////////////////////////////////////////////////////////////////////// // LibFile: common.scad // Common functions used in argument processing. // To use, include this line at the top of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Type handling helpers. // Function: typeof() // Usage: // typ = typeof(x); // Description: // Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid". // Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid". function typeof(x) = is_undef(x)? "undef" : is_bool(x)? "boolean" : is_num(x)? "number" : is_nan(x)? "nan" : is_string(x)? "string" : is_list(x)? "list" : is_range(x) ? "range" : "invalid"; // Function: is_type() // Usage: // b = is_type(x, types); // Description: // Returns true if the type of the value `x` is one of those given as strings in the list `types`. // Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range" // Arguments: // x = The value to check the type of. // types = A list of types to check // Example: // is_str_or_list = is_type("foo", ["string","list"]); // Returns: true // is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true // is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false // is_str = is_type("foo", "string"); // Returns: true // is_str2 = is_type([3,4], "string"); // Returns: false // is_str3 = is_type(["foo"], "string"); // Returns: false // is_str4 = is_type(3, "string"); // Returns: false function is_type(x,types) = is_list(types)? in_list(typeof(x),types) : is_string(types)? typeof(x) == types : assert(is_list(types)||is_string(types)); // Function: is_def() // Usage: // is_def(x) // Description: // Returns true if `x` is not `undef`. False if `x==undef`. function is_def(x) = !is_undef(x); // Function: is_str() // Usage: // is_str(x) // Description: // Returns true if `x` is a string. A shortcut for `is_string()`. function is_str(x) = is_string(x); // Function: is_int() // Usage: // is_int(n) // Description: // Returns true if the given value is an integer (it is a number and it rounds to itself). function is_int(n) = is_finite(n) && n == round(n); function is_integer(n) = is_finite(n) && n == round(n); // Function: is_nan() // Usage: // is_nan(x); // Description: // Returns true if a given value `x` is nan, a floating point value representing "not a number". function is_nan(x) = (x!=x); // Function: is_finite() // Usage: // is_finite(x); // Description: // Returns true if a given value `x` is a finite number. function is_finite(x) = is_num(x) && !is_nan(0*x); // Function: is_range() // Description: // Returns true if its argument is a range function is_range(x) = !is_list(x) && is_finite(x[0]) && is_finite(x[1]) && is_finite(x[2]) ; // Function: valid_range() // Description: // Returns true if its argument is a valid range (deprecated ranges excluded). function valid_range(x) = is_range(x) && ( x[1]>0 ? x[0]<=x[2] : ( x[1]<0 && x[0]>=x[2] ) ); // Function: is_list_of() // Usage: // is_list_of(list, pattern) // Description: // Tests whether the input is a list whose entries are all numeric lists that have the same // list shape as the pattern. // Example: // is_list_of([3,4,5], 0); // Returns true // is_list_of([3,4,undef], 0); // Returns false // is_list_of([[3,4],[4,5]], [1,1]); // Returns true // is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true // is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false // is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true // is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false // is_list_of([], [1,[2,3]]); // Returns true function is_list_of(list,pattern) = let(pattern = 0*pattern) is_list(list) && []==[for(entry=0*list) if (entry != pattern) entry]; // Function: is_consistent() // Usage: // is_consistent(list) // Description: // Tests whether input is a list of entries which all have the same list structure // and are filled with finite numerical data. It returns `true`for the empty list. // Example: // is_consistent([3,4,5]); // Returns true // is_consistent([[3,4],[4,5],[6,7]]); // Returns true // is_consistent([[3,4,5],[3,4]]); // Returns false // is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true // is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false function is_consistent(list) = /*is_list(list) &&*/ is_list_of(list, _list_pattern(list[0])); //Internal function //Creates a list with the same structure of `list` with each of its elements substituted by 0. function _list_pattern(list) = is_list(list) ? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0] : 0; // Function: same_shape() // Usage: // same_shape(a,b) // Description: // Tests whether the inputs `a` and `b` are both numeric and are the same shaped list. // Example: // same_shape([3,[4,5]],[7,[3,4]]); // Returns true // same_shape([3,4,5], [7,[3,4]]); // Returns false function same_shape(a,b) = _list_pattern(a) == b*0; // Section: Handling `undef`s. // Function: default() // Description: // Returns the value given as `v` if it is not `undef`. // Otherwise, returns the value of `dflt`. // Arguments: // v = Value to pass through if not `undef`. // dflt = Value to return if `v` *is* `undef`. function default(v,dflt=undef) = is_undef(v)? dflt : v; // Function: first_defined() // Description: // Returns the first item in the list that is not `undef`. // If all items are `undef`, or list is empty, returns `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned. function first_defined(v,recursive=false,_i=0) = _i) // Description: // Examines the input list `vars` and returns the entry which is not `undef`. If more // than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed // by the defined items from the `names` parameter. If `required` is set to false then it is OK if all of the // entries of `vars` are undefined, and in this case, `undef` is returned. // Example: // length = one_defined([length,L,l], ["length","L","l"]); function one_defined(vars, names, required=true) = assert(len(vars)==len(names)) let ( ok = num_defined(vars)==1 || (!required && num_defined(vars)==0) ) assert(ok,str("Must define ",required?"exactly":"at most"," one of ",num_defined(vars)==0?names:[for(i=[0:len(vars)]) if (is_def(vars[i])) names[i]])) first_defined(vars); // Function: num_defined() // Description: Counts how many items in list `v` are not `undef`. function num_defined(v) = len([for(vi=v) if(!is_undef(vi)) 1]); // Function: any_defined() // Description: // Returns true if any item in the given array is not `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, any sublists are evaluated recursively. function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) != undef; // Function: all_defined() // Description: // Returns true if all items in the given array are not `undef`. // Arguments: // v = The list whose items are being checked. // recursive = If true, any sublists are evaluated recursively. function all_defined(v,recursive=false) = []==[for (x=v) if(is_undef(x)||(recursive && is_list(x) && !all_defined(x,recursive))) 0 ]; // Section: Argument Helpers // Function: get_anchor() // Usage: // get_anchor(anchor,center,,); // Description: // Calculated the correct anchor from `anchor` and `center`. In order: // - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned. // - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned. // - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned. // - Otherwise, the value of `dflt` is returned. // This ordering ensures that `center` will override `anchor`. // Arguments: // anchor = The anchor name or vector. // center = If not `undef`, this overrides the value of `anchor`. // uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG // dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER` function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) = !is_undef(center)? (center? CENTER : uncentered) : !is_undef(anchor)? anchor : dflt; // Function: get_radius() // Usage: // get_radius(, , , , , , ); // Description: // Given various radii and diameters, returns the most specific radius. // If a diameter is most specific, returns half its value, giving the radius. // If no radii or diameters are defined, returns the value of dflt. // Value specificity order is r1, r2, d1, d2, r, d, then dflt // Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it // errors out, complaining about conflicting radius/diameter values. // Only one of `r` or `d` can be defined at once, or else it errors out, // complaining about conflicting radius/diameter values. // Arguments: // r1 = Most specific radius. // d1 = Most specific diameter. // r2 = Second most specific radius. // d2 = Second most specific diameter. // r = Most general radius. // d = Most general diameter. // dflt = Value to return if all other values given are `undef`. function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) = assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.") !is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1 : !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2 : !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2 : !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2 : !is_undef(r) ? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.") assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." ) r : !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2 : dflt; // Function: get_height() // Usage: // get_height(,,,) // Description: // Given several different parameters for height check that height is not multiply defined // and return a single value. If the three values `l`, `h`, and `height` are all undefined // then return the value `dflt`, if given, or undef otherwise. // Arguments: // l = l. // h = h. // height = height. // dflt = Value to return if other values are `undef`. function get_height(h=undef,l=undef,height=undef,dflt=undef) = assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`") first_defined([h,l,height,dflt]); // Function: get_named_args(positional, named, _undef) // Usage: // function f(pos1=_undef, pos2=_undef,...,named1=_undef, named2=_undef, ...) = let(args = get_named_args([pos1, pos2, ...], [[named1, default1], [named2, default2], ...]), named1=args[0], named2=args[1], ...) // Description: // Given the values of some positional and named arguments, // returns a list of the values assigned to named arguments, // in the following way: // - All named arguments which were explicitly assigned in the // function call take the value provided. // - All named arguments which were not provided by the user are // affected from positional arguments; the priority order in which // these are assigned is given by the `priority` argument, while the // positional assignation is done in the order of the named arguments. // - Any remaining named arguments take the provided default values. // If only k positional arguments are used, then the k named values // with lowest 'priority' value (among the unassigned ones) will get them. // The arguments will be assigned in the order of the named values. // By default these two orders coincide. // Arguments: // positional = the list of values of positional arguments. // named = the list of named arguments; each entry of the list has the form [passed-value, default-value, priority], where passed-value is the value that was passed at function call; default-value is the value that will be used if nothing is read from either named or positional arguments; priority is the priority assigned to this argument. // _undef = the default value used by the calling function for all arguments (default is some random string that you will never use). (this is *not* undef, or any value that the user might purposely want to use as an argument value). // // // // Examples: // function f(arg1=_undef, arg2=_undef, arg3=_undef, named1=_undef, named2=_undef, named3=_undef) = let(named = get_named_args([arg1, arg2, arg3], [[named1, "default1"], [named2, "default2"], [named3, "default3"]])) named; // echo(f()); // ["default1", "default2", "default3"] // echo(f("given2", "given3", named1="given1")); // ["given1", "given2", "given3"] // echo(f("given1")); // ["given1", "default2", "default3"] // echo(f(named1="given1", "given2")); // ["given1", "given2", "default3"] // echo(f(undef, named1="given1", undef)); // ["given1", undef, undef] // a value that the user should never enter randomly; // result of `dd if=/dev/random bs=32 count=1 |base64` : _undef="LRG+HX7dy89RyHvDlAKvb9Y04OTuaikpx205CTh8BSI"; /* Note: however tempting it might be, it is *not* possible to accept * named argument as a list [named1, named2, ...] (without default * values), because the values [named1, named2...] themselves might be * lists, and we will not be able to distinguish the two cases. */ function get_named_args(positional, named,_undef=_undef) = let(deft = [for(p=named) p[1]], // default is undef // indices of the values to fetch from positional args: unknown = [for(x=enumerate(named)) if(x[1][0]==_undef) x[0]], // number of values given to positional arguments: n_positional = count_true([for(p=positional) p!=_undef])) assert(n_positional <= len(unknown), str("too many positional arguments (", n_positional, " given, ", len(unknown), " required)")) let( // those elements which have no priority assigned go last (prio=+∞): prio = sortidx([for(u=unknown) default(named[u][2], 1/0)]), // list of indices of values assigned from positional arguments: assigned = sort([for(i=[0:1:n_positional-1]) prio[i]])) [ for(e = enumerate(named)) let(idx=e[0], val=e[1][0], ass=search(idx, assigned)) val != _undef ? val : ass != [] ? positional[ass[0]] : deft[idx] ]; // Function: scalar_vec3() // Usage: // scalar_vec3(v, ); // Description: // If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`. // If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`. // If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`. // If `v` is `undef`, returns `undef`. // Arguments: // v = Value to return vector from. // dflt = Default value to set empty vector parts from. function scalar_vec3(v, dflt=undef) = is_undef(v)? undef : is_list(v)? [for (i=[0:2]) default(v[i], default(dflt, 0))] : !is_undef(dflt)? [v,dflt,dflt] : [v,v,v]; // Function: segs() // Usage: // sides = segs(r); // Description: // Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`. // Arguments: // r = Radius of circle to get the number of segments for. function segs(r) = $fn>0? ($fn>3? $fn : 3) : let( r = is_finite(r)? r: 0 ) ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ; // Module: no_children() // Usage: // no_children($children); // Description: // Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present, // as indicated by its argument. // Arguments: // $children = number of children the module has. module no_children(count) { assert($children==0, "Module no_children() does not support child modules"); assert(count==0, str("Module ",parent_module(1),"() does not support child modules")); } // Section: Testing Helpers function _valstr(x) = is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") : is_finite(x)? fmt_float(x,12) : x; // Module: assert_approx() // Usage: // assert_approx(got, expected, ); // Description: // Tests if the value gotten is what was expected. If not, then // the expected and received values are printed to the console and // an assertion is thrown to stop execution. // Arguments: // got = The value actually received. // expected = The value that was expected. // info = Extra info to print out to make the error clearer. module assert_approx(got, expected, info) { no_children($children); if (!approx(got, expected)) { echo(); echo(str("EXPECT: ", _valstr(expected))); echo(str("GOT : ", _valstr(got))); if (same_shape(got, expected)) { echo(str("DELTA : ", _valstr(got - expected))); } if (is_def(info)) { echo(str("INFO : ", _valstr(info))); } assert(approx(got, expected)); } } // Module: assert_equal() // Usage: // assert_equal(got, expected, ); // Description: // Tests if the value gotten is what was expected. If not, then // the expected and received values are printed to the console and // an assertion is thrown to stop execution. // Arguments: // got = The value actually received. // expected = The value that was expected. // info = Extra info to print out to make the error clearer. module assert_equal(got, expected, info) { no_children($children); if (got != expected || (is_nan(got) && is_nan(expected))) { echo(); echo(str("EXPECT: ", _valstr(expected))); echo(str("GOT : ", _valstr(got))); if (same_shape(got, expected)) { echo(str("DELTA : ", _valstr(got - expected))); } if (is_def(info)) { echo(str("INFO : ", _valstr(info))); } assert(got == expected); } } // Module: shape_compare() // Usage: // shape_compare() {test_shape(); expected_shape();} // Description: // Compares two child shapes, returning empty geometry if they are very nearly the same shape and size. // Returns the differential geometry if they are not nearly the same shape and size. // Arguments: // eps = The surface of the two shapes must be within this size of each other. Default: 1/1024 module shape_compare(eps=1/1024) { union() { difference() { children(0); if (eps==0) { children(1); } else { minkowski() { children(1); cube(eps, center=true); } } } difference() { children(1); if (eps==0) { children(0); } else { minkowski() { children(0); cube(eps, center=true); } } } } } // Section: Looping Helpers // You can use a list comprehension with a C-style for loop to iteratively make a calculation. // . // The syntax is: `[for (INIT; CONDITION; NEXT) RETVAL]` where: // - INIT is zero or more `let()` style assignments that are evaluated exactly one time, before the first loop. // - CONDITION is an expression evaluated at the start of each loop. If true, continues with the loop. // - RETVAL is an expression that returns a list item for each loop. // - NEXT is one or more `let()` style assignments that is evaluated at the end of each loop. // . // Since the INIT phase is only run once, and the CONDITION and RETVAL expressions cannot update // variables, that means that only the NEXT phase can be used for iterative calculations. // Unfortunately, the NEXT phase runs *after* the RETVAL expression, which means that you need // to run the loop one extra time to return the final value. This tends to make the loop code // look rather ugly. The `looping()`, `loop_while()` and `loop_done()` functions // can make this somewhat more legible. // ```openscad // function flat_sum(l) = [ // for ( // i = 0, // total = 0, // state = 0; // // looping(state); // // state = loop_while(state, i < len(l)), // total = total + // loop_done(state) ? 0 : // let( x = l[i] ) // is_list(x) ? flat_sum(x) : x, // i = i + 1 // ) if (loop_done(state)) total; // ].x; // ``` // Function: looping() // Usage: // looping(state) // Description: // Returns true if the `state` value indicates the current loop should continue. // This is useful when using C-style for loops to iteratively calculate a value. // Used with `loop_while()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example. // Arguments: // state = The loop state value. function looping(state) = state < 2; // Function: loop_while() // Usage: // state = loop_while(state, continue) // Description: // Given the current `state`, and a boolean `continue` that indicates if the loop should still be // continuing, returns the updated state value for the the next loop. // This is useful when using C-style for loops to iteratively calculate a value. // Used with `looping()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example. // Arguments: // state = The loop state value. // continue = A boolean value indicating whether the current loop should progress. function loop_while(state, continue) = state > 0 ? 2 : continue ? 0 : 1; // Function: loop_done() // Usage: // loop_done(state) // Description: // Returns true if the `state` value indicates the loop is finishing. // This is useful when using C-style for loops to iteratively calculate a value. // Used with `looping()` and `loop_while()`. See [Looping Helpers](#5-looping-helpers) for an example. // Arguments: // state = The loop state value. function loop_done(state) = state > 0; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap