////////////////////////////////////////////////////////////////////// // Transformations, distributors, duplicators, and manipulators. ////////////////////////////////////////////////////////////////////// /* BSD 2-Clause License Copyright (c) 2017, Revar Desmera All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ printer_slop = 0.20; // mm ////////////////////////////////////////////////////////////////////// // Transformations. ////////////////////////////////////////////////////////////////////// // Moves/translates children. // x = X axis translation. // y = Y axis translation. // z = Z axis translation. // Example: // move([10,20,30]) sphere(r=1); // move(y=10) sphere(r=1); // move(x=10, z=20) sphere(r=1); module move(a=[0,0,0], x=0, y=0, z=0) { translate(a) translate([x,y,z]) children(); } // Moves/translates children the given amount along the X axis. // Example: // xmove(10) sphere(r=1); module xmove(x=0) { translate([x,0,0]) children(); } // Moves/translates children the given amount along the Y axis. // Example: // ymove(10) sphere(r=1); module ymove(y=0) { translate([0,y,0]) children(); } // Moves/translates children the given amount along the Z axis. // Example: // zmove(10) sphere(r=1); module zmove(z=0) { translate([0,0,z]) children(); } // Moves children left by the given amount in the -X direction. // Example: // left(10) sphere(r=1); module left(x=0) { translate([-x,0,0]) children(); } // Moves children right by the given amount in the +X direction. // Example: // right(10) sphere(r=1); module right(x=0) { translate([x,0,0]) children(); } // Moves children forward by x amount in the -Y direction. // Example: // forward(10) sphere(r=1); module forward(y=0) { translate([0,-y,0]) children(); } module fwd(y=0) { translate([0,-y,0]) children(); } // Moves children back by the given amount in the +Y direction. // Example: // back(10) sphere(r=1); module back(y=0) { translate([0,y,0]) children(); } // Moves children down by the given amount in the -Z direction. // Example: // down(10) sphere(r=1); module down(z=0) { translate([0,0,-z]) children(); } // Moves children up by the given amount in the +Z direction. // Example: // up(10) sphere(r=1); module up(z=0) { translate([0,0,z]) children(); } // Rotates children around the Z axis by the given number of degrees. // Example: // xrot(90) cylinder(h=10, r=2, center=true); module xrot(a=0) { rotate([a, 0, 0]) children(); } // Rotates children around the Y axis by the given number of degrees. // Example: // yrot(90) cylinder(h=10, r=2, center=true); module yrot(a=0) { rotate([0, a, 0]) children(); } // Rotates children around the Z axis by the given number of degrees. // Example: // zrot(90) cube(size=[9,1,4], center=true); module zrot(a=0) { rotate([0, 0, a]) children(); } // Scales children by the given factor in the X axis. // Example: // xscale(3) sphere(r=100, center=true); module xscale(x) {scale([x,1,1]) children();} // Scales children by the given factor in the Y axis. // Example: // yscale(3) sphere(r=100, center=true); module yscale(y) {scale([1,y,1]) children();} // Scales children by the given factor in the Z axis. // Example: // zscale(3) sphere(r=100, center=true); module zscale(z) {scale([1,1,z]) children();} // Mirrors the children along the X axis, kind of like xscale(-1) module xflip() mirror([1,0,0]) children(); // Mirrors the children along the Y axis, kind of like yscale(-1) module yflip() mirror([0,1,0]) children(); // Mirrors the children along the Z axis, kind of like zscale(-1) module zflip() mirror([0,0,1]) children(); // Skews children on the X-Y plane, keeping constant in Z. // xang = skew angle towards the X direction. // yang = skew angle towards the Y direction. // Examples: // skew_xy(xang=15) cube(size=10); // skew_xy(xang=15, yang=30) cube(size=10); module skew_xy(xang=0, yang=0) { multmatrix(m = [ [1, 0, tan(xang), 0], [0, 1, tan(yang), 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) { children(); } } module zskew(xa=0,ya=0) skew_xy(xang=xa,yang=ya) children(); // Skews children on the Y-Z plane, keeping constant in X. // yang = skew angle towards the Y direction. // zang = skew angle towards the Z direction. // Examples: // skew_yz(yang=15) cube(size=10); // skew_yz(yang=15, zang=30) cube(size=10); module skew_yz(yang=0, zang=0) { multmatrix(m = [ [1, 0, 0, 0], [tan(yang), 1, 0, 0], [tan(zang), 0, 1, 0], [0, 0, 0, 1] ]) { children(); } } module xskew(ya=0,za=0) skew_yz(yang=ya,zang=za) children(); // Skews children on the X-Z plane, keeping constant in Y. // xang = skew angle towards the X direction. // zang = skew angle towards the Z direction. // Examples: // skew_xz(xang=15) cube(size=10); // skew_xz(xang=15, zang=30) cube(size=10); module skew_xz(xang=0, zang=0) { multmatrix(m = [ [1, tan(xang), 0, 0], [0, 1, 0, 0], [0, tan(zang), 1, 0], [0, 0, 0, 1] ]) { children(); } } module yskew(xa=0,za=0) skew_xz(xang=xa,zang=za) children(); ////////////////////////////////////////////////////////////////////// // Mutators. ////////////////////////////////////////////////////////////////////// // Performs hull operations between consecutive pairs of children, // then unions all of the hull results. module chain_hull() { union() { if ($children == 1) { children(); } else if ($children > 1) { for (i =[1:$children-1]) { hull() { children(i-1); children(i); } } } } } ////////////////////////////////////////////////////////////////////// // Duplicators and Distributers. ////////////////////////////////////////////////////////////////////// // Makes a copy of the children, mirrored across the given axes. // v = The normal vector of the plane to mirror across. // Example: // mirror_copy([1,-1,0]) yrot(30) cylinder(h=10, r=1, center=true); module mirror_copy(v=[0,0,1]) { union() { children(); mirror(v) children(); } } module xflip_copy() {children(); mirror([1,0,0]) children();} module yflip_copy() {children(); mirror([0,1,0]) children();} module zflip_copy() {children(); mirror([0,0,1]) children();} // Given a number of euller angles, rotates copies of the given children to each of those angles. // Example: // rot_copies(rots=[[0,0,0],[45,0,0],[0,45,120],[90,-45,270]]) // translate([6,0,0]) cube(size=[9,1,4], center=true); module rot_copies(rots=[[0,0,0]]) { for (rot = rots) rotate(rot) children(); } // Given an array of angles, rotates copies of the children to each of those angles around the X axis. // rots = Optional array of angles, in degrees, to make copies at. // count = Optional number of evenly distributed copies, rotated around a circle. // offset = Angle offset in degrees, for use with count. // Example: // xrot_copies(rots=[0,15,30,60,120,240]) translate([0,6,0]) cube(size=[4,9,1], center=true); // xrot_copies(count=6, offset=15) translate([0,6,0]) cube(size=[4,9,1], center=true); module xrot_copies(rots=[0], offset=0, count=undef) { if (count != undef) { for (i = [0 : count-1]) { a = (i / count) * 360.0; rotate([a+offset, 0, 0]) { children(); } } } else { for (a = rots) { rotate([a+offset, 0, 0]) { children(); } } } } // Given an array of angles, rotates copies of the children to each of those angles around the Y axis. // rots = Optional array of angles, in degrees, to make copies at. // count = Optional number of evenly distributed copies, rotated around a circle. // offset = Angle offset in degrees, for use with count. // Example: // yrot_copies(rots=[0,15,30,60,120,240]) translate([6,0,0]) cube(size=[9,4,1], center=true); // yrot_copies(count=6, offset=15) translate([6,0,0]) cube(size=[9,4,1], center=true); module yrot_copies(rots=[0], offset=0, count=undef) { if (count != undef) { for (i = [0 : count-1]) { a = (i / count) * 360.0; rotate([0, a+offset, 0]) { children(); } } } else { for (a = rots) { rotate([0, a+offset, 0]) { children(); } } } } // Given an array of angles, rotates copies of the children to each of those angles around the Z axis. // rots = Optional array of angles, in degrees, to make copies at. // count = Optional number of evenly distributed copies, rotated around a circle. // offset = Angle offset in degrees for first copy. // Example: // zrot_copies(rots=[0,15,30,60,120,240]) translate([6,0,0]) cube(size=[9,1,4], center=true); // zrot_copies(count=6, offset=15) translate([6,0,0]) cube(size=[9,1,4], center=true); module zrot_copies(rots=[0], offset=0, count=undef) { if (count != undef) { for (i = [0 : count-1]) { a = (i / count) * 360.0; rotate([0, 0, a+offset]) { children(); } } } else { for (a = rots) { rotate([0, 0, a+offset]) { children(); } } } } // Makes copies of the given children at each of the given offsets. // offsets = array of XYZ offset vectors. Default [[0,0,0]] // Example: // translate_copies([[-5,-5,0], [5,-5,0], [0,-5,7], [0,5,0]]) // sphere(r=3,center=true); module translate_copies(offsets=[[0,0,0]]) { for (off = offsets) translate(off) children(); } module place_copies(a=[[0,0,0]]) {translate_copies(a) children();} // Evenly distributes n duplicate children along an XYZ line. // p1 = starting point of line. (Default: [0,0,0]) // p2 = ending point of line. (Default: [10,0,0]) // n = number of copies to distribute along the line. (Default: 2) // Examples: // line_of(p1=[0,0,0], p2=[-10,15,20], n=5) cube(size=[3,1,1],center=true); // module line_of(p1=[0,0,0], p2=[10,0,0], n=2) { delta = (p2 - p1) / (n-1); for (i = [0:n-1]) translate(p1+delta*i) children(); } module spread(p1,p2,n=3) {line_of(p1,p2,n) children();} // Evenly distributes n duplicate children around an ovoid arc on the XY plane. // n = number of copies to distribute around the circle. (Default: 6) // r = radius of circle (Default: 1) // rx = radius of ellipse on X axis. Used instead of r. // ry = radius of ellipse on Y axis. Used instead of r. // d = diameter of circle. (Default: 2) // dx = diameter of ellipse on X axis. Used instead of d. // dy = diameter of ellipse on Y axis. Used instead of d. // rot = whether to rotate the copied children. (Default: false) // sa = starting angle. (Default: 0.0) // ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0) // Examples: // arc_of(d=8,n=5) // cube(size=[3,1,1],center=true); // arc_of(r=10,n=12,rot=true) // cube(size=[3,1,1],center=true); // arc_of(rx=15,ry=10,n=12,rot=true) // cube(size=[3,1,1],center=true); // arc_of(r=10,n=5,rot=true,sa=30.0,ea=150.0) // cube(size=[3,1,1],center=true); // module arc_of( n=6, r=1, rx=undef, ry=undef, d=undef, dx=undef, dy=undef, sa=0.0, ea=360.0, rot=false ) { r = (d == undef)?r:(d/2.0); rx = (dx == undef)?rx:(dx/2.0); ry = (dy == undef)?rx:(dy/2.0); rx = (rx == undef)?r:rx; ry = (ry == undef)?r:ry; sa = ((sa % 360.0) + 360.0) % 360.0; // make 0 < ang < 360 ea = ((ea % 360.0) + 360.0) % 360.0; // make 0 < ang < 360 n = (abs(ea-sa)<0.01)?(n+1):n; delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1); for (i = [0:n-1]) { ang = sa + (i * delt); translate([cos(ang)*rx, sin(ang)*ry, 0]) { zrot(rot? atan2(sin(ang)*ry,cos(ang)*rx) : 0) { children(); } } } } module xring(n=2,r=0,rot=true) {if (n>0) for (i=[0:n-1]) {a=i*360/n; xrot(a) back(r) xrot(rot?0:-a) children();}} module yring(n=2,r=0,rot=true) {if (n>0) for (i=[0:n-1]) {a=i*360/n; yrot(a) right(r) yrot(rot?0:-a) children();}} module zring(n=2,r=0,rot=true) {if (n>0) for (i=[0:n-1]) {a=i*360/n; zrot(a) right(r) zrot(rot?0:-a) children();}} // Spreads out n copies of the given children along the X axis. // spacing = spacing between copies. (Default: 1.0) // n = Number of copies to spread out. (Default: 2) // Examples: // xspread(25) sphere(1); // xspread(25,3) sphere(1) // xspread(25, n=3) sphere(1) // xspread(spacing=20, n=4) sphere(1) module xspread(spacing=1,n=2) for (i=[0:n-1]) right((i-(n-1)/2.0)*spacing) children(); // Spreads out n copies of the given children along the Y axis. // spacing = spacing between copies. (Default: 1.0) // n = Number of copies to spread out. (Default: 2) // Examples: // yspread(25) sphere(1); // yspread(25,3) sphere(1) // yspread(25, n=3) sphere(1) // yspread(spacing=20, n=4) sphere(1) module yspread(spacing=1,n=2) for (i=[0:n-1]) back((i-(n-1)/2.0)*spacing) children(); // Spreads out n copies of the given children along the Z axis. // spacing = spacing between copies. (Default: 1.0) // n = Number of copies to spread out. (Default: 2) // Examples: // zspread(25) sphere(1); // zspread(25,3) sphere(1) // zspread(25, n=3) sphere(1) // zspread(spacing=20, n=4) sphere(1) module zspread(spacing=1,n=2) for (i=[0:n-1]) up((i-(n-1)/2.0)*spacing) children(); // Makes a 3D grid of duplicate children. // xa = array or range of X-axis values to offset by. (Default: [0]) // ya = array or range of Y-axis values to offset by. (Default: [0]) // za = array or range of Z-axis values to offset by. (Default: [0]) // count = Optional number of copies to have per axis. (Default: none) // spacing = spacing of copies per axis. Use with count. (Default: 0) // Examples: // grid_of(xa=[0,2,3,5],ya=[3:5],za=[-4:2:6]) sphere(r=0.5,center=true); // grid_of(ya=[-6:3:6],za=[4,7]) sphere(r=1,center=true); // grid_of(count=3, spacing=10) sphere(r=1,center=true); // grid_of(count=[3, 1, 2], spacing=10) sphere(r=1,center=true); // grid_of(count=[3, 4], spacing=[10, 8]) sphere(r=1,center=true); // grid_of(count=[3, 4, 2], spacing=[10, 8, 5]) sphere(r=1,center=true, $fn=24); module grid_of(xa=[0], ya=[0], za=[0], count=[], spacing=[]) { count = (len(count) == undef)? [count,1,1] : ((len(count) == 1)? [count[0], 1, 1] : ((len(count) == 2)? [count[0], count[1], 1] : ((len(count) == 3)? count : undef))); spacing = (len(spacing) == undef)? [spacing,spacing,spacing] : ((len(spacing) == 1)? [spacing[0], 0, 0] : ((len(spacing) == 2)? [spacing[0], spacing[1], 0] : ((len(spacing) == 3)? spacing : undef))); if (count != undef && spacing != undef) { for (x = [-(count[0]-1)/2 : (count[0]-1)/2 + 0.1]) { for (y = [-(count[1]-1)/2 : (count[1]-1)/2 + 0.1]) { for (z = [-(count[2]-1)/2 : (count[2]-1)/2 + 0.1]) { translate([x*spacing[0], y*spacing[1], z*spacing[2]]) { children(); } } } } } else { for (xoff = xa) { for (yoff = ya) { for (zoff = za) { translate([xoff,yoff,zoff]) { children(); } } } } } } module top_half (s=100) difference() {children(); down(s/2) cube(s, center=true);} module bottom_half(s=100) difference() {children(); up(s/2) cube(s, center=true);} module left_half (s=100) difference() {children(); right(s/2) cube(s, center=true);} module right_half (s=100) difference() {children(); left(s/2) cube(s, center=true);} module front_half (s=100) difference() {children(); back(s/2) cube(s, center=true);} module back_half (s=100) difference() {children(); fwd(s/2) cube(s, center=true);} // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap