////////////////////////////////////////////////////////////////////// // LibFile: hull.scad // Functions to create 2D and 3D convex hulls. // To use, add the following line to the beginning of your file: // ``` // include // include // ``` // Derived from Oskar Linde's Hull: // - https://github.com/openscad/scad-utils ////////////////////////////////////////////////////////////////////// // Section: Convex Hulls // Function: hull() // Usage: // hull(points); // Description: // Takes a list of 2D or 3D points (but not both in the same list) and returns either the list of // indexes into `points` that forms the 2D convex hull perimeter path, or the list of faces that // form the 3d convex hull surface. Each face is a list of indexes into `points`. If the input // points are co-linear, the result will be the indexes of the two extrema points. If the input // points are co-planar, the results will be a simple list of vertex indices that will form a planar // perimeter. Otherwise a list of faces will be returned, where each face is a simple list of // vertex indices for the perimeter of the face. // Arguments: // points = The set of 2D or 3D points to find the hull of. function hull(points) = let(two_d = len(points[0]) == 2) two_d? hull2d_path(points) : hull3d_faces(points); // Module: hull_points() // Usage: // hull_points(points, [fast]); // Description: // If given a list of 2D points, creates a 2D convex hull polygon that encloses all those points. // If given a list of 3D points, creates a 3D polyhedron that encloses all the points. This should // handle about 4000 points in slow mode. If `fast` is set to true, this should be able to handle // far more. // Arguments: // points = The list of points to form a hull around. // fast = If true, uses a faster cheat that may handle more points, but also may emit warnings that can stop your script if you have "Halt on first warning" enabled. Default: false // Example(2D): // pts = [[-10,-10], [0,10], [10,10], [12,-10]]; // hull_points(pts); // Example: // pts = [for (phi = [30:60:150], theta = [0:60:359]) spherical_to_xyz(10, theta, phi)]; // hull_points(pts); module hull_points(points, fast=false) { assert(is_list(points)); if (points) { assert(is_list(points[0])); if (fast) { if (len(points[0]) == 2) { hull() polygon(points=points); } else { extra = len(points)%3; faces = concat( [[for(i=[0:1:extra+2])i]], [for(i=[extra+3:3:len(points)-3])[i,i+1,i+2]] ); hull() polyhedron(points=points, faces=faces); } } else { perim = hull(points); if (is_num(perim[0])) { polygon(points=points, paths=[perim]); } else { polyhedron(points=points, faces=perim); } } } } // Function: hull2d_path() // Usage: // hull2d_path(points) // Description: // Takes a list of arbitrary 2D points, and finds the minimal convex hull polygon to enclose them. // Returns a path as a list of indices into `points`. // Example(2D): // pts = [[-10,-10], [0,10], [10,10], [12,-10]]; // path = hull2d_path(pts); // place_copies(pts) color("red") sphere(1); // polygon(points=pts, paths=[path]); function hull2d_path(points) = (len(points) < 3)? [] : let( a=0, b=1, c = _find_first_noncollinear([a,b], points, 2) ) (c == len(points))? _hull2d_collinear(points) : let( remaining = [ for (i = [2:1:len(points)-1]) if (i != c) i ], ccw = triangle_area2d(points[a], points[b], points[c]) > 0, polygon = ccw? [a,b,c] : [a,c,b] ) _hull2d_iterative(points, polygon, remaining); // Adds the remaining points one by one to the convex hull function _hull2d_iterative(points, polygon, remaining, _i=0) = (_i >= len(remaining))? polygon : let ( // pick a point i = remaining[_i], // find the segments that are in conflict with the point (point not inside) conflicts = _find_conflicting_segments(points, polygon, points[i]) // no conflicts, skip point and move on ) (len(conflicts) == 0)? _hull2d_iterative(points, polygon, remaining, _i+1) : let( // find the first conflicting segment and the first not conflicting // conflict will be sorted, if not wrapping around, do it the easy way polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i) ) _hull2d_iterative(points, polygon, remaining, _i+1); function _hull2d_collinear(points) = let( a = points[0], n = points[1] - a, points1d = [ for(p = points) (p-a)*n ], min_i = min_index(points1d), max_i = max_index(points1d) ) [min_i, max_i]; function _find_first_noncollinear(line, points, i) = (i>=len(points) || !collinear_indexed(points, line[0], line[1], i))? i : _find_first_noncollinear(line, points, i+1); function _find_conflicting_segments(points, polygon, point) = [ for (i = [0:1:len(polygon)-1]) let( j = (i+1) % len(polygon), p1 = points[polygon[i]], p2 = points[polygon[j]], area = triangle_area2d(p1, p2, point) ) if (area < 0) i ]; // remove the conflicting segments from the polygon function _remove_conflicts_and_insert_point(polygon, conflicts, point) = (conflicts[0] == 0)? let( nonconflicting = [ for(i = [0:1:len(polygon)-1]) if (!in_list(i, conflicts)) i ], new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)), polygon = concat([ for (i = new_indices) polygon[i] ], point) ) polygon : let( before_conflicts = [ for(i = [0:1:min(conflicts)]) polygon[i] ], after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:1:len(polygon)-1]) polygon[i] ], polygon = concat(before_conflicts, point, after_conflicts) ) polygon; // Function: hull3d_faces() // Usage: // hull3d_faces(points) // Description: // Takes a list of arbitrary 3D points, and finds the minimal convex hull polyhedron to enclose // them. Returns a list of faces, where each face is a list of indexes into the given `points` // list. If all points passed to it are coplanar, then the return is the list of indices of points // forming the minimal convex hull polygon. // Example(3D): // pts = [[-20,-20,0], [20,-20,0], [0,20,5], [0,0,20]]; // faces = hull3d_faces(pts); // place_copies(pts) color("red") sphere(1); // %polyhedron(points=pts, faces=faces); function hull3d_faces(points) = (len(points) < 3)? list_range(len(points)) : let ( // start with a single non-collinear triangle a = 0, b = 1, c = _find_first_noncollinear([a,b], points, 2) ) (c == len(points))? _hull2d_collinear(points) : let( plane = plane3pt_indexed(points, a, b, c), d = _find_first_noncoplanar(plane, points, 3) ) (d == len(points))? /* all coplanar*/ let ( pts2d = [ for (p = points) xyz_to_planar(p, points[a], points[b], points[c]) ], hull2d = hull2d_path(pts2d) ) hull2d : let( remaining = [for (i = [3:1:len(points)-1]) if (i != d) i], // Build an initial tetrahedron. // Swap b, c if d is in front of triangle t. ifop = in_front_of_plane(plane, points[d]), bc = ifop? [c,b] : [b,c], b = bc[0], c = bc[1], triangles = [ [a,b,c], [d,b,a], [c,d,a], [b,d,c] ], // calculate the plane equations planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ] ) _hull3d_iterative(points, triangles, planes, remaining); // Adds the remaining points one by one to the convex hull function _hull3d_iterative(points, triangles, planes, remaining, _i=0) = _i >= len(remaining) ? triangles : let ( // pick a point i = remaining[_i], // find the triangles that are in conflict with the point (point not inside) conflicts = _find_conflicts(points[i], planes), // for all triangles that are in conflict, collect their halfedges halfedges = [ for(c = conflicts, i = [0:2]) let( j = (i+1)%3 ) [triangles[c][i], triangles[c][j]] ], // find the outer perimeter of the set of conflicting triangles horizon = _remove_internal_edges(halfedges), // generate a new triangle for each horizon halfedge together with the picked point i new_triangles = [ for (h = horizon) concat(h,i) ], // calculate the corresponding plane equations new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ] ) _hull3d_iterative( points, // remove the conflicting triangles and add the new ones concat(list_remove(triangles, conflicts), new_triangles), concat(list_remove(planes, conflicts), new_planes), remaining, _i+1 ); function _remove_internal_edges(halfedges) = [ for (h = halfedges) if (!in_list(reverse(h), halfedges)) h ]; function _find_conflicts(point, planes) = [ for (i = [0:1:len(planes)-1]) if (in_front_of_plane(planes[i], point)) i ]; function _find_first_noncoplanar(plane, points, i) = (i >= len(points) || !coplanar(plane, points[i]))? i : _find_first_noncoplanar(plane, points, i+1); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap