////////////////////////////////////////////////////////////////////// // LibFile: vnf.scad // The Vertices'N'Faces structure (VNF) holds the data used by polyhedron() to construct objects: a vertex // list and a list of faces. This library makes it easier to construct polyhedra by providing // functions to construct, merge, and modify VNF data, while avoiding common pitfalls such as // reversed faces. // Includes: // include ////////////////////////////////////////////////////////////////////// // Section: Creating Polyhedrons with VNF Structures // VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the // first item is a list of vertex points, and the second is a list of face indices into the vertex // list. Each VNF is self contained, with face indices referring only to its own vertex list. // You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then // merge the various VNFs to get the completed polyhedron vertex list and faces. /// Constant: EMPTY_VNF /// Description: /// The empty VNF data structure. Equal to `[[],[]]`. EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces. // Function: vnf_vertex_array() // Usage: // vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [style], [reverse], [col_wrap], [row_wrap]); // Description: // Creates a VNF structure from a rectangular vertex list, by dividing the vertices into columns and rows, // adding faces to tile the surface. You can optionally have faces added to wrap the last column // back to the first column, or wrap the last row to the first. Endcaps can be added to either // the first and/or last rows. The style parameter determines how the quadrilaterals are divided into // triangles. The default style is an arbitrary, systematic subdivision in the same direction. The "alt" style // is the uniform subdivision in the other (alternate) direction. The "min_edge" style picks the shorter edge to // subdivide for each quadrilateral, so the division may not be uniform across the shape. The "quincunx" style // adds a vertex in the center of each quadrilateral and creates four triangles, and the "convex" and "concave" styles // chooses the locally convex/concave subdivision. Degenerate faces // are not included in the output, but if this results in unused vertices they will still appear in the output. // Arguments: // points = A list of vertices to divide into columns and rows. // --- // caps = If true, add endcap faces to the first AND last rows. // cap1 = If true, add an endcap face to the first row. // cap2 = If true, add an endcap face to the last row. // col_wrap = If true, add faces to connect the last column to the first. // row_wrap = If true, add faces to connect the last row to the first. // reverse = If true, reverse all face normals. // style = The style of subdividing the quads into faces. Valid options are "default", "alt", "min_edge", "quincunx", "convex" and "concave". // Example(3D): // vnf = vnf_vertex_array( // points=[ // for (h = [0:5:180-EPSILON]) [ // for (t = [0:5:360-EPSILON]) // cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h) // ] // ], // col_wrap=true, caps=true, reverse=true, style="alt" // ); // vnf_polyhedron(vnf); // Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360-EPSILON]) // apply( // zrot(a) * right(30) * xrot(90), // path3d(circle(d=20)) // ) // ], // col_wrap=true, row_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360]) apply( // zrot(a) * right(30) * xrot(90) * zrot(a/2+60), // path3d(square([1,10], center=true)) // ) // ], // col_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Assembling a Polyhedron from Multiple Parts // wall_points = [ // for (a = [-90:2:90]) apply( // up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]), // path3d(circle(d=100)) // ) // ]; // cap = [ // for (a = [0:0.01:1+EPSILON]) apply( // up(90-5*sin(a*360*2)) * scale([a,a,1]), // wall_points[0] // ) // ]; // cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))]; // cap2 = [for (p=cap) up(90, p=p)]; // vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true); // vnf2 = vnf_vertex_array(points=cap1, col_wrap=true); // vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true); // vnf_polyhedron([vnf1, vnf2, vnf3]); function vnf_vertex_array( points, caps, cap1, cap2, col_wrap=false, row_wrap=false, reverse=false, style="default" ) = assert(!(any([caps,cap1,cap2]) && !col_wrap), "col_wrap must be true if caps are requested") assert(!(any([caps,cap1,cap2]) && row_wrap), "Cannot combine caps with row_wrap") assert(in_list(style,["default","alt","quincunx", "convex","concave", "min_edge"])) assert(is_matrix(points[0], n=3),"Point array has the wrong shape or points are not 3d") assert(is_consistent(points), "Non-rectangular or invalid point array") let( pts = flatten(points), pcnt = len(pts), rows = len(points), cols = len(points[0]) ) rows<=1 || cols<=1 ? EMPTY_VNF : let( cap1 = first_defined([cap1,caps,false]), cap2 = first_defined([cap2,caps,false]), colcnt = cols - (col_wrap?0:1), rowcnt = rows - (row_wrap?0:1), verts = [ each pts, if (style=="quincunx") for (r = [0:1:rowcnt-1], c = [0:1:colcnt-1]) let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols) ) mean([pts[i1], pts[i2], pts[i3], pts[i4]]) ], allfaces = [ if (cap1) count(cols,reverse=!reverse), if (cap2) count(cols,(rows-1)*cols, reverse=reverse), for (r = [0:1:rowcnt-1], c=[0:1:colcnt-1]) each let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols), faces = style=="quincunx"? let(i5 = pcnt + r*colcnt + c) [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]] : style=="alt"? [[i1,i4,i2],[i2,i4,i3]] : style=="min_edge"? let( d42=norm(pts[i4]-pts[i2]), d13=norm(pts[i1]-pts[i3]), shortedge = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]] : [[i1,i3,i2],[i1,i4,i3]] ) shortedge : style=="convex"? let( // Find normal for 3 of the points. Is the other point above or below? n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]), convexfaces = n==0 ? [[i1,i4,i3]] : n*pts[i4] > n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]] : [[i1,i3,i2],[i1,i4,i3]] ) convexfaces : style=="concave"? let( // Find normal for 3 of the points. Is the other point above or below? n = (reverse?-1:1)*cross(pts[i2]-pts[i1],pts[i3]-pts[i1]), concavefaces = n==0 ? [[i1,i4,i3]] : n*pts[i4] <= n*pts[i1] ? [[i1,i4,i2],[i2,i4,i3]] : [[i1,i3,i2],[i1,i4,i3]] ) concavefaces : [[i1,i3,i2],[i1,i4,i3]], // remove degenerate faces culled_faces= [for(face=faces) if (norm(verts[face[0]]-verts[face[1]])>EPSILON && norm(verts[face[1]]-verts[face[2]])>EPSILON && norm(verts[face[2]]-verts[face[0]])>EPSILON) face ], rfaces = reverse? [for (face=culled_faces) reverse(face)] : culled_faces ) rfaces, ] ) [verts,allfaces]; // Function: vnf_tri_array() // Usage: // vnf = vnf_tri_array(points, [row_wrap], [reverse]) // Description: // Produces a vnf from an array of points where each row length can differ from the adjacent rows by up to 2 in length. This enables // the construction of triangular VNF patches. The resulting VNF can be wrapped along the rows by setting `row_wrap` to true. // You cannot wrap columns: if you need to do that you'll need to merge two VNF arrays that share edges. Degenerate faces // are not included in the output, but if this results in unused vertices they will still appear in the output. // Arguments: // points = List of point lists for each row // row_wrap = If true then add faces connecting the first row and last row. These rows must differ by at most 2 in length. // reverse = Set this to reverse the direction of the faces // Example(3D,NoAxes): Each row has one more point than the preceeding one. // pts = [for(y=[1:1:10]) [for(x=[0:y-1]) [x,y,y]]]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); // Example(3D,NoAxes): Each row has two more points than the preceeding one. // pts = [for(y=[0:2:10]) [for(x=[-y/2:y/2]) [x,y,y]]]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); // Example(3D): Merging two VNFs to construct a cone with one point length change between rows. // pts1 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:10]) path3d(arc(3+z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_join([vnf_tri_array(pts1), // vnf_tri_array(pts2)]); // color("green")vnf_wireframe(vnf,width=0.1); // vnf_polyhedron(vnf); // Example(3D): Cone with length change two between rows // pts1 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[0,180]),10-z)]; // pts2 = [for(z=[0:1:10]) path3d(arc(3+2*z,r=z/2+1, angle=[180,360]),10-z)]; // vnf = vnf_join([vnf_tri_array(pts1), // vnf_tri_array(pts2)]); // color("green")vnf_wireframe(vnf,width=0.1); // vnf_polyhedron(vnf); // Example(3D,NoAxes): Point count can change irregularly // lens = [10,9,7,5,6,8,8,10]; // pts = [for(y=idx(lens)) lerpn([-lens[y],y,y],[lens[y],y,y],lens[y])]; // vnf = vnf_tri_array(pts); // vnf_wireframe(vnf,width=0.1); // color("red")move_copies(flatten(pts)) sphere(r=.15,$fn=9); function vnf_tri_array(points, row_wrap=false, reverse=false) = let( lens = [for(row=points) len(row)], rowstarts = [0,each cumsum(lens)], faces = [for(i=[0:1:len(points) - 1 - (row_wrap ? 0 : 1)]) each let( rowstart = rowstarts[i], nextrow = select(rowstarts,i+1), delta = select(lens,i+1)-lens[i] ) delta == 0 ? [for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow], for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1] : [j+rowstart+1, j+nextrow+1, j+nextrow]] : delta == 1 ? [for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], for(j=[0:1:lens[i]-1]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow]] : delta == -1 ? [for(j=[0:1:lens[i]-3]) reverse ? [j+rowstart+1, j+nextrow, j+nextrow+1]: [j+rowstart+1, j+nextrow+1, j+nextrow], for(j=[0:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow] : [j+rowstart, j+rowstart+1, j+nextrow]] : let(count = floor((lens[i]-1)/2)) delta == 2 ? [ for(j=[0:1:count-1]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+1] : [j+rowstart, j+rowstart+1, j+nextrow+1], // top triangles left for(j=[count:1:lens[i]-2]) reverse ? [j+rowstart+1, j+rowstart, j+nextrow+2] : [j+rowstart, j+rowstart+1, j+nextrow+2], // top triangles right for(j=[0:1:count]) reverse ? [j+rowstart, j+nextrow, j+nextrow+1] : [j+rowstart, j+nextrow+1, j+nextrow], // bot triangles left for(j=[count+1:1:select(lens,i+1)-2]) reverse ? [j+rowstart-1, j+nextrow, j+nextrow+1] : [j+rowstart-1, j+nextrow+1, j+nextrow], // bot triangles right ] : delta == -2 ? [ for(j=[0:1:count-2]) reverse ? [j+nextrow, j+nextrow+1, j+rowstart+1] : [j+nextrow, j+rowstart+1, j+nextrow+1], for(j=[count-1:1:lens[i]-4]) reverse ? [j+nextrow,j+nextrow+1,j+rowstart+2] : [j+nextrow,j+rowstart+2, j+nextrow+1], for(j=[0:1:count-1]) reverse ? [j+nextrow, j+rowstart+1, j+rowstart] : [j+nextrow, j+rowstart, j+rowstart+1], for(j=[count:1:select(lens,i+1)]) reverse ? [ j+nextrow-1, j+rowstart+1, j+rowstart]: [ j+nextrow-1, j+rowstart, j+rowstart+1], ] : assert(false,str("Unsupported row length difference of ",delta, " between row ",i," and ",(i+1)%len(points))) ], verts = flatten(points), culled_faces= [for(face=faces) if (norm(verts[face[0]]-verts[face[1]])>EPSILON && norm(verts[face[1]]-verts[face[2]])>EPSILON && norm(verts[face[2]]-verts[face[0]])>EPSILON) face ] ) [flatten(points), culled_faces]; // Function: vnf_join() // Usage: // vnf = vnf_join([VNF, VNF, VNF, ...]); // Description: // Given a list of VNF structures, merges them all into a single VNF structure. // Combines all the points of the input VNFs and labels the faces appropriately. // All the points in the input VNFs will appear in the output, even if they are // duplicates of each other. It is valid to repeat points in a VNF, but if you // with to remove the duplicates that will occur along joined edges, use {{vnf_merge_points()}}. // Arguments: // vnfs = a list of the VNFs to joint into one VNF. function vnf_join(vnfs) = assert(is_vnf_list(vnfs) , "Input must be a list of VNFs") len(vnfs)==1 ? vnfs[0] : let ( offs = cumsum([ 0, for (vnf = vnfs) len(vnf[0]) ]), verts = [for (vnf=vnfs) each vnf[0]], faces = [ for (i = idx(vnfs)) let( faces = vnfs[i][1] ) for (face = faces) if ( len(face) >= 3 ) [ for (j = face) assert( j>=0 && j pt.y+eps) && (edge[1].y <= pt.y) && _is_at_left(pt, [edge[1], edge[0]], eps) ) [ i, // the point of edge with ordinate pt.y abs(pt.y-edge[1].y) pt.y then pt!=vert0 norm(pt-isect) < eps ? undef : // if pt touches the middle of an outer edge -> error let( // the edge [vert0, vert1] necessarily satisfies vert0.y > vert1.y // indices of candidates to an outer bridge point cand = (vert0.x > pt.x) ? [ proj[0], // select reflex vertices inside of the triangle [pt, vert0, isect] for(i=idx(outer)) if( _tri_class(select(outer,i-1,i+1),eps) <= 0 && _pt_in_tri(outer[i], [pt, vert0, isect], eps)>=0 ) i ] : [ (proj[0]+1)%l, // select reflex vertices inside of the triangle [pt, isect, vert1] for(i=idx(outer)) if( _tri_class(select(outer,i-1,i+1),eps) <= 0 && _pt_in_tri(outer[i], [pt, isect, vert1], eps)>=0 ) i ], // choose the candidate outer[i] such that the line [pt, outer[i]] has minimum slope // among those with minimum slope choose the nearest to pt slopes = [for(i=cand) 1-abs(outer[i].x-pt.x)/norm(outer[i]-pt) ], min_slp = min(slopes), cand2 = [for(i=idx(cand)) if(slopes[i]<=min_slp+eps) cand[i] ], nearest = min_index([for(i=cand2) norm(pt-outer[i]) ]) ) cand2[nearest]; // Function: vnf_from_region() // Usage: // vnf = vnf_from_region(region, [transform], [reverse]); // Description: // Given a (two-dimensional) region, applies the given transformation matrix to it and makes a (three-dimensional) triangulated VNF of // faces for that region, reversed if desired. // Arguments: // region = The region to conver to a vnf. // transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied. // reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false // Example(3D): // region = [square([20,10],center=true), // right(5,square(4,center=true)), // left(5,square(6,center=true))]; // vnf = vnf_from_region(region); // color("gray")down(.125) // linear_extrude(height=.125)region(region); // vnf_wireframe(vnf,width=.25); function vnf_from_region(region, transform, reverse=false) = let ( regions = region_parts(force_region(region)), vnfs = [ for (rgn = regions) let( cleaved = path3d(_cleave_connected_region(rgn)) ) assert( cleaved, "The region is invalid") let( face = is_undef(transform)? cleaved : apply(transform,cleaved), faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i] ) [face, [faceidxs]] ], outvnf = vnf_join(vnfs) ) vnf_triangulate(outvnf); // Section: VNF Testing and Access // Function: is_vnf() // Usage: // bool = is_vnf(x); // Description: // Returns true if the given value looks like a VNF structure. function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || (len(x[0])>=3 && is_vector(x[0][0],3))) && (x[1]==[] || is_vector(x[1][0])); // Function: is_vnf_list() // Description: Returns true if the given value looks passingly like a list of VNF structures. function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]); // Function: vnf_vertices() // Description: Given a VNF structure, returns the list of vertex points. function vnf_vertices(vnf) = vnf[0]; // Function: vnf_faces() // Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list. function vnf_faces(vnf) = vnf[1]; // Section: Altering the VNF Internals // Function: vnf_reverse_faces() // Usage: // rvnf = vnf_reverse_faces(vnf); // Description: // Reverses the orientation of all the faces in the given VNF. function vnf_reverse_faces(vnf) = [vnf[0], [for (face=vnf[1]) reverse(face)]]; // Function: vnf_quantize() // Usage: // vnf2 = vnf_quantize(vnf,[q]); // Description: // Quantizes the vertex coordinates of the VNF to the given quanta `q`. // Arguments: // vnf = The VNF to quantize. // q = The quanta to quantize the VNF coordinates to. function vnf_quantize(vnf,q=pow(2,-12)) = [[for (pt = vnf[0]) quant(pt,q)], vnf[1]]; // Function: vnf_merge_points() // Usage: // new_vnf = vnf_merge_points(vnf, [eps]); // Description: // Given a VNF, consolidates all duplicate vertices with a tolerance `eps`, relabeling the faces as necessary, // and eliminating any face with fewer than 3 vertices. Unreferenced vertices of the input VNF are not dropped. // To remove such vertices uses {{vnf_drop_unused_points()}}. // Arguments: // vnf = a VNF to consolidate // eps = the tolerance in finding duplicates. Default: EPSILON function vnf_merge_points(vnf,eps=EPSILON) = let( verts = vnf[0], dedup = vector_search(verts,eps,verts), // collect vertex duplicates map = [for(i=idx(verts)) min(dedup[i]) ], // remap duplic vertices offset = cumsum([for(i=idx(verts)) map[i]==i ? 0 : 1 ]), // remaping face vertex offsets map2 = list(idx(verts))-offset, // map old vertex indices to new indices nverts = [for(i=idx(verts)) if(map[i]==i) verts[i] ], // this doesn't eliminate unreferenced vertices nfaces = [ for(face=vnf[1]) let( nface = [ for(vi=face) map2[map[vi]] ], dface = [for (i=idx(nface)) if( nface[i]!=nface[(i+1)%len(nface)]) nface[i] ] ) if(len(dface) >= 3) dface ] ) [nverts, nfaces]; // Function: vnf_drop_unused_points() // Usage: // clean_vnf=vnf_drop_unused_points(vnf); // Description: // Remove all unreferenced vertices from a VNF. Note that in most // cases unreferenced vertices cause no harm, and this function may // be slow on large VNFs. function vnf_drop_unused_points(vnf) = let( flat = flatten(vnf[1]), ind = _link_indicator(flat,0,len(vnf[0])-1), verts = [for(i=idx(vnf[0])) if(ind[i]==1) vnf[0][i] ], map = cumsum(ind) ) [ verts, [for(face=vnf[1]) [for(v=face) map[v]-1 ] ] ]; function _link_indicator(l,imin,imax) = len(l) == 0 ? repeat(imax-imin+1,0) : imax-imin<100 || len(l)<400 ? [for(si=search(list([imin:1:imax]),l,1)) si!=[] ? 1: 0 ] : let( pivot = floor((imax+imin)/2), lesser = [ for(li=l) if( li< pivot) li ], greater = [ for(li=l) if( li> pivot) li ] ) concat( _link_indicator(lesser ,imin,pivot-1), search(pivot,l,1) ? 1 : 0 , _link_indicator(greater,pivot+1,imax) ) ; // Function: vnf_triangulate() // Usage: // vnf2 = vnf_triangulate(vnf); // Description: // Triangulates faces in the VNF that have more than 3 vertices. // Arguments: // vnf = vnf to triangulate // Example(3D): // include // vnf = zrot(33,regular_polyhedron_info("vnf", "dodecahedron", side=12)); // vnf_polyhedron(vnf); // triangulated = vnf_triangulate(vnf); // color("red")vnf_wireframe(triangulated,width=.3); function vnf_triangulate(vnf) = let( verts = vnf[0], faces = [for (face=vnf[1]) each (len(face)==3 ? [face] : let( tris = polygon_triangulate(verts, face) ) assert( tris!=undef, "Some `vnf` face cannot be triangulated.") tris ) ] ) [verts, faces]; // Function: vnf_slice() // Usage: // sliced = vnf_slice(vnf, dir, cuts); // Description: // Slice the faces of a VNF along a specified axis direction at a given list // of cut points. The cut points can appear in any order. You can use this to refine the faces of a VNF before applying // a nonlinear transformation to its vertex set. // Arguments: // vnf = vnf to slice // dir = normal direction to the slices, either "X", "Y" or "Z" // cuts = X, Y or Z values where cuts occur // Example(3D): // include // vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12); // vnf_polyhedron(vnf); // sliced = vnf_slice(vnf, "X", [-6,-1,10]); // color("red")vnf_wireframe(sliced,width=.3); function vnf_slice(vnf,dir,cuts) = let( vert = vnf[0], faces = [for(face=vnf[1]) select(vert,face)], poly_list = _slice_3dpolygons(faces, dir, cuts) ) vnf_merge_points(vnf_from_polygons(poly_list)); function _split_polygon_at_x(poly, x) = let( xs = column(poly,0) ) (min(xs) >= x || max(xs) <= x)? [poly] : let( poly2 = [ for (p = pair(poly,true)) each [ p[0], if( (p[0].x < x && p[1].x > x) || (p[1].x < x && p[0].x > x) ) let( u = (x - p[0].x) / (p[1].x - p[0].x) ) [ x, // Important for later exact match tests u*(p[1].y-p[0].y)+p[0].y ] ] ], out1 = [for (p = poly2) if(p.x <= x) p], out2 = [for (p = poly2) if(p.x >= x) p], out3 = [ if (len(out1)>=3) each split_path_at_self_crossings(out1), if (len(out2)>=3) each split_path_at_self_crossings(out2), ], out = [for (p=out3) if (len(p) > 2) cleanup_path(p)] ) out; function _split_2dpolygons_at_each_x(polys, xs, _i=0) = _i>=len(xs)? polys : _split_2dpolygons_at_each_x( [ for (poly = polys) each _split_polygon_at_x(poly, xs[_i]) ], xs, _i=_i+1 ); /// Internal Function: _slice_3dpolygons() /// Usage: /// splitpolys = _slice_3dpolygons(polys, dir, cuts); /// Topics: Geometry, Polygons, Intersections /// Description: /// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross /// X/Y/Z at any value given in cuts. /// Arguments: /// polys = A list of 3D polygons to split. /// dir_ind = slice direction, 0=X, 1=Y, or 2=Z /// cuts = A list of scalar values for locating the cuts function _slice_3dpolygons(polys, dir, cuts) = assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.") assert( is_vector(cuts), "The split list must be a vector.") assert( in_list(dir, ["X", "Y", "Z"])) let( I = ident(3), dir_ind = ord(dir)-ord("X") ) flatten([for (poly = polys) let( plane = plane_from_polygon(poly) ) assert(plane,"Found non-coplanar face.") let( normal = point3d(plane), pnormal = normal - (normal*I[dir_ind])*I[dir_ind] ) approx(pnormal,[0,0,0]) ? [poly] : let ( pind = max_index(v_abs(pnormal)), // project along this direction otherind = 3-pind-dir_ind, // keep dir_ind and this direction keep = [I[dir_ind], I[otherind]], // dir ind becomes the x dir poly2d = poly*transpose(keep), // project to 2d, putting selected direction in the X position poly_list = [for(p=_split_2dpolygons_at_each_x([poly2d], cuts)) let( a = p*keep, // unproject, but pind dimension data is missing ofs = outer_product((repeat(plane[3], len(a))-a*normal)/plane[pind],I[pind]) ) a+ofs] // ofs computes the missing pind dimension data and adds it back in ) poly_list ]); // Section: Turning a VNF into geometry // Module: vnf_polyhedron() // Usage: // vnf_polyhedron(vnf); // vnf_polyhedron([VNF, VNF, VNF, ...]); // Description: // Given a VNF structure, or a list of VNF structures, creates a polyhedron from them. // Arguments: // vnf = A VNF structure, or list of VNF structures. // convexity = Max number of times a line could intersect a wall of the shape. // extent = If true, calculate anchors by extents, rather than intersection. Default: true. // cp = Centerpoint for determining intersection anchors or centering the shape. Determintes the base of the anchor vector. Can be "centroid", "mean", "box" or a 3D point. Default: "centroid" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `"origin"` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // atype = Select "hull" or "intersect" anchor type. Default: "hull" module vnf_polyhedron(vnf, convexity=2, extent=true, cp="centroid", anchor="origin", spin=0, orient=UP, atype="hull") { vnf = is_vnf_list(vnf)? vnf_join(vnf) : vnf; assert(in_list(atype, _ANCHOR_TYPES), "Anchor type must be \"hull\" or \"intersect\""); attachable(anchor,spin,orient, vnf=vnf, extent=atype=="hull", cp=cp) { polyhedron(vnf[0], vnf[1], convexity=convexity); children(); } } // Module: vnf_wireframe() // Usage: // vnf_wireframe(vnf, [width]); // Description: // Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for // each edge and a sphere at each vertex. The width parameter specifies the width of the sticks // that form the wire frame and the diameter of the balls. // Arguments: // vnf = A vnf structure // width = width of the cylinders forming the wire frame. Default: 1 // Example: // $fn=32; // ball = sphere(r=20, $fn=6); // vnf_wireframe(ball,width=1); // Example: // include // $fn=32; // cube_oct = regular_polyhedron_info("vnf", // name="cuboctahedron", or=20); // vnf_wireframe(cube_oct); // Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. // include // $fn=8; // octahedron = regular_polyhedron_info("vnf", // name="octahedron", or=20); // vnf_wireframe(octahedron,width=5); module vnf_wireframe(vnf, width=1) { vertex = vnf[0]; edges = unique([for (face=vnf[1], i=idx(face)) sort([face[i], select(face,i+1)]) ]); for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(d=width); // Identify vertices actually used and draw them vertused = search(count(len(vertex)), flatten(edges), 1); for(i=idx(vertex)) if(vertused[i]!=[]) move(vertex[i]) sphere(d=width); } // Section: Operations on VNFs // Function: vnf_volume() // Usage: // vol = vnf_volume(vnf); // Description: // Returns the volume enclosed by the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and // no holes; otherwise the results are undefined. Returns a positive volume if face direction is clockwise and a negative volume // if face direction is counter-clockwise. // Divide the polyhedron into tetrahedra with the origin as one vertex and sum up the signed volume. function vnf_volume(vnf) = let(verts = vnf[0]) sum([ for(face=vnf[1], j=[1:1:len(face)-2]) cross(verts[face[j+1]], verts[face[j]]) * verts[face[0]] ])/6; // Function: vnf_area() // Usage: // area = vnf_area(vnf); // Description: // Returns the surface area in any VNF by adding up the area of all its faces. The VNF need not be a manifold. function vnf_area(vnf) = let(verts=vnf[0]) sum([for(face=vnf[1]) polygon_area(select(verts,face))]); /// Internal Function: _vnf_centroid() /// Usage: /// vol = _vnf_centroid(vnf); /// Description: /// Returns the centroid of the given manifold VNF. The VNF must describe a valid polyhedron with consistent face direction and /// no holes; otherwise the results are undefined. /// Divide the solid up into tetrahedra with the origin as one vertex. /// The centroid of a tetrahedron is the average of its vertices. /// The centroid of the total is the volume weighted average. function _vnf_centroid(vnf,eps=EPSILON) = assert(is_vnf(vnf) && len(vnf[0])!=0 && len(vnf[1])!=0,"Invalid or empty VNF given to centroid") let( verts = vnf[0], pos = sum([ for(face=vnf[1], j=[1:1:len(face)-2]) let( v0 = verts[face[0]], v1 = verts[face[j]], v2 = verts[face[j+1]], vol = cross(v2,v1)*v0 ) [ vol, (v0+v1+v2)*vol ] ]) ) assert(!approx(pos[0],0, eps), "The vnf has self-intersections.") pos[1]/pos[0]/4; // Function: vnf_halfspace() // Usage: // newvnf = vnf_halfspace(plane, vnf, [closed]); // Description: // Returns the intersection of the vnf with a half space. The half space is defined by // plane = [A,B,C,D], taking the side where the normal [A,B,C] points: Ax+By+Cz≥D. // If closed is set to false then the cut face is not included in the vnf. This could // allow further extension of the vnf by merging with other vnfs. // Arguments: // plane = plane defining the boundary of the half space // vnf = vnf to cut // closed = if false do not return include cut face(s). Default: true // Example(3D): // vnf = cube(10,center=true); // cutvnf = vnf_halfspace([-1,1,-1,0], vnf); // vnf_polyhedron(cutvnf); // Example(3D): Cut face has 2 components // vnf = path_sweep(circle(r=4, $fn=16), // circle(r=20, $fn=64),closed=true); // cutvnf = vnf_halfspace([-1,1,-4,0], vnf); // vnf_polyhedron(cutvnf); // Example(3D): Cut face is not simply connected // vnf = path_sweep(circle(r=4, $fn=16), // circle(r=20, $fn=64),closed=true); // cutvnf = vnf_halfspace([0,0.7,-4,0], vnf); // vnf_polyhedron(cutvnf); // Example(3D): Cut object has multiple components // function knot(a,b,t) = // rolling knot // [ a * cos (3 * t) / (1 - b* sin (2 *t)), // a * sin( 3 * t) / (1 - b* sin (2 *t)), // 1.8 * b * cos (2 * t) /(1 - b* sin (2 *t))]; // a = 0.8; b = sqrt (1 - a * a); // ksteps = 400; // knot_path = [for (i=[0:ksteps-1]) 50 * knot(a,b,(i/ksteps)*360)]; // ushape = [[-10, 0],[-10, 10],[ -7, 10],[ -7, 2],[ 7, 2],[ 7, 7],[ 10, 7],[ 10, 0]]; // knot=path_sweep(ushape, knot_path, closed=true, method="incremental"); // cut_knot = vnf_halfspace([1,0,0,0], knot); // vnf_polyhedron(cut_knot); function vnf_halfspace(plane, vnf, closed=true) = assert(_valid_plane(plane), "Invalid plane") assert(is_vnf(vnf), "Invalid vnf") let( inside = [for(x=vnf[0]) plane*[each x,-1] >= 0 ? 1 : 0], vertexmap = [0,each cumsum(inside)], faces_edges_vertices = _vnfcut(plane, vnf[0],vertexmap,inside, vnf[1], last(vertexmap)), newvert = concat(bselect(vnf[0],inside), faces_edges_vertices[2]) ) closed==false ? [newvert, faces_edges_vertices[0]] : let( allpaths = _assemble_paths(newvert, faces_edges_vertices[1]), newpaths = [for(p=allpaths) if (len(p)>=3) p else assert(approx(p[0],p[1]),"Orphan edge found when assembling cut edges.") ] ) len(newpaths)<=1 ? [newvert, concat(faces_edges_vertices[0], newpaths)] : let( M = project_plane(plane), faceregion = [for(path=newpaths) path2d(apply(M,select(newvert,path)))], facevnf = vnf_from_region(faceregion,transform=rot_inverse(M),reverse=true) ) vnf_join([[newvert, faces_edges_vertices[0]], facevnf]); function _assemble_paths(vertices, edges, paths=[],i=0) = i==len(edges) ? paths : norm(vertices[edges[i][0]]-vertices[edges[i][1]])3 ? _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount+1, concat(newfaces, [list_head(newface)]), newedges,concat(newvertices,[newvert[0]]),i+1) : _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount,newfaces, newedges, newvert, i+1); function _triangulate_planar_convex_polygons(polys) = polys==[]? [] : let( tris = [for (poly=polys) if (len(poly)==3) poly], bigs = [for (poly=polys) if (len(poly)>3) poly], newtris = [for (poly=bigs) select(poly,-2,0)], newbigs = [for (poly=bigs) select(poly,0,-2)], newtris2 = _triangulate_planar_convex_polygons(newbigs), outtris = concat(tris, newtris, newtris2) ) outtris; //** // this function may produce degenerate triangles: // _triangulate_planar_convex_polygons([ [for(i=[0:1]) [i,i], // [1,-1], [-1,-1], // for(i=[-1:0]) [i,i] ] ] ) // == [[[-1, -1], [ 0, 0], [0, 0]] // [[-1, -1], [-1, -1], [0, 0]] // [[ 1, -1], [-1, -1], [0, 0]] // [[ 0, 0], [ 1, 1], [1, -1]] ] // // Function: vnf_bend() // Usage: // bentvnf = vnf_bend(vnf,r,d,[axis]); // Description: // Bend a VNF around the X, Y or Z axis, splitting up faces as necessary. Returns the bent // VNF. For bending around the Z axis the input VNF must not cross the Y=0 plane. For bending // around the X or Y axes the VNF must not cross the Z=0 plane. Note that if you wrap a VNF all the way around // it may intersect itself, which produces an invalid polyhedron. It is your responsibility to // avoid this situation. The 1:1 // radius is where the curved length of the bent VNF matches the length of the original VNF. If the // `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are // not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the // original VNF from the Z=0 plane. You can adjust the granularity of the bend using the standard // `$fa`, `$fs`, and `$fn` variables. // Arguments: // vnf = The original VNF to bend. // r = If given, the radius where the size of the original shape is the same as in the original. // --- // d = If given, the diameter where the size of the original shape is the same as in the original. // axis = The axis to wrap around. "X", "Y", or "Z". Default: "Z" // Example(3D): // vnf0 = cube([100,40,10], center=true); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): // vnf0 = linear_sweep(star(n=5,step=2,d=100), height=10); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): // rgn = union(rect([100,20],center=true), // rect([20,100],center=true)); // vnf0 = linear_sweep(zrot(45,p=rgn), height=10); // vnf1 = up(50, p=vnf0); // vnf2 = down(50, p=vnf0); // bent1 = vnf_bend(vnf1, axis="Y"); // bent2 = vnf_bend(vnf2, axis="Y"); // vnf_polyhedron([bent1,bent2]); // Example(3D): Bending Around X Axis. // rgnr = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // vnf0 = xrot(00,p=linear_sweep(rgnr, height=10)); // vnf1 = up(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="X"); // vnf_polyhedron([bent1]); // Example(3D): Bending Around Y Axis. // rgn = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // rgnr = zrot(-90, p=rgn); // vnf0 = xrot(00,p=linear_sweep(rgnr, height=10)); // vnf1 = up(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="Y"); // vnf_polyhedron([bent1]); // Example(3D): Bending Around Z Axis. // rgn = union( // rect([20,100],center=true), // back(50, p=trapezoid(w1=40, w2=0, h=20, anchor=FRONT)) // ); // rgnr = zrot(90, p=rgn); // vnf0 = xrot(90,p=linear_sweep(rgnr, height=10)); // vnf1 = fwd(50, p=vnf0); // #vnf_polyhedron(vnf1); // bent1 = vnf_bend(vnf1, axis="Z"); // vnf_polyhedron([bent1]); // Example(3D): Bending more than once around the cylinder // $fn=32; // vnf = apply(fwd(5)*yrot(30),cube([100,2,5],center=true)); // bent = vnf_bend(vnf, axis="Z"); // vnf_polyhedron(bent); function vnf_bend(vnf,r,d,axis="Z") = let( chk_axis = assert(in_list(axis,["X","Y","Z"])), verts = vnf[0], bounds = pointlist_bounds(verts), bmin = bounds[0], bmax = bounds[1], dflt = axis=="Z"? max(abs(bmax.y), abs(bmin.y)) : max(abs(bmax.z), abs(bmin.z)), r = get_radius(r=r,d=d,dflt=dflt), extent = axis=="X" ? [bmin.y, bmax.y] : [bmin.x, bmax.x] ) let( span_chk = axis=="Z"? assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") : assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."), steps = ceil(segs(r) * (extent[1]-extent[0])/(2*PI*r)), step = (extent[1]-extent[0]) / steps, bend_at = [for(i = [1:1:steps-1]) i*step+extent[0]], slicedir = axis=="X"? "Y" : "X", // slice in y dir for X axis case, and x dir otherwise sliced = vnf_slice(vnf, slicedir, bend_at), coord = axis=="X" ? [0,sign(bmax.z),0] : axis=="Y" ? [sign(bmax.z),0,0] : [sign(bmax.y),0,0], new_vert = [for(p=sliced[0]) let(a=coord*p*180/(PI*r)) axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] : axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] : [p.y*sin(a), p.y*cos(a), p.z]] ) [new_vert,sliced[1]]; // Section: Debugging Polyhedrons /// Internal Module: _show_vertices() /// Usage: /// _show_vertices(vertices, [size]) /// Description: /// Draws all the vertices in an array, at their 3D position, numbered by their /// position in the vertex array. Also draws any children of this module with /// transparency. /// Arguments: /// vertices = Array of point vertices. /// size = The size of the text used to label the vertices. Default: 1 /// Example: /// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; /// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; /// _show_vertices(vertices=verts, size=2) { /// polyhedron(points=verts, faces=faces); /// } module _show_vertices(vertices, size=1) { color("blue") { dups = vector_search(vertices, EPSILON, vertices); for (ind = dups){ numstr = str_join([for(i=ind) str(i)],","); v = vertices[ind[0]]; translate(v) { rot($vpr) back(size/8){ linear_extrude(height=size/10, center=true, convexity=10) { text(text=numstr, size=size, halign="center"); } } sphere(size/10); } } } } /// Internal Module: _show_faces() /// Usage: /// _show_faces(vertices, faces, [size=]); /// Description: /// Draws all the vertices at their 3D position, numbered in blue by their /// position in the vertex array. Each face will have their face number drawn /// in red, aligned with the center of face. All children of this module are drawn /// with transparency. /// Arguments: /// vertices = Array of point vertices. /// faces = Array of faces by vertex numbers. /// size = The size of the text used to label the faces and vertices. Default: 1 /// Example(EdgesMed): /// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; /// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; /// _show_faces(vertices=verts, faces=faces, size=2) { /// polyhedron(points=verts, faces=faces); /// } module _show_faces(vertices, faces, size=1) { vlen = len(vertices); color("red") { for (i = [0:1:len(faces)-1]) { face = faces[i]; if (face[0] < 0 || face[1] < 0 || face[2] < 0 || face[0] >= vlen || face[1] >= vlen || face[2] >= vlen) { echo("BAD FACE: ", vlen=vlen, face=face); } else { verts = select(vertices,face); c = mean(verts); v0 = verts[0]; v1 = verts[1]; v2 = verts[2]; dv0 = unit(v1 - v0); dv1 = unit(v2 - v0); nrm0 = cross(dv0, dv1); nrm1 = UP; axis = vector_axis(nrm0, nrm1); ang = vector_angle(nrm0, nrm1); theta = atan2(nrm0[1], nrm0[0]); translate(c) { rotate(a=180-ang, v=axis) { zrot(theta-90) linear_extrude(height=size/10, center=true, convexity=10) { union() { text(text=str(i), size=size, halign="center"); text(text=str("_"), size=size, halign="center"); } } } } } } } } // Module: vnf_debug() // Usage: // vnf_debug(vnfs, [faces], [vertices], [opacity], [size], [convexity]); // Description: // A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces. // Draws all the vertices at their 3D position, numbered in blue by their // position in the vertex array. Each face will have its face number drawn // in red, aligned with the center of face. All given faces are drawn with // transparency. All children of this module are drawn with transparency. // Works best with Thrown-Together preview mode, to see reversed faces. // You can set opacity to 0 if you want to supress the display of the polyhedron faces. // . // The vertex numbers are shown rotated to face you. As you rotate your polyhedron you // can rerun the preview to display them oriented for viewing from a different viewpoint. // Topics: Polyhedra, Debugging // Arguments: // vnf = vnf to display // --- // faces = if true display face numbers. Default: true // vertices = if true display vertex numbers. Default: true // opacity = Opacity of the polyhedron faces. Default: 0.5 // convexity = The max number of walls a ray can pass through the given polygon paths. // size = The size of the text used to label the faces and vertices. Default: 1 // Example(EdgesMed): // verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]]; // faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]]; // vnf_debug([verts,faces], size=2); module vnf_debug(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=6 ) { no_children($children); if (faces) _show_faces(vertices=vnf[0], faces=vnf[1], size=size); if (vertices) _show_vertices(vertices=vnf[0], size=size); color([0.2, 1.0, 0, opacity]) vnf_polyhedron(vnf,convexity=convexity); } // Function&Module: vnf_validate() // Usage: As Function // fails = vnf_validate(vnf); // Usage: As Module // vnf_validate(vnf, [size]); // Description: // When called as a function, returns a list of non-manifold errors with the given VNF. // Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`. // When called as a module, echoes the non-manifold errors to the console, and color hilites the // bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF. // . // Currently checks for these problems: // . // Type | Color | Code | Message // ------- | -------- | ------------ | --------------------------------- // WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL. // WARNING | Brown | NULL_FACE | Face has zero area. // ERROR | Cyan | NONPLANAR | Face vertices are not coplanar. // ERROR | Brown | DUP_FACE | Multiple instances of the same face. // ERROR | Orange | MULTCONN | Multiply Connected Geometry. Too many faces attached at Edge. // ERROR | Violet | REVERSAL | Faces reverse across edge. // ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face. // ERROR | Blue | FACE_ISECT | Faces intersect. // ERROR | Magenta | HOLE_EDGE | Edge bounds Hole. // . // Still to implement: // - Overlapping coplanar faces. // Arguments: // vnf = The VNF to validate. // size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1 // check_isects = If true, performs slow checks for intersecting faces. Default: false // Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices. // vnf = skin([ // path3d(regular_ngon(n=3, d=100),0), // path3d(regular_ngon(n=5, d=100),100) // ], slices=0, caps=true, method="tangent"); // vnf_validate(vnf); // Example: NONPLANAR Errors; Face Vertices are Not Coplanar // a = [ 0, 0,-50]; // b = [-50,-50, 50]; // c = [-50, 50, 50]; // d = [ 50, 50, 60]; // e = [ 50,-50, 50]; // vnf = vnf_from_polygons([ // [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e] // ]); // vnf_validate(vnf); // Example: MULTCONN Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders. // vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50)); // vnf_validate(vnf); // Example: REVERSAL Errors; Faces Reversed Across Edge // vnf1 = skin([ // path3d(square(100,center=true),0), // path3d(square(100,center=true),100), // ], slices=0, caps=false); // vnf = vnf_join([vnf1, vnf_from_polygons([ // [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]], // [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]], // [[-50,-50,100], [-50, 50,100], [ 50, 50,100]], // [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]], // ])]); // vnf_validate(vnf); // Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face. // vnf1 = skin([ // path3d(square(100,center=true),0), // path3d(square(100,center=true),100), // ], slices=0, caps=false); // vnf = vnf_join([vnf1, vnf_from_polygons([ // [[-50,-50,0], [50,50,0], [-50,50,0]], // [[-50,-50,0], [50,-50,0], [50,50,0]], // [[-50,-50,100], [-50,50,100], [0,50,100]], // [[-50,-50,100], [0,50,100], [0,-50,100]], // [[0,-50,100], [0,50,100], [50,50,100]], // [[0,-50,100], [50,50,100], [50,-50,100]], // ])]); // vnf_validate(vnf); // Example: FACE_ISECT Errors; Faces Intersect // vnf = vnf_join([ // vnf_triangulate(linear_sweep(square(100,center=true), height=100)), // move([75,35,30],p=vnf_triangulate(linear_sweep(square(100,center=true), height=100))) // ]); // vnf_validate(vnf,size=2,check_isects=true); // Example: HOLE_EDGE Errors; Edges Adjacent to Holes. // vnf = skin([ // path3d(regular_ngon(n=4, d=100),0), // path3d(regular_ngon(n=5, d=100),100) // ], slices=0, caps=false); // vnf_validate(vnf,size=2); function vnf_validate(vnf, show_warns=true, check_isects=false) = assert(is_vnf(vnf), "Invalid VNF") let( vnf = vnf_merge_points(vnf), varr = vnf[0], faces = vnf[1], lvarr = len(varr), edges = sort([ for (face=faces, edge=pair(face,true)) edge[0]=3) face ], face_areas = [ for (face = faces) len(face) < 3? 0 : polygon_area([for (k=face) varr[k]]) ], edgecnts = unique_count(edges), uniq_edges = edgecnts[0], issues = [] ) let( big_faces = !show_warns? [] : [ for (face = faces) if (len(face) > 3) _vnf_validate_err("BIG_FACE", [for (i=face) varr[i]]) ], null_faces = !show_warns? [] : [ for (i = idx(faces)) let( face = faces[i], area = face_areas[i], faceverts = [for (k=face) varr[k]] ) if (is_num(area) && abs(area) < EPSILON) _vnf_validate_err("NULL_FACE", faceverts) ], issues = concat(big_faces, null_faces) ) let( bad_indices = [ for (face = faces, idx = face) if (idx < 0 || idx >= lvarr) _vnf_validate_err("BAD_INDEX", [idx]) ], issues = concat(issues, bad_indices) ) bad_indices? issues : let( repeated_faces = [ for (i=idx(dfaces), j=idx(dfaces)) if (i!=j) let( face1 = dfaces[i], face2 = dfaces[j] ) if (min(face1) == min(face2)) let( min1 = min_index(face1), min2 = min_index(face2) ) if (min1 == min2) let( sface1 = list_rotate(face1,min1), sface2 = list_rotate(face2,min2) ) if (sface1 == sface2) _vnf_validate_err("DUP_FACE", [for (i=sface1) varr[i]]) ], issues = concat(issues, repeated_faces) ) repeated_faces? issues : let( multconn_edges = unique([ for (i = idx(uniq_edges)) if (edgecnts[1][i]>2) _vnf_validate_err("MULTCONN", [for (i=uniq_edges[i]) varr[i]]) ]), issues = concat(issues, multconn_edges) ) multconn_edges? issues : let( reversals = unique([ for(i = idx(dfaces), j = idx(dfaces)) if(i != j) for(edge1 = pair(faces[i],true)) for(edge2 = pair(faces[j],true)) if(edge1 == edge2) // Valid adjacent faces will never have the same vertex ordering. if(_edge_not_reported(edge1, varr, multconn_edges)) _vnf_validate_err("REVERSAL", [for (i=edge1) varr[i]]) ]), issues = concat(issues, reversals) ) reversals? issues : let( t_juncts = unique([ for (v=idx(varr), edge=uniq_edges) let( ia = edge[0], ib = v, ic = edge[1] ) if (ia!=ib && ib!=ic && ia!=ic) let( a = varr[ia], b = varr[ib], c = varr[ic] ) if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let( pt = line_closest_point([a,c],b,SEGMENT) ) if (approx(pt,b)) _vnf_validate_err("T_JUNCTION", [b]) ]), issues = concat(issues, t_juncts) ) t_juncts? issues : let( isect_faces = !check_isects? [] : unique([ for (i = [0:1:len(faces)-2]) let( f1 = faces[i], poly1 = select(varr, faces[i]), plane1 = plane3pt(poly1[0], poly1[1], poly1[2]), normal1 = [plane1[0], plane1[1], plane1[2]] ) for (j = [i+1:1:len(faces)-1]) let( f2 = faces[j], poly2 = select(varr, f2), val = poly2 * normal1 ) if( min(val)<=plane1[3] && max(val)>=plane1[3] ) let( plane2 = plane_from_polygon(poly2), normal2 = [plane2[0], plane2[1], plane2[2]], val = poly1 * normal2 ) if( min(val)<=plane2[3] && max(val)>=plane2[3] ) let( shared_edges = [ for (edge1 = pair(f1, true), edge2 = pair(f2, true)) if (edge1 == [edge2[1], edge2[0]]) 1 ] ) if (!shared_edges) let( line = plane_intersection(plane1, plane2) ) if (!is_undef(line)) let( isects = polygon_line_intersection(poly1, line) ) if (!is_undef(isects)) for (isect = isects) if (len(isect) > 1) let( isects2 = polygon_line_intersection(poly2, isect, bounded=true) ) if (!is_undef(isects2)) for (seg = isects2) if (seg[0] != seg[1]) _vnf_validate_err("FACE_ISECT", seg) ]), issues = concat(issues, isect_faces) ) isect_faces? issues : let( hole_edges = unique([ for (i=idx(uniq_edges)) if (edgecnts[1][i]<2) if (_pts_not_reported(uniq_edges[i], varr, t_juncts)) if (_pts_not_reported(uniq_edges[i], varr, isect_faces)) _vnf_validate_err("HOLE_EDGE", [for (i=uniq_edges[i]) varr[i]]) ]), issues = concat(issues, hole_edges) ) hole_edges? issues : let( nonplanars = unique([ for (i = idx(faces)) let( face = faces[i], area = face_areas[i], faceverts = [for (k=face) varr[k]] ) if (is_num(area) && abs(area) > EPSILON) if (!is_coplanar(faceverts)) _vnf_validate_err("NONPLANAR", faceverts) ]), issues = concat(issues, nonplanars) ) issues; _vnf_validate_errs = [ ["BIG_FACE", "WARNING", "cyan", "Face has more than 3 vertices, and may confuse CGAL"], ["NULL_FACE", "WARNING", "blue", "Face has zero area."], ["BAD_INDEX", "ERROR", "cyan", "Invalid face vertex index."], ["NONPLANAR", "ERROR", "yellow", "Face vertices are not coplanar"], ["DUP_FACE", "ERROR", "brown", "Multiple instances of the same face."], ["MULTCONN", "ERROR", "orange", "Multiply Connected Geometry. Too many faces attached at Edge"], ["REVERSAL", "ERROR", "violet", "Faces Reverse Across Edge"], ["T_JUNCTION", "ERROR", "magenta", "Vertex is mid-edge on another Face"], ["FACE_ISECT", "ERROR", "brown", "Faces intersect"], ["HOLE_EDGE", "ERROR", "red", "Edge bounds Hole"] ]; function _vnf_validate_err(name, extra) = let( info = [for (x = _vnf_validate_errs) if (x[0] == name) x][0] ) concat(info, [extra]); function _pts_not_reported(pts, varr, reports) = [ for (i = pts, report = reports, pt = report[3]) if (varr[i] == pt) 1 ] == []; function _edge_not_reported(edge, varr, reports) = let( edge = sort([for (i=edge) varr[i]]) ) [ for (report = reports) let( pts = sort(report[3]) ) if (len(pts)==2 && edge == pts) 1 ] == []; module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) { faults = vnf_validate( vnf, show_warns=show_warns, check_isects=check_isects ); for (fault = faults) { err = fault[0]; typ = fault[1]; clr = fault[2]; msg = fault[3]; pts = fault[4]; echo(str(typ, " ", err, " (", clr ,"): ", msg, " at ", pts)); color(clr) { if (is_vector(pts[0])) { if (len(pts)==2) { stroke(pts, width=size, closed=true, endcaps="butt", hull=false, $fn=8); } else if (len(pts)>2) { stroke(pts, width=size, closed=true, hull=false, $fn=8); polyhedron(pts,[[for (i=idx(pts)) i]]); } else { move_copies(pts) sphere(d=size*3, $fn=18); } } } } color([0.5,0.5,0.5,0.67]) vnf_polyhedron(vnf); } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap