(shift,2)); s1 = is_num(size1)? [size1, size1] : is_vector(size1,2)? size1 : is_num(size)? [size, size] : is_vector(size,2)? size : undef; s2 = is_num(size2)? [size2, size2] : is_vector(size2,2)? size2 : is_num(size)? [size, size] : is_vector(size,2)? size : undef; is1 = is_num(isize1)? [isize1, isize1] : is_vector(isize1,2)? isize1 : is_num(isize)? [isize, isize] : is_vector(isize,2)? isize : undef; is2 = is_num(isize2)? [isize2, isize2] : is_vector(isize2,2)? isize2 : is_num(isize)? [isize, isize] : is_vector(isize,2)? isize : undef; size1 = is_def(s1)? s1 : (is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) : undef; size2 = is_def(s2)? s2 : (is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) : undef; isize1 = is_def(is1)? is1 : (is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) : undef; isize2 = is_def(is2)? is2 : (is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) : undef; assert(wall==undef || is_num(wall)); assert(size1!=undef, "Bad size/size1 argument."); assert(size2!=undef, "Bad size/size2 argument."); assert(isize1!=undef, "Bad isize/isize1 argument."); assert(isize2!=undef, "Bad isize/isize2 argument."); assert(isize1.x < size1.x, "Inner size is larger than outer size."); assert(isize1.y < size1.y, "Inner size is larger than outer size."); assert(isize2.x < size2.x, "Inner size is larger than outer size."); assert(isize2.y < size2.y, "Inner size is larger than outer size."); anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) { diff("_H_o_L_e_") prismoid( size1, size2, h=h, shift=shift, rounding=rounding, rounding1=rounding1, rounding2=rounding2, chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2, anchor=CTR ) { children(); tags("_H_o_L_e_") prismoid( isize1, isize2, h=h+0.05, shift=shift, rounding=irounding, rounding1=irounding1, rounding2=irounding2, chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2, anchor=CTR ); } children(); } } function rect_tube( h, size, isize, center, shift=[0,0], wall, size1, size2, isize1, isize2, rounding=0, rounding1, rounding2, irounding=0, irounding1, irounding2, chamfer=0, chamfer1, chamfer2, ichamfer=0, ichamfer1, ichamfer2, anchor, spin=0, orient=UP, l ) = no_function("rect_tube"); // Function&Module: wedge() // // Usage: As Module // wedge(size, [center], ...); // Usage: With Attachments // wedge(size, [center], ...) { attachments } // Usage: As Function // vnf = wedge(size, [center], ...); // // Description: // When called as a modulem creates a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant. // When called as a function creates a VNF for a 3D triangular wedge with the hypotenuse in the X+Z+ quadrant. // // Arguments: // size = [width, thickness, height] // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`. // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `FRONT+LEFT+BOTTOM` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: Centered // wedge([20, 40, 15], center=true); // Example: *Non*-Centered // wedge([20, 40, 15]); // Example: Standard Connectors // wedge([20, 40, 15]) show_anchors(); module wedge(size=[1, 1, 1], center, anchor, spin=0, orient=UP) { size = scalar_vec3(size); anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]); vnf = wedge(size, center=true); attachable(anchor,spin,orient, size=size, size2=[size.x,0], shift=[0,-size.y/2]) { if (size.z > 0) { vnf_polyhedron(vnf); } children(); } } function wedge(size=[1,1,1], center, anchor, spin=0, orient=UP) = let( size = scalar_vec3(size), anchor = get_anchor(anchor, center, -[1,1,1], -[1,1,1]), pts = [ [ 1,1,-1], [ 1,-1,-1], [ 1,-1,1], [-1,1,-1], [-1,-1,-1], [-1,-1,1], ], faces = [ [0,1,2], [3,5,4], [0,3,1], [1,3,4], [1,4,2], [2,4,5], [2,5,3], [0,2,3], ], vnf = [scale(size/2,p=pts), faces] ) reorient(anchor,spin,orient, size=size, size2=[size.x,0], shift=[0,-size.y/2], p=vnf); // Section: Cylinders // Function&Module: cylinder() // Topics: Shapes (3D), Attachable, VNF Generators // Usage: As Module // cylinder(h, r=/d=, [center=], ...); // cylinder(h, r1/d1=, r2/d2=, [center=], ...); // Usage: With Attachments // cylinder(h, r=/d=, [center=]) {attachments} // Usage: As Function // vnf = cylinder(h, r=/d=, [center=], ...); // vnf = cylinder(h, r1/d1=, r2/d2=, [center=], ...); // See Also: cyl() // Description: // Creates a 3D cylinder or conic object with support for anchoring and attachments. // This can be used as a drop-in replacement for the built-in `cylinder()` module. // When called as a function, returns a [VNF](vnf.scad) for a cylinder. // Arguments: // l / h = The height of the cylinder. // r1 = The bottom radius of the cylinder. (Before orientation.) // r2 = The top radius of the cylinder. (Before orientation.) // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // --- // d1 = The bottom diameter of the cylinder. (Before orientation.) // d2 = The top diameter of the cylinder. (Before orientation.) // r = The radius of the cylinder. // d = The diameter of the cylinder. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: By Radius // xdistribute(30) { // cylinder(h=40, r=10); // cylinder(h=40, r1=10, r2=5); // } // Example: By Diameter // xdistribute(30) { // cylinder(h=40, d=25); // cylinder(h=40, d1=25, d2=10); // } // Example(Med): Anchoring // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT); // Example(Med): Spin // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45); // Example(Med): Orient // cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45, orient=FWD); // Example(Big): Standard Connectors // xdistribute(40) { // cylinder(h=30, d=25) show_anchors(); // cylinder(h=30, d1=25, d2=10) show_anchors(); // } module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP) { anchor = get_anchor(anchor, center, BOTTOM, BOTTOM); r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); l = first_defined([h, l, 1]); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { _cylinder(h=l, r1=r1, r2=r2, center=true); children(); } } function cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor, spin=0, orient=UP) = let( anchor = get_anchor(anchor, center, BOTTOM, BOTTOM), r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1), r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1), l = first_defined([h, l, 1]), sides = segs(max(r1,r2)), verts = [ for (i=[0:1:sides-1]) let(a=360*(1-i/sides)) [r1*cos(a),r1*sin(a),-l/2], for (i=[0:1:sides-1]) let(a=360*(1-i/sides)) [r2*cos(a),r2*sin(a), l/2], ], faces = [ [for (i=[0:1:sides-1]) sides-1-i], for (i=[0:1:sides-1]) [i, ((i+1)%sides)+sides, i+sides], for (i=[0:1:sides-1]) [i, (i+1)%sides, ((i+1)%sides)+sides], [for (i=[0:1:sides-1]) sides+i] ] ) [reorient(anchor,spin,orient, l=l, r1=r1, r2=r2, p=verts), faces]; // Module: cyl() // // Description: // Creates cylinders in various anchorings and orientations, with optional rounding and chamfers. // You can use `h` and `l` interchangably, and all variants allow specifying size by either `r`|`d`, // or `r1`|`d1` and `r2`|`d2`. Note: the chamfers and rounding cannot be cumulatively longer than // the cylinder's length. // // Usage: Normal Cylinders // cyl(l|h, r, [center], [circum=], [realign=]); // cyl(l|h, d=, ...); // cyl(l|h, r1=, r2=, ...); // cyl(l|h, d1=, d2=, ...); // // Usage: Chamferred Cylinders // cyl(l|h, r|d, chamfer=, [chamfang=], [from_end=], ...); // cyl(l|h, r|d, chamfer1=, [chamfang1=], [from_end=], ...); // cyl(l|h, r|d, chamfer2=, [chamfang2=], [from_end=], ...); // cyl(l|h, r|d, chamfer1=, chamfer2=, [chamfang1=], [chamfang2=], [from_end=], ...); // // Usage: Rounded End Cylinders // cyl(l|h, r|d, rounding=, ...); // cyl(l|h, r|d, rounding1=, ...); // cyl(l|h, r|d, rounding2=, ...); // cyl(l|h, r|d, rounding1=, rounding2=, ...); // // Arguments: // l / h = Length of cylinder along oriented axis. Default: 1 // r = Radius of cylinder. Default: 1 // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`. // --- // r1 = Radius of the negative (X-, Y-, Z-) end of cylinder. // r2 = Radius of the positive (X+, Y+, Z+) end of cylinder. // d = Diameter of cylinder. // d1 = Diameter of the negative (X-, Y-, Z-) end of cylinder. // d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder. // circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false` // chamfer = The size of the chamfers on the ends of the cylinder. Default: none. // chamfer1 = The size of the chamfer on the bottom end of the cylinder. Default: none. // chamfer2 = The size of the chamfer on the top end of the cylinder. Default: none. // chamfang = The angle in degrees of the chamfers on the ends of the cylinder. // chamfang1 = The angle in degrees of the chamfer on the bottom end of the cylinder. // chamfang2 = The angle in degrees of the chamfer on the top end of the cylinder. // from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`. // rounding = The radius of the rounding on the ends of the cylinder. Default: none. // rounding1 = The radius of the rounding on the bottom end of the cylinder. // rounding2 = The radius of the rounding on the top end of the cylinder. // realign = If true, rotate the cylinder by half the angle of one face. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: By Radius // xdistribute(30) { // cyl(l=40, r=10); // cyl(l=40, r1=10, r2=5); // } // // Example: By Diameter // xdistribute(30) { // cyl(l=40, d=25); // cyl(l=40, d1=25, d2=10); // } // // Example: Chamferring // xdistribute(60) { // // Shown Left to right. // cyl(l=40, d=40, chamfer=7); // Default chamfang=45 // cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=false); // cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=true); // } // // Example: Rounding // cyl(l=40, d=40, rounding=10); // // Example: Heterogenous Chamfers and Rounding // ydistribute(80) { // // Shown Front to Back. // cyl(l=40, d=40, rounding1=15, orient=UP); // cyl(l=40, d=40, chamfer2=5, orient=UP); // cyl(l=40, d=40, chamfer1=12, rounding2=10, orient=UP); // } // // Example: Putting it all together // cyl( // l=40, d1=25, d2=15, // chamfer1=10, chamfang1=30, // from_end=true, rounding2=5 // ); // // Example: External Chamfers // cyl(l=50, r=30, chamfer=-5, chamfang=30, $fa=1, $fs=1); // // Example: External Roundings // cyl(l=50, r=30, rounding1=-5, rounding2=5, $fa=1, $fs=1); // // Example: Standard Connectors // xdistribute(40) { // cyl(l=30, d=25) show_anchors(); // cyl(l=30, d1=25, d2=10) show_anchors(); // } // module cyl( h, r, center, l, r1, r2, d, d1, d2, chamfer, chamfer1, chamfer2, chamfang, chamfang1, chamfang2, rounding, rounding1, rounding2, circum=false, realign=false, from_end=false, anchor, spin=0, orient=UP ) { l = first_defined([l, h, 1]); _r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); _r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); sides = segs(max(_r1,_r2)); sc = circum? 1/cos(180/sides) : 1; r1=_r1*sc; r2=_r2*sc; phi = atan2(l, r2-r1); anchor = get_anchor(anchor,center,BOT,CENTER); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { zrot(realign? 180/sides : 0) { if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])) { cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides); } else { vang = atan2(l, r1-r2)/2; chang1 = 90-first_defined([chamfang1, chamfang, vang]); chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]); cham1 = u_mul(first_defined([chamfer1, chamfer]) , (from_end? 1 : tan(chang1))); cham2 = u_mul(first_defined([chamfer2, chamfer]) , (from_end? 1 : tan(chang2))); fil1 = first_defined([rounding1, rounding]); fil2 = first_defined([rounding2, rounding]); if (chamfer != undef) { assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder."); assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder."); } if (cham1 != undef) { assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder."); } if (cham2 != undef) { assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder."); } if (rounding != undef) { assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder."); assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder."); } if (fil1 != undef) { assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder."); } if (fil2 != undef) { assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder."); } dy1 = abs(first_defined([cham1, fil1, 0])); dy2 = abs(first_defined([cham2, fil2, 0])); assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder."); path = concat( [[0,l/2]], !is_undef(cham2)? ( let( p1 = [r2-cham2/tan(chang2),l/2], p2 = lerp([r2,l/2],[r1,-l/2],abs(cham2)/l) ) [p1,p2] ) : !is_undef(fil2)? ( let( cn = circle_2tangents([r2-fil2,l/2], [r2,l/2], [r1,-l/2], r=abs(fil2)), ang = fil2<0? phi : phi-180, steps = ceil(abs(ang)/360*segs(abs(fil2))), step = ang/steps, pts = [for (i=[0:1:steps]) let(a=90+i*step) cn[0]+abs(fil2)*[cos(a),sin(a)]] ) pts ) : [[r2,l/2]], !is_undef(cham1)? ( let( p1 = lerp([r1,-l/2],[r2,l/2],abs(cham1)/l), p2 = [r1-cham1/tan(chang1),-l/2] ) [p1,p2] ) : !is_undef(fil1)? ( let( cn = circle_2tangents([r1-fil1,-l/2], [r1,-l/2], [r2,l/2], r=abs(fil1)), ang = fil1<0? 180-phi : -phi, steps = ceil(abs(ang)/360*segs(abs(fil1))), step = ang/steps, pts = [for (i=[0:1:steps]) let(a=(fil1<0?180:0)+(phi-90)+i*step) cn[0]+abs(fil1)*[cos(a),sin(a)]] ) pts ) : [[r1,-l/2]], [[0,-l/2]] ); rotate_extrude(convexity=2) { polygon(path); } } } children(); } } // Module: xcyl() // // Description: // Creates a cylinder oriented along the X axis. // // Usage: Typical // xcyl(l|h, r, [anchor=]); // xcyl(l|h, d=, [anchor=]); // xcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]); // Usage: Attaching Children // xcyl(l|h, r, [anchor=]) [attachments]; // // Arguments: // l / h = Length of cylinder along oriented axis. Default: 1 // r = Radius of cylinder. Default: 1 // --- // r1 = Optional radius of left (X-) end of cylinder. // r2 = Optional radius of right (X+) end of cylinder. // d = Optional diameter of cylinder. (use instead of `r`) // d1 = Optional diameter of left (X-) end of cylinder. // d2 = Optional diameter of right (X+) end of cylinder. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // // Example: By Radius // ydistribute(50) { // xcyl(l=35, r=10); // xcyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // ydistribute(50) { // xcyl(l=35, d=20); // xcyl(l=35, d1=30, d2=10); // } module xcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER) { r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); l = first_defined([l, h, 1]); attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=RIGHT) { cyl(l=l, r1=r1, r2=r2, orient=RIGHT, anchor=CENTER); children(); } } // Module: ycyl() // // Description: // Creates a cylinder oriented along the Y axis. // // Usage: Typical // ycyl(l|h, r, [anchor=]); // ycyl(l|h, d=, [anchor=]); // ycyl(l|h, r1=|d1=, r2=|d2=, [anchor=]); // Usage: Attaching Children // ycyl(l|h, r, [anchor=]) [attachments]; // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: `1.0`) // r = Radius of cylinder. // --- // r1 = Radius of front (Y-) end of cone. // r2 = Radius of back (Y+) end of one. // d = Diameter of cylinder. // d1 = Diameter of front (Y-) end of one. // d2 = Diameter of back (Y+) end of one. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // // Example: By Radius // xdistribute(50) { // ycyl(l=35, r=10); // ycyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // xdistribute(50) { // ycyl(l=35, d=20); // ycyl(l=35, d1=30, d2=10); // } module ycyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER) { r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); l = first_defined([l, h, 1]); attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=BACK) { cyl(l=l, h=h, r1=r1, r2=r2, orient=BACK, anchor=CENTER); children(); } } // Module: zcyl() // // Description: // Creates a cylinder oriented along the Z axis. // // Usage: Typical // zcyl(l|h, r, [anchor=]); // zcyl(l|h, d=, [anchor=]); // zcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]); // Usage: Attaching Children // zcyl(l|h, r, [anchor=]) [attachments]; // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: 1.0) // r = Radius of cylinder. // --- // r1 = Radius of front (Y-) end of cone. // r2 = Radius of back (Y+) end of one. // d = Diameter of cylinder. // d1 = Diameter of front (Y-) end of one. // d2 = Diameter of back (Y+) end of one. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // // Example: By Radius // xdistribute(50) { // zcyl(l=35, r=10); // zcyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // xdistribute(50) { // zcyl(l=35, d=20); // zcyl(l=35, d1=30, d2=10); // } module zcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER) { cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) children(); } // Module: tube() // // Description: // Makes a hollow tube with the given outer size and wall thickness. // // Usage: Typical // tube(h|l, or, ir, [center], [realign=]); // tube(h|l, or=|od=, ir=|id=, ...); // tube(h|l, ir|id, wall, ...); // tube(h|l, or|od, wall, ...); // tube(h|l, ir1|id1, ir2|id2, wall, ...); // tube(h|l, or1|od1, or2|od2, wall, ...); // tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]); // Usage: Attaching Children // tube(h|l, or, ir, [center]) [attachments]; // // Arguments: // h / l = height of tube. Default: 1 // or = Outer radius of tube. Default: 1 // ir = Inner radius of tube. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`. // --- // od = Outer diameter of tube. // id = Inner diameter of tube. // wall = horizontal thickness of tube wall. Default 0.5 // or1 = Outer radius of bottom of tube. Default: value of r) // or2 = Outer radius of top of tube. Default: value of r) // od1 = Outer diameter of bottom of tube. // od2 = Outer diameter of top of tube. // ir1 = Inner radius of bottom of tube. // ir2 = Inner radius of top of tube. // id1 = Inner diameter of bottom of tube. // id2 = Inner diameter of top of tube. // realign = If true, rotate the tube by half the angle of one face. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: These all Produce the Same Tube // tube(h=30, or=40, wall=5); // tube(h=30, ir=35, wall=5); // tube(h=30, or=40, ir=35); // tube(h=30, od=80, id=70); // Example: These all Produce the Same Conical Tube // tube(h=30, or1=40, or2=25, wall=5); // tube(h=30, ir1=35, or2=20, wall=5); // tube(h=30, or1=40, or2=25, ir1=35, ir2=20); // Example: Circular Wedge // tube(h=30, or1=40, or2=30, ir1=20, ir2=30); // Example: Standard Connectors // tube(h=30, or=40, wall=5) show_anchors(); module tube( h, or, ir, center, od, id, wall, or1, or2, od1, od2, ir1, ir2, id1, id2, realign=false, l, anchor, spin=0, orient=UP ) { h = first_defined([h,l,1]); orr1 = get_radius(r1=or1, r=or, d1=od1, d=od, dflt=undef); orr2 = get_radius(r1=or2, r=or, d1=od2, d=od, dflt=undef); irr1 = get_radius(r1=ir1, r=ir, d1=id1, d=id, dflt=undef); irr2 = get_radius(r1=ir2, r=ir, d1=id2, d=id, dflt=undef); r1 = default(orr1, u_add(irr1,wall)); r2 = default(orr2, u_add(irr2,wall)); ir1 = default(irr1, u_sub(orr1,wall)); ir2 = default(irr2, u_sub(orr2,wall)); assert(ir1 <= r1, "Inner radius is larger than outer radius."); assert(ir2 <= r2, "Inner radius is larger than outer radius."); sides = segs(max(r1,r2)); anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { zrot(realign? 180/sides : 0) { difference() { cyl(h=h, r1=r1, r2=r2, $fn=sides) children(); cyl(h=h+0.05, r1=ir1, r2=ir2); } } children(); } } // Module: pie_slice() // // Description: // Creates a pie slice shape. // // Usage: Typical // pie_slice(l|h, r, ang, [center]); // pie_slice(l|h, d=, ang=, ...); // pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...); // Usage: Attaching Children // pie_slice(l|h, r, ang, ...) [attachments]; // // Arguments: // h / l = height of pie slice. // r = radius of pie slice. // ang = pie slice angle in degrees. // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`. // --- // r1 = bottom radius of pie slice. // r2 = top radius of pie slice. // d = diameter of pie slice. // d1 = bottom diameter of pie slice. // d2 = top diameter of pie slice. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: Cylindrical Pie Slice // pie_slice(ang=45, l=20, r=30); // Example: Conical Pie Slice // pie_slice(ang=60, l=20, d1=50, d2=70); module pie_slice( h, r, ang=30, center, r1, r2, d, d1, d2, l, anchor, spin=0, orient=UP ) { l = first_defined([l, h, 1]); r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10); maxd = max(r1,r2)+0.1; anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { difference() { cyl(r1=r1, r2=r2, h=l); if (ang<180) rotate(ang) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true); difference() { fwd(maxd/2) cube([2*maxd, maxd, l+0.2], center=true); if (ang>180) rotate(ang-180) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true); } } children(); } } // Section: Other Round Objects // Function&Module: sphere() // Topics: Shapes (3D), Attachable, VNF Generators // Usage: As Module // sphere(r|d=, [circum=], [style=], ...); // Usage: With Attachments // sphere(r|d=, ...) { attachments } // Usage: As Function // vnf = sphere(r|d=, [circum=], [style=], ...); // See Also: spheroid() // Description: // Creates a sphere object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `sphere()` module. // When called as a function, returns a [VNF](vnf.scad) for a sphere. // Arguments: // r = Radius of the sphere. // --- // d = Diameter of the sphere. // circum = If true, the sphere is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes) // style = The style of the sphere's construction. One of "orig", "aligned", "stagger", "octa", or "icosa". Default: "orig" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: By Radius // sphere(r=50); // Example: By Diameter // sphere(d=100); // Example: style="orig" // sphere(d=100, style="orig", $fn=10); // Example: style="aligned" // sphere(d=100, style="aligned", $fn=10); // Example: style="stagger" // sphere(d=100, style="stagger", $fn=10); // Example: style="icosa" // sphere(d=100, style="icosa", $fn=10); // // In "icosa" style, $fn is quantized // // to the nearest multiple of 5. // Example: Anchoring // sphere(d=100, anchor=FRONT); // Example: Spin // sphere(d=100, anchor=FRONT, spin=45); // Example: Orientation // sphere(d=100, anchor=FRONT, spin=45, orient=FWD); // Example: Standard Connectors // sphere(d=50) show_anchors(); // Example: Called as Function // vnf = sphere(d=100, style="icosa"); // vnf_polyhedron(vnf); module sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); if (!circum && style=="orig" && is_num(r)) { attachable(anchor,spin,orient, r=r) { _sphere(r=r); children(); } } else { spheroid( r=r, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient ) children(); } } function sphere(r, d, circum=false, style="orig", anchor=CENTER, spin=0, orient=UP) = spheroid(r=r, d=d, circum=circum, style=style, anchor=anchor, spin=spin, orient=orient); // Function&Module: spheroid() // Usage: Typical // spheroid(r|d, [circum], [style]); // Usage: Attaching Children // spheroid(r|d, [circum], [style]) [attachments]; // Usage: As Function // vnf = spheroid(r|d, [circum], [style]); // Description: // Creates a spheroid object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `sphere()` module. // When called as a function, returns a [VNF](vnf.scad) for a spheroid. // The exact triangulation of this spheroid can be controlled via the `style=` // argument, where the value can be one of `"orig"`, `"aligned"`, `"stagger"`, // `"octa"`, or `"icosa"`: // - `style="orig"` constructs a sphere the same way that the OpenSCAD `sphere()` built-in does. // - `style="aligned"` constructs a sphere where, if `$fn` is a multiple of 4, it has vertices at all axis maxima and minima. ie: its bounding box is exactly the sphere diameter in length on all three axes. This is the default. // - `style="stagger"` forms a sphere where all faces are triangular, but the top and bottom poles have thinner triangles. // - `style="octa"` forms a sphere by subdividing an octahedron (8-sided platonic solid). This makes more uniform faces over the entirety of the sphere, and guarantees the bounding box is the sphere diameter in size on all axes. The effective `$fn` value is quantized to a multiple of 4, though. This is used in constructing rounded corners for various other shapes. // - `style="icosa"` forms a sphere by subdividing an icosahedron (20-sided platonic solid). This makes even more uniform faces over the entirety of the sphere. The effective `$fn` value is quantized to a multiple of 5, though. // Arguments: // r = Radius of the spheroid. // style = The style of the spheroid's construction. One of "orig", "aligned", "stagger", "octa", or "icosa". Default: "aligned" // --- // d = Diameter of the spheroid. // circum = If true, the spheroid is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: By Radius // spheroid(r=50); // Example: By Diameter // spheroid(d=100); // Example: style="orig" // spheroid(d=100, style="orig", $fn=10); // Example: style="aligned" // spheroid(d=100, style="aligned", $fn=10); // Example: style="stagger" // spheroid(d=100, style="stagger", $fn=10); // Example: style="octa", octahedral based tesselation. // spheroid(d=100, style="octa", $fn=10); // // In "octa" style, $fn is quantized // // to the nearest multiple of 4. // Example: style="icosa", icosahedral based tesselation. // spheroid(d=100, style="icosa", $fn=10); // // In "icosa" style, $fn is quantized // // to the nearest multiple of 5. // Example: Anchoring // spheroid(d=100, anchor=FRONT); // Example: Spin // spheroid(d=100, anchor=FRONT, spin=45); // Example: Orientation // spheroid(d=100, anchor=FRONT, spin=45, orient=FWD); // Example: Standard Connectors // spheroid(d=50) show_anchors(); // Example: Called as Function // vnf = spheroid(d=100, style="icosa"); // vnf_polyhedron(vnf); module spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); sides = segs(r); vsides = ceil(sides/2); attachable(anchor,spin,orient, r=r) { if (style=="orig") { merids = [ for (i=[0:1:vsides-1]) 90-(i+0.5)*180/vsides ]; path = [ let(a = merids[0]) [0, sin(a)], for (a=merids) [cos(a), sin(a)], let(a = last(merids)) [0, sin(a)] ]; scale(r) rotate(180) rotate_extrude(convexity=2,$fn=sides) polygon(path); } else { vnf = spheroid(r=r, circum=circum, style=style); vnf_polyhedron(vnf, convexity=2); } children(); } } function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP) = let( r = get_radius(r=r, d=d, dflt=1), hsides = segs(r), vsides = max(2,ceil(hsides/2)), octa_steps = round(max(4,hsides)/4), icosa_steps = round(max(5,hsides)/5), rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r, stagger = style=="stagger", verts = style=="orig"? [ for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides)) for (j=[0:1:hsides-1]) let(theta = j*360/hsides) spherical_to_xyz(rr, theta, phi), ] : style=="aligned" || style=="stagger"? [ spherical_to_xyz(rr, 0, 0), for (i=[1:1:vsides-1]) let(phi = i*180/vsides) for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides) spherical_to_xyz(rr, theta, phi), spherical_to_xyz(rr, 0, 180) ] : style=="octa"? let( meridians = [ 1, for (i = [1:1:octa_steps]) i*4, for (i = [octa_steps-1:-1:1]) i*4, 1, ] ) [ for (i=idx(meridians), j=[0:1:meridians[i]-1]) spherical_to_xyz(rr, j*360/meridians[i], i*180/(len(meridians)-1)) ] : style=="icosa"? [ for (tb=[0,1], j=[0,2], i = [0:1:4]) let( theta0 = i*360/5, theta1 = (i-0.5)*360/5, theta2 = (i+0.5)*360/5, phi0 = 180/3 * j, phi1 = 180/3, v0 = spherical_to_xyz(1,theta0,phi0), v1 = spherical_to_xyz(1,theta1,phi1), v2 = spherical_to_xyz(1,theta2,phi1), ax0 = vector_axis(v0, v1), ang0 = vector_angle(v0, v1), ax1 = vector_axis(v0, v2), ang1 = vector_angle(v0, v2) ) for (k = [0:1:icosa_steps]) let( u = k/icosa_steps, vv0 = rot(ang0*u, ax0, p=v0), vv1 = rot(ang1*u, ax1, p=v0), ax2 = vector_axis(vv0, vv1), ang2 = vector_angle(vv0, vv1) ) for (l = [0:1:k]) let( v = k? l/k : 0, pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1) ) pt ] : assert(in_list(style,["orig","aligned","stagger","octa","icosa"])), lv = len(verts), faces = style=="orig"? [ [for (i=[0:1:hsides-1]) hsides-i-1], [for (i=[0:1:hsides-1]) lv-hsides+i], for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [ [(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides], [(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides], ] ] : style=="aligned" || style=="stagger"? [ for (i=[0:1:hsides-1]) let( b2 = lv-2-hsides ) each [ [i+1, 0, ((i+1)%hsides)+1], [lv-1, b2+i+1, b2+((i+1)%hsides)+1], ], for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let( base = 1 + hsides*i ) each ( (stagger && i%2!=0)? [ [base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides], [base+j, base+(j+1)%hsides, base+hsides+j], ] : [ [base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides], [base+j, base+hsides+(j+1)%hsides, base+hsides+j], ] ) ] : style=="octa"? let( meridians = [ 0, 1, for (i = [1:1:octa_steps]) i*4, for (i = [octa_steps-1:-1:1]) i*4, 1, ], offs = cumsum(meridians), pc = last(offs)-1, os = octa_steps * 2 ) [ for (i=[0:1:3]) [0, 1+(i+1)%4, 1+i], for (i=[0:1:3]) [pc-0, pc-(1+(i+1)%4), pc-(1+i)], for (i=[1:1:octa_steps-1]) let( m = meridians[i+2]/4 ) for (j=[0:1:3], k=[0:1:m-1]) let( m1 = meridians[i+1], m2 = meridians[i+2], p1 = offs[i+0] + (j*m1/4 + k+0) % m1, p2 = offs[i+0] + (j*m1/4 + k+1) % m1, p3 = offs[i+1] + (j*m2/4 + k+0) % m2, p4 = offs[i+1] + (j*m2/4 + k+1) % m2, p5 = offs[os-i+0] + (j*m1/4 + k+0) % m1, p6 = offs[os-i+0] + (j*m1/4 + k+1) % m1, p7 = offs[os-i-1] + (j*m2/4 + k+0) % m2, p8 = offs[os-i-1] + (j*m2/4 + k+1) % m2 ) each [ [p1, p4, p3], if (k0) [v1-1,v1,v2], [v1,v3,v2], ], faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces ) each faces2 ] : [] ) [reorient(anchor,spin,orient, r=r, p=verts), faces]; // Module: torus() // // Usage: Typical // torus(r_maj|d_maj, r_min|d_min, [center], ...); // torus(or|od, ir|id, ...); // torus(r_maj|d_maj, or|od, ...); // torus(r_maj|d_maj, ir|id, ...); // torus(r_min|d_min, or|od, ...); // torus(r_min|d_min, ir|id, ...); // Usage: Attaching Children // torus(or|od, ir|id, ...) [attachments]; // // Description: // Creates a torus shape. // // Figure(2D,Med): // module text3d(t,size=8) text(text=t,size=size,font="Helvetica", halign="center",valign="center"); // module dashcirc(r,start=0,angle=359.9,dashlen=5) let(step=360*dashlen/(2*r*PI)) for(a=[start:step:start+angle]) stroke(arc(r=r,start=a,angle=step/2)); // r = 75; r2 = 30; // down(r2+0.1) #torus(r_maj=r, r_min=r2, $fn=72); // color("blue") linear_extrude(height=0.01) { // dashcirc(r=r,start=15,angle=45); // dashcirc(r=r-r2, start=90+15, angle=60); // dashcirc(r=r+r2, start=180+45, angle=30); // dashcirc(r=r+r2, start=15, angle=30); // } // rot(240) color("blue") linear_extrude(height=0.01) { // stroke([[0,0],[r+r2,0]], endcaps="arrow2",width=2); // right(r) fwd(9) rot(-240) text3d("or",size=10); // } // rot(135) color("blue") linear_extrude(height=0.01) { // stroke([[0,0],[r-r2,0]], endcaps="arrow2",width=2); // right((r-r2)/2) back(8) rot(-135) text3d("ir",size=10); // } // rot(45) color("blue") linear_extrude(height=0.01) { // stroke([[0,0],[r,0]], endcaps="arrow2",width=2); // right(r/2) back(8) text3d("r_maj",size=9); // } // rot(30) color("blue") linear_extrude(height=0.01) { // stroke([[r,0],[r+r2,0]], endcaps="arrow2",width=2); // right(r+r2/2) fwd(8) text3d("r_min",size=7); // } // // Arguments: // r_maj = major radius of torus ring. (use with 'r_min', or 'd_min') // r_min = minor radius of torus ring. (use with 'r_maj', or 'd_maj') // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`. // --- // d_maj = major diameter of torus ring. (use with 'r_min', or 'd_min') // d_min = minor diameter of torus ring. (use with 'r_maj', or 'd_maj') // or = outer radius of the torus. (use with 'ir', or 'id') // ir = inside radius of the torus. (use with 'or', or 'od') // od = outer diameter of the torus. (use with 'ir' or 'id') // id = inside diameter of the torus. (use with 'or' or 'od') // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: // // These all produce the same torus. // torus(r_maj=22.5, r_min=7.5); // torus(d_maj=45, d_min=15); // torus(or=30, ir=15); // torus(od=60, id=30); // torus(d_maj=45, id=30); // torus(d_maj=45, od=60); // torus(d_min=15, id=30); // torus(d_min=15, od=60); // Example: Standard Connectors // torus(od=60, id=30) show_anchors(); module torus( r_maj, r_min, center, d_maj, d_min, or, od, ir, id, anchor, spin=0, orient=UP ) { _or = get_radius(r=or, d=od, dflt=undef); _ir = get_radius(r=ir, d=id, dflt=undef); _r_maj = get_radius(r=r_maj, d=d_maj, dflt=undef); _r_min = get_radius(r=r_min, d=d_min, dflt=undef); majrad = is_finite(_r_maj)? _r_maj : is_finite(_ir) && is_finite(_or)? (_or + _ir)/2 : is_finite(_ir) && is_finite(_r_min)? (_ir + _r_min) : is_finite(_or) && is_finite(_r_min)? (_or - _r_min) : assert(false, "Bad Parameters"); minrad = is_finite(_r_min)? _r_min : is_finite(_ir)? (majrad - _ir) : is_finite(_or)? (_or - majrad) : assert(false, "Bad Parameters"); anchor = get_anchor(anchor, center, BOT, CENTER); attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) { rotate_extrude(convexity=4) { right(majrad) circle(r=minrad); } children(); } } // Module: teardrop() // // Description: // Makes a teardrop shape in the XZ plane. Useful for 3D printable holes. // // Usage: Typical // teardrop(h|l, r, [ang], [cap_h], ...); // teardrop(h|l, d=, [ang=], [cap_h=], ...); // Usage: Psuedo-Conical // teardrop(h|l, r1=, r2=, [ang=], [cap_h1=], [cap_h2=], ...); // teardrop(h|l, d1=, d2=, [ang=], [cap_h1=], [cap_h2=], ...); // Usage: Attaching Children // teardrop(h|l, r, ...) [attachments]; // // Arguments: // h / l = Thickness of teardrop. Default: 1 // r = Radius of circular part of teardrop. Default: 1 // ang = Angle of hat walls from the Z axis. Default: 45 degrees // cap_h = If given, height above center where the shape will be truncated. Default: `undef` (no truncation) // --- // r1 = Radius of circular portion of the front end of the teardrop shape. // r2 = Radius of circular portion of the back end of the teardrop shape. // d = Diameter of circular portion of the teardrop shape. // d1 = Diameter of circular portion of the front end of the teardrop shape. // d2 = Diameter of circular portion of the back end of the teardrop shape. // cap_h1 = If given, height above center where the shape will be truncated, on the front side. Default: `undef` (no truncation) // cap_h2 = If given, height above center where the shape will be truncated, on the back side. Default: `undef` (no truncation) // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Extra Anchors: // cap = The center of the top of the cap, oriented with the cap face normal. // cap_fwd = The front edge of the cap. // cap_back = The back edge of the cap. // // Example: Typical Shape // teardrop(r=30, h=10, ang=30); // Example: Crop Cap // teardrop(r=30, h=10, ang=30, cap_h=40); // Example: Close Crop // teardrop(r=30, h=10, ang=30, cap_h=20); // Example: Psuedo-Conical // teardrop(r1=20, r2=30, h=40, cap_h1=25, cap_h2=35); // Example: Standard Conical Connectors // teardrop(d1=20, d2=30, h=20, cap_h1=11, cap_h2=16) // show_anchors(custom=false); // Example(Spin,VPD=275): Named Conical Connectors // teardrop(d1=20, d2=30, h=20, cap_h1=11, cap_h2=16) // show_anchors(std=false); module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, anchor=CENTER, spin=0, orient=UP) { r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1); r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1); l = first_defined([l, h, 1]); tip_y1 = adj_ang_to_hyp(r1, 90-ang); tip_y2 = adj_ang_to_hyp(r2, 90-ang); cap_h1 = min(first_defined([cap_h1, cap_h, tip_y1]), tip_y1); cap_h2 = min(first_defined([cap_h2, cap_h, tip_y2]), tip_y2); capvec = unit([0, cap_h1-cap_h2, l]); anchors = [ named_anchor("cap", [0,0,(cap_h1+cap_h2)/2], capvec), named_anchor("cap_fwd", [0,-l/2,cap_h1], unit((capvec+FWD)/2)), named_anchor("cap_back", [0,+l/2,cap_h2], unit((capvec+BACK)/2), 180), ]; attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK, anchors=anchors) { rot(from=UP,to=FWD) { if (l > 0) { if (r1 == r2) { linear_extrude(height=l, center=true, slices=2) { teardrop2d(r=r1, ang=ang, cap_h=cap_h); } } else { hull() { up(l/2-0.001) { linear_extrude(height=0.001, center=false) { teardrop2d(r=r1, ang=ang, cap_h=cap_h1); } } down(l/2) { linear_extrude(height=0.001, center=false) { teardrop2d(r=r2, ang=ang, cap_h=cap_h2); } } } } } } children(); } } // Module: onion() // // Description: // Creates a sphere with a conical hat, to make a 3D teardrop. // // Usage: // onion(r|d, [ang], [cap_h]); // Usage: Typical // onion(r, [ang], [cap_h], ...); // onion(d=, [ang=], [cap_h=], ...); // Usage: Attaching Children // onion(r, ...) [attachments]; // // Arguments: // r = radius of spherical portion of the bottom. Default: 1 // ang = Angle of cone on top from vertical. Default: 45 degrees // cap_h = If given, height above sphere center to truncate teardrop shape. Default: `undef` (no truncation) // --- // d = diameter of spherical portion of bottom. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: Typical Shape // onion(r=30, ang=30); // Example: Crop Cap // onion(r=30, ang=30, cap_h=40); // Example: Close Crop // onion(r=30, ang=30, cap_h=20); // Example: Standard Connectors // onion(r=30, ang=30, cap_h=40) show_anchors(); module onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); tip_y = adj_ang_to_hyp(r, 90-ang); cap_h = min(default(cap_h,tip_y), tip_y); anchors = [ ["cap", [0,0,cap_h], UP, 0] ]; attachable(anchor,spin,orient, r=r, anchors=anchors) { rotate_extrude(convexity=2) { difference() { teardrop2d(r=r, ang=ang, cap_h=cap_h); left(r) square(size=[2*r,2*max(cap_h,r)+1], center=true); } } children(); } } // Section: Text // Module: atext() // Topics: Attachments, Text // Usage: // atext(text, [h], [size], [font]); // Description: // Creates a 3D text block that can be attached to other attachable objects. // NOTE: This cannot have children attached to it. // Arguments: // text = The text string to instantiate as an object. // h = The height to which the text should be extruded. Default: 1 // size = The font size used to create the text block. Default: 10 // font = The name of the font used to create the text block. Default: "Courier" // --- // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"baseline"` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // See Also: attachable() // Extra Anchors: // "baseline" = Anchors at the baseline of the text, at the start of the string. // str("baseline",VECTOR) = Anchors at the baseline of the text, modified by the X and Z components of the appended vector. // Examples: // atext("Foobar", h=3, size=10); // atext("Foobar", h=2, size=12, font="Helvetica"); // atext("Foobar", h=2, anchor=CENTER); // atext("Foobar", h=2, anchor=str("baseline",CENTER)); // atext("Foobar", h=2, anchor=str("baseline",BOTTOM+RIGHT)); // Example: Using line_of() distributor // txt = "This is the string."; // line_of(spacing=[10,-5],n=len(txt)) // atext(txt[$idx], size=10, anchor=CENTER); // Example: Using arc_of() distributor // txt = "This is the string"; // arc_of(r=50, n=len(txt), sa=0, ea=180) // atext(select(txt,-1-$idx), size=10, anchor=str("baseline",CENTER), spin=-90); module atext(text, h=1, size=9, font="Courier", anchor="baseline", spin=0, orient=UP) { no_children($children); dummy1 = assert(is_undef(anchor) || is_vector(anchor) || is_string(anchor), str("Got: ",anchor)) assert(is_undef(spin) || is_vector(spin,3) || is_num(spin), str("Got: ",spin)) assert(is_undef(orient) || is_vector(orient,3), str("Got: ",orient)); anchor = default(anchor, CENTER); spin = default(spin, 0); orient = default(orient, UP); geom = _attach_geom(size=[size,size,h]); anch = !any([for (c=anchor) c=="["])? anchor : let( parts = str_split(str_split(str_split(anchor,"]")[0],"[")[1],","), vec = [for (p=parts) str_float(str_strip(p," ",start=true))] ) vec; ha = anchor=="baseline"? "left" : anchor==anch && is_string(anchor)? "center" : anch.x<0? "left" : anch.x>0? "right" : "center"; va = starts_with(anchor,"baseline")? "baseline" : anchor==anch && is_string(anchor)? "center" : anch.y<0? "bottom" : anch.y>0? "top" : "center"; base = anchor=="baseline"? CENTER : anchor==anch && is_string(anchor)? CENTER : anch.z<0? BOTTOM : anch.z>0? TOP : CENTER; m = _attach_transform(base,spin,orient,geom); multmatrix(m) { $parent_anchor = anchor; $parent_spin = spin; $parent_orient = orient; $parent_geom = geom; $parent_size = _attach_geom_size(geom); $attach_to = undef; do_show = _attachment_is_shown($tags); if (do_show) { if (is_undef($color)) { linear_extrude(height=h, center=true) text(text=text, size=size, halign=ha, valign=va, font=font); } else color($color) { $color = undef; linear_extrude(height=h, center=true) text(text=text, size=size, halign=ha, valign=va, font=font); } } } } // This could be replaced with _cut_to_seg_u_form function _cut_interp(pathcut, path, data) = [for(entry=pathcut) let( a = path[entry[1]-1], b = path[entry[1]], c = entry[0], i = max_index(v_abs(b-a)), factor = (c[i]-a[i])/(b[i]-a[i]) ) (1-factor)*data[entry[1]-1]+ factor * data[entry[1]] ]; // Module: path_text() // Usage: // path_text(path, text, [size], [thickness], [font], [lettersize], [offset], [reverse], [normal], [top], [textmetrics]) // Description: // Place the text letter by letter onto the specified path using textmetrics (if available and requested) // or user specified letter spacing. The path can be 2D or 3D. In 2D the text appears along the path with letters upright // as determined by the path direction. In 3D by default letters are positioned on the tangent line to the path with the path normal // pointing toward the reader. The path normal points away from the center of curvature (the opposite of the normal produced // by path_normals()). Note that this means that if the center of curvature switches sides the text will flip upside down. // If you want text on such a path you must supply your own normal or top vector. // . // Text appears starting at the beginning of the path, so if the 3D path moves right to left // then a left-to-right reading language will display in the wrong order. (For a 2D path text will appear upside down.) // The text for a 3D path appears positioned to be read from "outside" of the curve (from a point on the other side of the // curve from the center of curvature). If you need the text to read properly from the inside, you can set reverse to // true to flip the text, or supply your own normal. // . // If you do not have the experimental textmetrics feature enabled then you must specify the space for the letters // using lettersize, which can be a scalar or array. You will have the easiest time getting good results by using // a monospace font such as Courier. Note that even with text metrics, spacing may be different because path_text() // doesn't do kerning to adjust positions of individual glyphs. Also if your font has ligatures they won't be used. // . // By default letters appear centered on the path. The offset can be specified to shift letters toward the reader (in // the direction of the normal). // . // You can specify your own normal by setting `normal` to a direction or a list of directions. Your normal vector should // point toward the reader. You can also specify // top, which directs the top of the letters in a desired direction. If you specify your own directions and they // are not perpendicular to the path then the direction you specify will take priority and the // letters will not rest on the tangent line of the path. Note that the normal or top directions that you // specify must not be parallel to the path. // Arguments: // path = path to place the text on // text = text to create // size = font size // thickness = thickness of letters (not allowed for 2D path) // font = font to use // --- // lettersize = scalar or array giving size of letters // center = center text on the path instead of starting at the first point. Default: false // offset = distance to shift letters "up" (towards the reader). Not allowed for 2D path. Default: 0 // normal = direction or list of directions pointing towards the reader of the text. Not allowed for 2D path. // top = direction or list of directions pointing toward the top of the text // reverse = reverse the letters if true. Not allowed for 2D path. Default: false // textmetrics = if set to true and lettersize is not given then use the experimental textmetrics feature. You must be running a dev snapshot that includes this feature and have the feature turned on in your preferences. Default: false // Example: The examples use Courier, a monospaced font. The width is 1/1.2 times the specified size for this font. This text could wrap around a cylinder. // path = path3d(arc(100, r=25, angle=[245, 370])); // color("red")stroke(path, width=.3); // path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2); // Example: By setting the normal to UP we can get text that lies flat, for writing around the edge of a disk: // path = path3d(arc(100, r=25, angle=[245, 370])); // color("red")stroke(path, width=.3); // path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, normal=UP); // Example: If we want text that reads from the other side we can use reverse. Note we have to reverse the direction of the path and also set the reverse option. // path = reverse(path3d(arc(100, r=25, angle=[65, 190]))); // color("red")stroke(path, width=.3); // path_text(path, "Example text", font="Courier", size=5, lettersize = 5/1.2, reverse=true); // Example: text debossed onto a cylinder in a spiral. The text is 1 unit deep because it is half in, half out. // text = ("A long text example to wrap around a cylinder, possibly for a few times."); // L = 5*len(text); // maxang = 360*L/(PI*50); // spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]]; // difference(){ // cyl(d=50, l=50, $fn=120); // path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2); // } // Example: Same example but text embossed. Make sure you have enough depth for the letters to fully overlap the object. // text = ("A long text example to wrap around a cylinder, possibly for a few times."); // L = 5*len(text); // maxang = 360*L/(PI*50); // spiral = [for(a=[0:1:maxang]) [25*cos(a), 25*sin(a), 10-30/maxang*a]]; // cyl(d=50, l=50, $fn=120); // path_text(spiral, text, size=5, lettersize=5/1.2, font="Courier", thickness=2); // Example: Here the text baseline sits on the path. (Note the default orientation makes text readable from below, so we specify the normal.) // path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]); // color("red")stroke(path,width=.2); // path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", normal=FRONT); // Example: If we use top to orient the text upward, the text baseline is no longer aligned with the path. // path = arc(100, points = [[-20, 0, 20], [0,0,5], [20,0,20]]); // color("red")stroke(path,width=.2); // path_text(path, "Example Text", size=5, lettersize=5/1.2, font="Courier", top=UP); // Example: This sine wave wrapped around the cylinder has a twisting normal that produces wild letter layout. We fix it with a custom normal which is different at every path point. // path = [for(theta = [0:360]) [25*cos(theta), 25*sin(theta), 4*cos(theta*4)]]; // normal = [for(theta = [0:360]) [cos(theta), sin(theta),0]]; // zrot(-120) // difference(){ // cyl(r=25, h=20, $fn=120); // path_text(path, "A sine wave wiggles", font="Courier", lettersize=5/1.2, size=5, normal=normal); // } // Example: The path center of curvature changes, and the text flips. // path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180]))))); // color("red")stroke(path,width=.2); // path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2); // Example: We can fix it with top: // path = zrot(-120,p=path3d( concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180]))))); // color("red")stroke(path,width=.2); // path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier", thickness=2, top=UP); // Example(2D): With a 2D path instead of 3D there's no ambiguity about direction and it works by default: // path = zrot(-120,p=concat(arc(100, r=25, angle=[0,90]), back(50,p=arc(100, r=25, angle=[268, 180])))); // color("red")stroke(path,width=.2); // path_text(path, "A shorter example", size=5, lettersize=5/1.2, font="Courier"); module path_text(path, text, font, size, thickness, lettersize, offset=0, reverse=false, normal, top, center=false, textmetrics=false) { dummy2=assert(is_path(path,[2,3]),"Must supply a 2d or 3d path") assert(num_defined([normal,top])<=1, "Cannot define both \"normal\" and \"top\""); dim = len(path[0]); normalok = is_undef(normal) || is_vector(normal,3) || (is_path(normal,3) && len(normal)==len(path)); topok = is_undef(top) || is_vector(top,dim) || (dim==2 && is_vector(top,3) && top[2]==0) || (is_path(top,dim) && len(top)==len(path)); dummy4 = assert(dim==3 || is_undef(thickness), "Cannot give a thickness with 2d path") assert(dim==3 || !reverse, "Reverse not allowed with 2d path") assert(dim==3 || offset==0, "Cannot give offset with 2d path") assert(dim==3 || is_undef(normal), "Cannot define \"normal\" for a 2d path, only \"top\"") assert(normalok,"\"normal\" must be a vector or path compatible with the given path") assert(topok,"\"top\" must be a vector or path compatible with the given path"); thickness = first_defined([thickness,1]); normal = is_vector(normal) ? repeat(normal, len(path)) : is_def(normal) ? normal : undef; top = is_vector(top) ? repeat(dim==2?point2d(top):top, len(path)) : is_def(top) ? top : undef; lsize = is_def(lettersize) ? force_list(lettersize, len(text)) : textmetrics ? [for(letter=text) let(t=textmetrics(letter, font=font, size=size)) t.advance[0]] : assert(false, "textmetrics disabled: Must specify letter size"); textlength = sum(lsize); dummy1 = assert(textlength<=path_length(path),"Path is too short for the text"); start = center ? (path_length(path) - textlength)/2 : 0; pts = _path_cut_points(path, add_scalar([0, each cumsum(lsize)],start+lsize[0]/2), direction=true); usernorm = is_def(normal); usetop = is_def(top); normpts = is_undef(normal) ? (reverse?1:-1)*column(pts,3) : _cut_interp(pts,path, normal); toppts = is_undef(top) ? undef : _cut_interp(pts,path,top); for(i=idx(text)) let( tangent = pts[i][2] ) assert(!usetop || !approx(tangent*toppts[i],norm(top[i])*norm(tangent)), str("Specified top direction parallel to path at character ",i)) assert(usetop || !approx(tangent*normpts[i],norm(normpts[i])*norm(tangent)), str("Specified normal direction parallel to path at character ",i)) let( adjustment = usetop ? (tangent*toppts[i])*toppts[i]/(toppts[i]*toppts[i]) : usernorm ? (tangent*normpts[i])*normpts[i]/(normpts[i]*normpts[i]) : [0,0,0] ) move(pts[i][0]) if(dim==3){ frame_map(x=tangent-adjustment, z=usetop ? undef : normpts[i], y=usetop ? toppts[i] : undef) up(offset-thickness/2) linear_extrude(height=thickness) left(lsize[0]/2)text(text[i], font=font, size=size); } else { frame_map(x=point3d(tangent-adjustment), y=point3d(usetop ? toppts[i] : -normpts[i])) left(lsize[0]/2)text(text[i], font=font, size=size); } } // Section: Miscellaneous // Module: interior_fillet() // // Description: // Creates a shape that can be unioned into a concave joint between two faces, to fillet them. // Center this part along the concave edge to be chamfered and union it in. // // Usage: Typical // interior_fillet(l, r, [ang], [overlap], ...); // interior_fillet(l, d=, [ang=], [overlap=], ...); // Usage: Attaching Children // interior_fillet(l, r, [ang], [overlap], ...) [attachments]; // // Arguments: // l = Length of edge to fillet. // r = Radius of fillet. // ang = Angle between faces to fillet. // overlap = Overlap size for unioning with faces. // --- // d = Diameter of fillet. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `FRONT+LEFT` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // // Example: // union() { // translate([0,2,-4]) // cube([20, 4, 24], anchor=BOTTOM); // translate([0,-10,-4]) // cube([20, 20, 4], anchor=BOTTOM); // color("green") // interior_fillet( // l=20, r=10, // spin=180, orient=RIGHT // ); // } // // Example: // interior_fillet(l=40, r=10, spin=-90); // // Example: Using with Attachments // cube(50,center=true) { // position(FRONT+LEFT) // interior_fillet(l=50, r=10, spin=-90); // position(BOT+FRONT) // interior_fillet(l=50, r=10, spin=180, orient=RIGHT); // } module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); dy = r/tan(ang/2); steps = ceil(segs(r)*ang/360); step = ang/steps; attachable(anchor,spin,orient, size=[r,r,l]) { if (l > 0) { linear_extrude(height=l, convexity=4, center=true) { path = concat( [[0,0]], [for (i=[0:1:steps]) let(a=270-i*step) r*[cos(a),sin(a)]+[dy,r]] ); translate(-[r,r]/2) polygon(path); } } children(); } } // Function&Module: heightfield() // Usage: As Module // heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], [convexity], ...); // Usage: Attaching Children // heightfield(data, [size], ...) [attachments]; // Usage: As Function // vnf = heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], ...); // Description: // Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D // surface where the height at any given point is the scalar value for that position. // Arguments: // data = This is either the 2D rectangular array of heights, or a function literal that takes X and Y arguments. // size = The [X,Y] size of the surface to create. If given as a scalar, use it for both X and Y sizes. Default: `[100,100]` // bottom = The Z coordinate for the bottom of the heightfield object to create. Any heights lower than this will be truncated to very slightly above this height. Default: -20 // maxz = The maximum height to model. Truncates anything taller to this height. Default: 99 // xrange = A range of values to iterate X over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1] // yrange = A range of values to iterate Y over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1] // style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx". Default: "default" // --- // convexity = Max number of times a line could intersect a wall of the surface being formed. Module only. Default: 10 // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: // heightfield(size=[100,100], bottom=-20, data=[ // for (y=[-180:4:180]) [ // for(x=[-180:4:180]) // 10*cos(3*norm([x,y])) // ] // ]); // Example: // intersection() { // heightfield(size=[100,100], data=[ // for (y=[-180:5:180]) [ // for(x=[-180:5:180]) // 10+5*cos(3*x)*sin(3*y) // ] // ]); // cylinder(h=50,d=100); // } // Example: Heightfield by Function // fn = function (x,y) 10*sin(x*360)*cos(y*360); // heightfield(size=[100,100], data=fn); // Example: Heightfield by Function, with Specific Ranges // fn = function (x,y) 2*cos(5*norm([x,y])); // heightfield( // size=[100,100], bottom=-20, data=fn, // xrange=[-180:2:180], yrange=[-180:2:180] // ); module heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", convexity=10, anchor=CENTER, spin=0, orient=UP) { size = is_num(size)? [size,size] : point2d(size); vnf = heightfield(data=data, size=size, xrange=xrange, yrange=yrange, bottom=bottom, maxz=maxz, style=style); attachable(anchor,spin,orient, vnf=vnf) { vnf_polyhedron(vnf, convexity=convexity); children(); } } function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", anchor=CENTER, spin=0, orient=UP) = assert(is_list(data) || is_function(data)) let( size = is_num(size)? [size,size] : point2d(size), xvals = is_list(data) ? [for (i=idx(data[0])) i] : assert(is_list(xrange)||is_range(xrange)) [for (x=xrange) x], yvals = is_list(data) ? [for (i=idx(data)) i] : assert(is_list(yrange)||is_range(yrange)) [for (y=yrange) y], xcnt = len(xvals), minx = min(xvals), maxx = max(xvals), ycnt = len(yvals), miny = min(yvals), maxy = max(yvals), verts = is_list(data) ? [ for (y = [0:1:ycnt-1]) [ for (x = [0:1:xcnt-1]) [ size.x * (x/(xcnt-1)-0.5), size.y * (y/(ycnt-1)-0.5), data[y][x] ] ] ] : [ for (y = yrange) [ for (x = xrange) let( z = data(x,y) ) [ size.x * ((x-minx)/(maxx-minx)-0.5), size.y * ((y-miny)/(maxy-miny)-0.5), min(maxz, max(bottom+0.1, default(z,0))) ] ] ], vnf = vnf_join([ vnf_vertex_array(verts, style=style, reverse=true), vnf_vertex_array([ verts[0], [for (v=verts[0]) [v.x, v.y, bottom]], ]), vnf_vertex_array([ [for (v=verts[ycnt-1]) [v.x, v.y, bottom]], verts[ycnt-1], ]), vnf_vertex_array([ [for (r=verts) let(v=r[0]) [v.x, v.y, bottom]], [for (r=verts) let(v=r[0]) v], ]), vnf_vertex_array([ [for (r=verts) let(v=r[xcnt-1]) v], [for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom]], ]), vnf_vertex_array([ [ for (v=verts[0]) [v.x, v.y, bottom], for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom], ], [ for (r=verts) let(v=r[0]) [v.x, v.y, bottom], for (v=verts[ycnt-1]) [v.x, v.y, bottom], ] ]) ]) ) reorient(anchor,spin,orient, vnf=vnf, p=vnf); // Module: ruler() // Usage: // ruler(length, width, [thickness=], [depth=], [labels=], [pipscale=], [maxscale=], [colors=], [alpha=], [unit=], [inch=]); // Description: // Creates a ruler for checking dimensions of the model // Arguments: // length = length of the ruler. Default 100 // width = width of the ruler. Default: size of the largest unit division // --- // thickness = thickness of the ruler. Default: 1 // depth = the depth of mark subdivisions. Default: 3 // labels = draw numeric labels for depths where labels are larger than 1. Default: false // pipscale = width scale of the pips relative to the next size up. Default: 1/3 // maxscale = log10 of the maximum width divisions to display. Default: based on input length // colors = colors to use for the ruler, a list of two values. Default: `["black","white"]` // alpha = transparency value. Default: 1.0 // unit = unit to mark. Scales the ruler marks to a different length. Default: 1 // inch = set to true for a ruler scaled to inches (assuming base dimension is mm). Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `LEFT+BACK+TOP` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP` // Examples(2D,Big): // ruler(100,depth=3); // ruler(100,depth=3,labels=true); // ruler(27); // ruler(27,maxscale=0); // ruler(100,pipscale=3/4,depth=2); // ruler(100,width=2,depth=2); // Example(2D,Big): Metric vs Imperial // ruler(12,width=50,inch=true,labels=true,maxscale=0); // fwd(50)ruler(300,width=50,labels=true); module ruler(length=100, width, thickness=1, depth=3, labels=false, pipscale=1/3, maxscale, colors=["black","white"], alpha=1.0, unit=1, inch=false, anchor=LEFT+BACK+TOP, spin=0, orient=UP) { inchfactor = 25.4; assert(depth<=5, "Cannot render scales smaller than depth=5"); assert(len(colors)==2, "colors must contain a list of exactly two colors."); length = inch ? inchfactor * length : length; unit = inch ? inchfactor*unit : unit; maxscale = is_def(maxscale)? maxscale : floor(log(length/unit-EPSILON)); scales = unit * [for(logsize = [maxscale:-1:maxscale-depth+1]) pow(10,logsize)]; widthfactor = (1-pipscale) / (1-pow(pipscale,depth)); width = default(width, scales[0]); widths = width * widthfactor * [for(logsize = [0:-1:-depth+1]) pow(pipscale,-logsize)]; offsets = concat([0],cumsum(widths)); attachable(anchor,spin,orient, size=[length,width,thickness]) { translate([-length/2, -width/2, 0]) for(i=[0:1:len(scales)-1]) { count = ceil(length/scales[i]); fontsize = 0.5*min(widths[i], scales[i]/ceil(log(count*scales[i]/unit))); back(offsets[i]) { xcopies(scales[i], n=count, sp=[0,0,0]) union() { actlen = ($idx0 ? quantup(widths[i],1/1024) : widths[i]; // What is the i>0 test supposed to do here? cube([quantup(actlen,1/1024),quantup(w,1/1024),thickness], anchor=FRONT+LEFT); } mark = i == 0 && $idx % 10 == 0 && $idx != 0 ? 0 : i == 0 && $idx % 10 == 9 && $idx != count-1 ? 1 : $idx % 10 == 4 ? 1 : $idx % 10 == 5 ? 0 : -1; flip = 1-mark*2; if (mark >= 0) { marklength = min(widths[i]/2, scales[i]*2); markwidth = marklength*0.4; translate([mark*scales[i], widths[i], 0]) { color(colors[1-$idx%2], alpha=alpha) { linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) { polygon(scale([flip*markwidth, marklength],p=[[0,0], [1, -1], [0,-0.9]])); } } } } if (labels && scales[i]/unit+EPSILON >= 1) { color(colors[($idx+1)%2], alpha=alpha) { linear_extrude(height=thickness+scales[i]/100, convexity=2, center=true) { back(scales[i]*.02) { text(text=str( $idx * scales[i] / unit), size=fontsize, halign="left", valign="baseline"); } } } } } } } children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap