////////////////////////////////////////////////////////////////////// // LibFile: math.scad // Math helper functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Math Constants PHI = (1+sqrt(5))/2; // The golden ratio phi. EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)=0 && d>=0, "Factorial is not defined for negative numbers") assert(d<=n, "d cannot be larger than n") product([1,for (i=[n:-1:d+1]) i]); // Function: lerp() // Usage: // x = lerp(a, b, u); // l = lerp(a, b, LIST); // Description: // Interpolate between two values or vectors. // If `u` is given as a number, returns the single interpolated value. // If `u` is 0.0, then the value of `a` is returned. // If `u` is 1.0, then the value of `b` is returned. // If `u` is a range, or list of numbers, returns a list of interpolated values. // It is valid to use a `u` value outside the range 0 to 1. The result will be a predicted // value along the slope formed by `a` and `b`, but not between those two values. // Arguments: // a = First value or vector. // b = Second value or vector. // u = The proportion from `a` to `b` to calculate. Standard range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results. // Example: // x = lerp(0,20,0.3); // Returns: 6 // x = lerp(0,20,0.8); // Returns: 16 // x = lerp(0,20,-0.1); // Returns: -2 // x = lerp(0,20,1.1); // Returns: 22 // p = lerp([0,0],[20,10],0.25); // Returns [5,2.5] // l = lerp(0,20,[0.4,0.6]); // Returns: [8,12] // l = lerp(0,20,[0.25:0.25:0.75]); // Returns: [5,10,15] // Example(2D): // p1 = [-50,-20]; p2 = [50,30]; // stroke([p1,p2]); // pts = lerp(p1, p2, [0:1/8:1]); // // Points colored in ROYGBIV order. // rainbow(pts) translate($item) circle(d=3,$fn=8); function lerp(a,b,u) = assert(same_shape(a,b), "Bad or inconsistent inputs to lerp") is_num(u)? (1-u)*a + u*b : assert(!is_undef(u)&&!is_bool(u)&&!is_string(u), "Input u to lerp must be a number, vector, or range.") [for (v = u) lerp(a,b,v)]; // Section: Hyperbolic Trigonometry // Function: sinh() // Description: Takes a value `x`, and returns the hyperbolic sine of it. function sinh(x) = (exp(x)-exp(-x))/2; // Function: cosh() // Description: Takes a value `x`, and returns the hyperbolic cosine of it. function cosh(x) = (exp(x)+exp(-x))/2; // Function: tanh() // Description: Takes a value `x`, and returns the hyperbolic tangent of it. function tanh(x) = sinh(x)/cosh(x); // Function: asinh() // Description: Takes a value `x`, and returns the inverse hyperbolic sine of it. function asinh(x) = ln(x+sqrt(x*x+1)); // Function: acosh() // Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it. function acosh(x) = ln(x+sqrt(x*x-1)); // Function: atanh() // Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it. function atanh(x) = ln((1+x)/(1-x))/2; // Section: Quantization // Function: quant() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple. // If `x` is a list, then every item in that list will be recursively quantized. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Example: // quant(12,4); // Returns: 12 // quant(13,4); // Returns: 12 // quant(13.1,4); // Returns: 12 // quant(14,4); // Returns: 16 // quant(14.1,4); // Returns: 16 // quant(15,4); // Returns: 16 // quant(16,4); // Returns: 16 // quant(9,3); // Returns: 9 // quant(10,3); // Returns: 9 // quant(10.4,3); // Returns: 9 // quant(10.5,3); // Returns: 12 // quant(11,3); // Returns: 12 // quant(12,3); // Returns: 12 // quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16] // quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12] // quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]] function quant(x,y) = is_list(x)? [for (v=x) quant(v,y)] : floor(x/y+0.5)*y; // Function: quantdn() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple. // If `x` is a list, then every item in that list will be recursively quantized down. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Examples: // quantdn(12,4); // Returns: 12 // quantdn(13,4); // Returns: 12 // quantdn(13.1,4); // Returns: 12 // quantdn(14,4); // Returns: 12 // quantdn(14.1,4); // Returns: 12 // quantdn(15,4); // Returns: 12 // quantdn(16,4); // Returns: 16 // quantdn(9,3); // Returns: 9 // quantdn(10,3); // Returns: 9 // quantdn(10.4,3); // Returns: 9 // quantdn(10.5,3); // Returns: 9 // quantdn(11,3); // Returns: 9 // quantdn(12,3); // Returns: 12 // quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16] // quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12] // quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]] function quantdn(x,y) = is_list(x)? [for (v=x) quantdn(v,y)] : floor(x/y)*y; // Function: quantup() // Description: // Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple. // If `x` is a list, then every item in that list will be recursively quantized up. // Arguments: // x = The value to quantize. // y = The multiple to quantize to. // Examples: // quantup(12,4); // Returns: 12 // quantup(13,4); // Returns: 16 // quantup(13.1,4); // Returns: 16 // quantup(14,4); // Returns: 16 // quantup(14.1,4); // Returns: 16 // quantup(15,4); // Returns: 16 // quantup(16,4); // Returns: 16 // quantup(9,3); // Returns: 9 // quantup(10,3); // Returns: 12 // quantup(10.4,3); // Returns: 12 // quantup(10.5,3); // Returns: 12 // quantup(11,3); // Returns: 12 // quantup(12,3); // Returns: 12 // quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16] // quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12] // quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]] function quantup(x,y) = is_list(x)? [for (v=x) quantup(v,y)] : ceil(x/y)*y; // Section: Constraints and Modulos // Function: constrain() // Usage: // constrain(v, minval, maxval); // Description: // Constrains value to a range of values between minval and maxval, inclusive. // Arguments: // v = value to constrain. // minval = minimum value to return, if out of range. // maxval = maximum value to return, if out of range. // Example: // constrain(-5, -1, 1); // Returns: -1 // constrain(5, -1, 1); // Returns: 1 // constrain(0.3, -1, 1); // Returns: 0.3 // constrain(9.1, 0, 9); // Returns: 9 // constrain(-0.1, 0, 9); // Returns: 0 function constrain(v, minval, maxval) = min(maxval, max(minval, v)); // Function: posmod() // Usage: // posmod(x,m) // Description: // Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1. // Arguments: // x = The value to constrain. // m = Modulo value. // Example: // posmod(-700,360); // Returns: 340 // posmod(-270,360); // Returns: 90 // posmod(-120,360); // Returns: 240 // posmod(120,360); // Returns: 120 // posmod(270,360); // Returns: 270 // posmod(700,360); // Returns: 340 // posmod(3,2.5); // Returns: 0.5 function posmod(x,m) = (x%m+m)%m; // Function: modang(x) // Usage: // ang = modang(x) // Description: // Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180. // Example: // modang(-700,360); // Returns: 20 // modang(-270,360); // Returns: 90 // modang(-120,360); // Returns: -120 // modang(120,360); // Returns: 120 // modang(270,360); // Returns: -90 // modang(700,360); // Returns: -20 function modang(x) = let(xx = posmod(x,360)) xx<180? xx : xx-360; // Function: modrange() // Usage: // modrange(x, y, m, [step]) // Description: // Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`. // Arguments: // x = The start value to constrain. // y = The end value to constrain. // m = Modulo value. // step = Step by this amount. // Examples: // modrange(90,270,360, step=45); // Returns: [90,135,180,225,270] // modrange(270,90,360, step=45); // Returns: [270,315,0,45,90] // modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270] // modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90] function modrange(x, y, m, step=1) = let( a = posmod(x, m), b = posmod(y, m), c = step>0? (a>b? b+m : b) : (a= min, "Max value cannot be smaller than min") let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N)) [for(entry = rvect) floor(entry)]; // Function: gaussian_rands() // Usage: // gaussian_rands(mean, stddev, [N], [seed]) // Description: // Returns a random number with a gaussian/normal distribution. // Arguments: // mean = The average random number returned. // stddev = The standard deviation of the numbers to be returned. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function gaussian_rands(mean, stddev, N=1, seed=undef) = let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed)) [for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])]; // Function: log_rands() // Usage: // log_rands(minval, maxval, factor, [N], [seed]); // Description: // Returns a single random number, with a logarithmic distribution. // Arguments: // minval = Minimum value to return. // maxval = Maximum value to return. `minval` <= X < `maxval`. // factor = Log factor to use. Values of X are returned `factor` times more often than X+1. // N = Number of random numbers to return. Default: 1 // seed = If given, sets the random number seed. function log_rands(minval, maxval, factor, N=1, seed=undef) = assert(maxval >= minval, "maxval cannot be smaller than minval") let( minv = 1-1/pow(factor,minval), maxv = 1-1/pow(factor,maxval), nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed) ) [for (num=nums) -ln(1-num)/ln(factor)]; // Section: GCD/GCF, LCM // Function: gcd() // Usage: // gcd(a,b) // Description: // Computes the Greatest Common Divisor/Factor of `a` and `b`. function gcd(a,b) = assert(is_int(a) && is_int(b),"Arguments to gcd must be integers") b==0 ? abs(a) : gcd(b,a % b); // Computes lcm for two scalars function _lcm(a,b) = assert(is_int(a), "Invalid non-integer parameters to lcm") assert(is_int(b), "Invalid non-integer parameters to lcm") assert(a!=0 && b!=0, "Arguments to lcm must be nonzero") abs(a*b) / gcd(a,b); // Computes lcm for a list of values function _lcmlist(a) = len(a)==1 ? a[0] : _lcmlist(concat(slice(a,0,len(a)-2),[lcm(a[len(a)-2],a[len(a)-1])])); // Function: lcm() // Usage: // lcm(a,b) // lcm(list) // Description: // Computes the Least Common Multiple of the two arguments or a list of arguments. Inputs should // be non-zero integers. The output is always a positive integer. It is an error to pass zero // as an argument. function lcm(a,b=[]) = !is_list(a) && !is_list(b) ? _lcm(a,b) : let( arglist = concat(force_list(a),force_list(b)) ) assert(len(arglist)>0,"invalid call to lcm with empty list(s)") _lcmlist(arglist); // Section: Sums, Products, Aggregate Functions. // Function: sum() // Description: // Returns the sum of all entries in the given list. // If passed an array of vectors, returns a vector of sums of each part. // If passed an empty list, the value of `dflt` will be returned. // Arguments: // v = The list to get the sum of. // dflt = The default value to return if `v` is an empty list. Default: 0 // Example: // sum([1,2,3]); // returns 6. // sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15] function sum(v, dflt=0) = is_vector(v) ? [for(i=v) 1]*v : assert(is_consistent(v), "Input to sum is non-numeric or inconsistent") is_vector(v[0]) ? [for(i=v) 1]*v : len(v) == 0 ? dflt : _sum(v,v[0]*0); function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1); // Function: cumsum() // Description: // Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list. // If passed an array of vectors, returns a list of cumulative vectors sums. // Arguments: // v = The list to get the sum of. // Example: // cumsum([1,1,1]); // returns [1,2,3] // cumsum([2,2,2]); // returns [2,4,6] // cumsum([1,2,3]); // returns [1,3,6] // cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]] function cumsum(v,_i=0,_acc=[]) = _i==len(v) ? _acc : cumsum( v, _i+1, concat( _acc, [_i==0 ? v[_i] : select(_acc,-1)+v[_i]] ) ); // Function: sum_of_squares() // Description: // Returns the sum of the square of each element of a vector. // Arguments: // v = The vector to get the sum of. // Example: // sum_of_squares([1,2,3]); // Returns: 14. // sum_of_squares([1,2,4]); // Returns: 21 // sum_of_squares([-3,-2,-1]); // Returns: 14 function sum_of_squares(v) = sum(vmul(v,v)); // Function: sum_of_sines() // Usage: // sum_of_sines(a,sines) // Description: // Gives the sum of a series of sines, at a given angle. // Arguments: // a = Angle to get the value for. // sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle. // Examples: // v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]); function sum_of_sines(a, sines) = sum([ for (s = sines) let( ss=point3d(s), v=ss.x*sin(a*ss.y+ss.z) ) v ]); // Function: deltas() // Description: // Returns a list with the deltas of adjacent entries in the given list. // Given [a,b,c,d], returns [b-a,c-b,d-c]. // Arguments: // v = The list to get the deltas of. // Example: // deltas([2,5,9,17]); // returns [3,4,8]. // deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]] function deltas(v) = [for (p=pair(v)) p.y-p.x]; // Function: product() // Description: // Returns the product of all entries in the given list. // If passed an array of vectors, returns a vector of products of each part. // If passed an array of matrices, returns a the resulting product matrix. // Arguments: // v = The list to get the product of. // Example: // product([2,3,4]); // returns 24. // product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105] function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i])); // Function: outer_product() // Description: // Compute the outer product of two vectors, a matrix. // Usage: // M = outer_product(u,v); function outer_product(u,v) = assert(is_vector(u) && is_vector(v)) assert(len(u)==len(v)) [for(i=[0:len(u)-1]) [for(j=[0:len(u)-1]) u[i]*v[j]]]; // Function: mean() // Description: // Returns the arithmatic mean/average of all entries in the given array. // If passed a list of vectors, returns a vector of the mean of each part. // Arguments: // v = The list of values to get the mean of. // Example: // mean([2,3,4]); // returns 3. // mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5] function mean(v) = sum(v)/len(v); // Function: median() // Usage: // x = median(v); // Description: // Given a list of numbers or vectors, finds the median value or midpoint. // If passed a list of vectors, returns the vector of the median of each part. function median(v) = assert(is_list(v)) assert(len(v)>0) is_vector(v[0])? ( assert(is_consistent(v)) [ for (i=idx(v[0])) let(vals = subindex(v,i)) (min(vals)+max(vals))/2 ] ) : (min(v)+max(v))/2; // Section: Matrix math // Function: linear_solve() // Usage: linear_solve(A,b) // Description: // Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined // the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned. // If A is rank deficient or singular then linear_solve returns []. If b is a matrix that is compatible with A // then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you // want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then // transpose the returned value. function linear_solve(A,b) = assert(is_matrix(A)) let( m = len(A), n = len(A[0]) ) assert(is_vector(b,m) || is_matrix(b,m),"Incompatible matrix and right hand side") let ( qr = mj ? 0 : qr[1][i][j] ] ] ) [qr[0],Rzero]; function _qr_factor(A,Q, column, m, n) = column >= min(m-1,n) ? [Q,A] : let( x = [for(i=[column:1:m-1]) A[i][column]], alpha = (x[0]<=0 ? 1 : -1) * norm(x), u = x - concat([alpha],repeat(0,m-1)), v = alpha==0 ? u : u / norm(u), Qc = ident(len(x)) - 2*outer_product(v,v), Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i0 if a>b. Returns 0 if a==b. // If types are not the same, then undef < bool < num < str < list < range. // Arguments: // a = First value to compare. // b = Second value to compare. function compare_vals(a, b) = (a==b)? 0 : let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) : is_list(a)? compare_lists(a,b) : is_nan(a)? 0 : (ab)? 1 : 0; // Function: compare_lists() // Usage: // compare_lists(a, b) // Description: // Compare contents of two lists using `compare_vals()`. // Returns <0 if `a`<`b`. // Returns 0 if `a`==`b`. // Returns >0 if `a`>`b`. // Arguments: // a = First list to compare. // b = Second list to compare. function compare_lists(a, b) = a==b? 0 : let( cmps = [ for(i=[0:1:min(len(a),len(b))-1]) let( cmp = compare_vals(a[i],b[i]) ) if(cmp!=0) cmp ] ) cmps==[]? (len(a)-len(b)) : cmps[0]; // Function: any() // Description: // Returns true if any item in list `l` evaluates as true. // If `l` is a lists of lists, `any()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // any([0,false,undef]); // Returns false. // any([1,false,undef]); // Returns true. // any([1,5,true]); // Returns true. // any([[0,0], [0,0]]); // Returns false. // any([[0,0], [1,0]]); // Returns true. function any(l, i=0, succ=false) = (i>=len(l) || succ)? succ : any( l, i=i+1, succ=( is_list(l[i])? any(l[i]) : !(!l[i]) ) ); // Function: all() // Description: // Returns true if all items in list `l` evaluate as true. // If `l` is a lists of lists, `all()` is applied recursively to each sublist. // Arguments: // l = The list to test for true items. // Example: // all([0,false,undef]); // Returns false. // all([1,false,undef]); // Returns false. // all([1,5,true]); // Returns true. // all([[0,0], [0,0]]); // Returns false. // all([[0,0], [1,0]]); // Returns false. // all([[1,1], [1,1]]); // Returns true. function all(l, i=0, fail=false) = (i>=len(l) || fail)? (!fail) : all( l, i=i+1, fail=( is_list(l[i])? !all(l[i]) : !l[i] ) ); // Function: count_true() // Usage: // count_true(l) // Description: // Returns the number of items in `l` that evaluate as true. // If `l` is a lists of lists, this is applied recursively to each // sublist. Returns the total count of items that evaluate as true // in all recursive sublists. // Arguments: // l = The list to test for true items. // nmax = If given, stop counting if `nmax` items evaluate as true. // Example: // count_true([0,false,undef]); // Returns 0. // count_true([1,false,undef]); // Returns 1. // count_true([1,5,false]); // Returns 2. // count_true([1,5,true]); // Returns 3. // count_true([[0,0], [0,0]]); // Returns 0. // count_true([[0,0], [1,0]]); // Returns 1. // count_true([[1,1], [1,1]]); // Returns 4. // count_true([[1,1], [1,1]], nmax=3); // Returns 3. function count_true(l, nmax=undef, i=0, cnt=0) = (i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt : count_true( l=l, nmax=nmax, i=i+1, cnt=cnt+( is_list(l[i])? count_true(l[i], nmax=nmax-cnt) : (l[i]? 1 : 0) ) ); // Section: Calculus // Function: deriv() // Usage: deriv(data, [h], [closed]) // Description: // Computes a numerical derivative estimate of the data, which may be scalar or vector valued. // The `h` parameter gives the step size of your sampling so the derivative can be scaled correctly. // If the `closed` parameter is true the data is assumed to be defined on a loop with data[0] adjacent to // data[len(data)-1]. This function uses a symetric derivative approximation // for internal points, f'(t) = (f(t+h)-f(t-h))/2h. For the endpoints (when closed=false) the algorithm // uses a two point method if sufficient points are available: f'(t) = (3*(f(t+h)-f(t)) - (f(t+2*h)-f(t+h)))/2h. // . // If `h` is a vector then it is assumed to be nonuniform, with h[i] giving the sampling distance // between data[i+1] and data[i], and the data values will be linearly resampled at each corner // to produce a uniform spacing for the derivative estimate. At the endpoints a single point method // is used: f'(t) = (f(t+h)-f(t))/h. function deriv(data, h=1, closed=false) = is_vector(h) ? _deriv_nonuniform(data, h, closed=closed) : let( L = len(data) ) closed? [ for(i=[0:1:L-1]) (data[(i+1)%L]-data[(L+i-1)%L])/2/h ] : let( first = L<3? data[1]-data[0] : 3*(data[1]-data[0]) - (data[2]-data[1]), last = L<3? data[L-1]-data[L-2]: (data[L-3]-data[L-2])-3*(data[L-2]-data[L-1]) ) [ first/2/h, for(i=[1:1:L-2]) (data[i+1]-data[i-1])/2/h, last/2/h ]; function _dnu_calc(f1,fc,f2,h1,h2) = let( f1 = h2

=5, "Need five points for 3rd derivative estimate") closed? [ for(i=[0:1:L-1]) (-data[(L+i-2)%L]+2*data[(L+i-1)%L]-2*data[(i+1)%L]+data[(i+2)%L])/2/h3 ] : let( first=(-5*data[0]+18*data[1]-24*data[2]+14*data[3]-3*data[4])/2, second=(-3*data[0]+10*data[1]-12*data[2]+6*data[3]-data[4])/2, last=(5*data[L-1]-18*data[L-2]+24*data[L-3]-14*data[L-4]+3*data[L-5])/2, prelast=(3*data[L-1]-10*data[L-2]+12*data[L-3]-6*data[L-4]+data[L-5])/2 ) [ first/h3, second/h3, for(i=[2:1:L-3]) (-data[i-2]+2*data[i-1]-2*data[i+1]+data[i+2])/2/h3, prelast/h3, last/h3 ]; // Section: Complex Numbers // Function: C_times() // Usage: C_times(z1,z2) // Description: // Multiplies two complex numbers. function C_times(z1,z2) = [z1.x*z2.x-z1.y*z2.y,z1.x*z2.y+z1.y*z2.x]; // Function: C_div() // Usage: C_div(z1,z2) // Description: // Divides z1 by z2. function C_div(z1,z2) = let(den = z2.x*z2.x + z2.y*z2.y) [(z1.x*z2.x + z1.y*z2.y)/den, (z1.y*z2.x-z1.x*z2.y)/den]; // Section: Polynomials // Function: polynomial() // Usage: // polynomial(p, z) // Description: // Evaluates specified real polynomial, p, at the complex or real input value, z. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the z^n coefficient. Polynomial coefficients are real. // Note: this should probably be recoded to use division by [1,-z], which is more accurate // and avoids overflow with large coefficients, but requires poly_div to support complex coefficients. function polynomial(p, z, k, zk, total) = is_undef(k) ? polynomial(p, z, len(p)-1, is_num(z)? 1 : [1,0], is_num(z) ? 0 : [0,0]) : k==-1 ? total : polynomial(p, z, k-1, is_num(z) ? zk*z : C_times(zk,z), total+zk*p[k]); // Function: poly_mult() // Usage: // polymult(p,q) // polymult([p1,p2,p3,...]) // Description: // Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first, // computes the coefficient list of the product polynomial. function poly_mult(p,q) = is_undef(q) ? assert(is_list(p) && (is_vector(p[0]) || p[0]==[]), "Invalid arguments to poly_mult") len(p)==2 ? poly_mult(p[0],p[1]) : poly_mult(p[0], poly_mult(select(p,1,-1))) : _poly_trim( [ for(n = [len(p)+len(q)-2:-1:0]) sum( [for(i=[0:1:len(p)-1]) let(j = len(p)+len(q)- 2 - n - i) if (j>=0 && j0 && d[0]!=0 , "Denominator is zero or has leading zero coefficient") len(n)qlen ? p : q, short = plen>qlen ? q : p ) _poly_trim(long + concat(repeat(0,len(long)-len(short)),short)); // Function: poly_roots() // Usage: // poly_roots(p,[tol]) // Description: // Returns all complex roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the z^n coefficient. The tol parameter gives // the stopping tolerance for the iteration. The polynomial // must have at least one non-zero coefficient. Convergence is poor // if the polynomial has any repeated roots other than zero. // Arguments: // p = polynomial coefficients with higest power coefficient first // tol = tolerance for iteration. Default: 1e-14 // Uses the Aberth method https://en.wikipedia.org/wiki/Aberth_method // // Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996. // https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method function poly_roots(p,tol=1e-14,error_bound=false) = assert(p!=[], "Input polynomial must have a nonzero coefficient") assert(is_vector(p), "Input must be a vector") p[0] == 0 ? poly_roots(slice(p,1,-1),tol=tol,error_bound=error_bound) : // Strip leading zero coefficients p[len(p)-1] == 0 ? // Strip trailing zero coefficients let( solutions = poly_roots(select(p,0,-2),tol=tol, error_bound=error_bound)) (error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]] : [[0,0], each solutions]) : len(p)==1 ? (error_bound ? [[],[]] : []) : // Nonzero constant case has no solutions len(p)==2 ? let( solution = [[-p[1]/p[0],0]]) // Linear case needs special handling (error_bound ? [solution,[0]] : solution) : let( n = len(p)-1, // polynomial degree pderiv = [for(i=[0:n-1]) p[i]*(n-i)], s = [for(i=[0:1:n]) abs(p[i])*(4*(n-i)+1)], // Error bound polynomial from Bini // Using method from: http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0915-24.pdf beta = -p[1]/p[0]/n, r = 1+pow(abs(polynomial(p,beta)/p[0]),1/n), init = [for(i=[0:1:n-1]) // Initial guess for roots let(angle = 360*i/n+270/n/PI) [beta,0]+r*[cos(angle),sin(angle)] ], roots = _poly_roots(p,pderiv,s,init,tol=tol), error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) / abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0 ) error_bound ? [roots, error] : roots; // p = polynomial // pderiv = derivative polynomial of p // z = current guess for the roots // tol = root tolerance // i=iteration counter function _poly_roots(p, pderiv, s, z, tol, i=0) = assert(i<45, str("Polyroot exceeded iteration limit. Current solution:", z)) let( n = len(z), svals = [for(zk=z) tol*polynomial(s,norm(zk))], p_of_z = [for(zk=z) polynomial(p,zk)], done = [for(k=[0:n-1]) norm(p_of_z[k])<=svals[k]], newton = [for(k=[0:n-1]) C_div(p_of_z[k], polynomial(pderiv,z[k]))], zdiff = [for(k=[0:n-1]) sum([for(j=[0:n-1]) if (j!=k) C_div([1,0], z[k]-z[j])])], w = [for(k=[0:n-1]) done[k] ? [0,0] : C_div( newton[k], [1,0] - C_times(newton[k], zdiff[k]))] ) all(done) ? z : _poly_roots(p,pderiv,s,z-w,tol,i+1); // Function: real_roots() // Usage: // real_roots(p, [eps], [tol]) // Description: // Returns the real roots of the specified real polynomial p. // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // where a_n is the x^n coefficient. This function works by // computing the complex roots and returning those roots where // the imaginary part is closed to zero. By default it uses a computed // error bound from the polynomial solver to decide whether imaginary // parts are zero. You can specify eps, in which case the test is // z.y/(1+norm(z)) < eps. Because // of poor convergence and higher error for repeated roots, such roots may // be missed by the algorithm because their imaginary part is large. // Arguments: // p = polynomial to solve as coefficient list, highest power term first // eps = used to determine whether imaginary parts of roots are zero // tol = tolerance for the complex polynomial root finder function real_roots(p,eps=undef,tol=1e-14) = let( roots_err = poly_roots(p,error_bound=true), roots = roots_err[0], err = roots_err[1] ) is_def(eps) ? [for(z=roots) if (abs(z.y)/(1+norm(z))