////////////////////////////////////////////////////////////////////////////////////////////// // LibFile: gears.scad // Spur Gears, Bevel Gears, Racks, Worms and Worm Gears. // Inspired by code by Leemon Baird, 2011, Leemon@Leemon.com // Includes: // include // include // FileGroup: Parts // FileSummary: Gears, racks, worms, and worm gears. ////////////////////////////////////////////////////////////////////////////////////////////// _GEAR_PITCH = 5; _GEAR_HELICAL = 0; _GEAR_THICKNESS = 10; _GEAR_PA = 20; $parent_gear_type = undef; $parent_gear_pitch = undef; $parent_gear_teeth = undef; $parent_gear_pa = undef; $parent_gear_helical = undef; $parent_gear_thickness = undef; $parent_gear_dir = undef; $parent_gear_travel = 0; function _inherit_gear_param(name, val, pval, dflt, invert=false) = is_undef(val) ? is_undef(pval) ? dflt : (invert?-1:1)*pval : is_undef(pval) ? assert(is_finite(val), str("Invalid ",name," value: ",val)) val : (invert?-1:1)*val; function _inherit_gear_pitch(pitch,circ_pitch,diam_pitch,mod) = pitch != undef? echo("WARNING: The use of the argument pitch= in gear code is deprecated. Please use circ_pitch= instead.") assert(is_finite(pitch) && pitch>0) pitch : circ_pitch != undef? assert(is_finite(circ_pitch) && circ_pitch>0) circ_pitch : diam_pitch != undef? assert(is_finite(diam_pitch) && diam_pitch>0) pitch_value(diam_pitch=diam_pitch) : mod != undef? assert(is_finite(mod) && mod>0) pitch_value(mod) : $parent_gear_pitch != undef? $parent_gear_pitch : 5; function _inherit_gear_pa(pressure_angle) = _inherit_gear_param("pressure_angle", pressure_angle, $parent_gear_pa, dflt=20); function _inherit_gear_helical(helical,invert=false) = _inherit_gear_param("helical", helical, $parent_gear_helical, dflt=0, invert=invert); function _inherit_gear_thickness(thickness) = _inherit_gear_param("thickness", thickness, $parent_gear_thickness, dflt=10); // Section: Terminology // The outline of a gear is a smooth circle (the "pitch circle") which has // mountains and valleys added so it is toothed. There is an inner // circle (the "root circle") that touches the base of all the teeth, an // outer circle that touches the tips of all the teeth, and the invisible // pitch circle in between them. There is also a "base circle", which can // be smaller than all three of the others, which controls the shape of // the teeth. The side of each tooth lies on the path that the end of a // string would follow if it were wrapped tightly around the base circle, // then slowly unwound. That shape is an "involute", which gives this // type of gear its name. // Section: Gears // Function&Module: spur_gear() // Synopsis: Creates a spur gear, helical gear, or internal ring gear. // SynTags: Geom, VNF // Topics: Gears, Parts // See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: As a Module // spur_gear(circ_pitch, teeth, thickness, [shaft_diam], [hide=], [pressure_angle=], [clearance=], [backlash=], [helical=], [slices=], [internal=], [herringbone=]) [ATTACHMENTS]; // spur_gear(mod=, teeth=, thickness=, [shaft_diam=], ...) [ATTACHMENTS]; // Usage: As a Function // vnf = spur_gear(circ_pitch, teeth, thickness, [shaft_diam=], ...); // vnf = spur_gear(mod=, teeth=, thickness=, [shaft_diam=], ...); // Description: // Creates a involute spur gear, helical gear, or a mask for an internal ring gear. The module `spur_gear()` gives an involute // spur gear, with reasonable defaults for all the parameters. Normally, you should just choose the // first 4 parameters, and let the rest be default values. Spur gears have straight teeth and // mesh together on parallel shafts without creating any axial thrust. The teeth engage suddenly across their // entire width, creating stress and noise. Helical gears have angled teeth and engage more gradually, so they // run more smoothly and quietly, however they do produce thrust along the gear axis. This can be // circumvented using herringbone or double helical gears, which have no axial thrust and also self-align. // Helical gears can mesh along shafts that are not parallel, where the angle between the shafts is // the sum of the helical angles of the two gears. // . // The module `spur_gear()` gives a gear in // the XY plane, centered on the origin, with one tooth centered on the positive Y axis. The most // important function is `mesh_radius()`, which tells how far apart to space gears that are meshing, and // `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch // circle", which is an invisible circle that cuts through the middle of each tooth (though not the // exact center). In order for two gears to mesh, their pitch circles should just touch. So the // distance between their centers should be `mesh_radius()` for one, plus `mesh_radius()` for the // other, which gives the overall meshing distance. In order for two gears to mesh, they must // have the same `pitch` and `pressure_angle` parameters. `pitch` gives the number of millimeters // of arc around the pitch circle covered by one tooth and one space between teeth. The // `pressure_angle` controls how flat or bulged the sides of the teeth are. Common values include // 14.5 degrees and 20 degrees, and occasionally 25. The default here is 20 degrees. // The ratio of `teeth` for two meshing gears gives how many times one will make a full revolution // when the the other makes one full revolution. If the two numbers are coprime (i.e. are not both // divisible by the same number greater than 1), then every tooth on one gear will meet every tooth // on the other, for more even wear. So coprime numbers of teeth are good. // Normally, If the number of teeth is too few, gear tooth shapes may be undercut to allow meshing // with other gears. If this is the case, profile shifting will automatically be applies to enlarge // the teeth, removing the undercut. This may add to the distance needed between gears. // If you with to override this correction, you can use `profile_shift=0`, or set it to a specific // value like 0.5. // Arguments: // circ_pitch = The circular pitch, or distance in mm between teeth around the pitch circle. // teeth = Total number of teeth around the entire perimeter // thickness = Thickness of gear in mm // shaft_diam = Diameter of the hole in the center, in mm. Default: 0 (no shaft hole) // --- // hide = Number of teeth to delete to make this only a fraction of a circle // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. // clearance = Clearance gap at the bottom of the inter-tooth valleys. // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle // helical = Teeth are slanted around the spur gear at this angle away from the gear axis of rotation. // slices = Number of vertical layers to divide gear into. Useful for refining gears with `helical`. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // internal = If true, create a mask for difference()ing from something else. // profile_shift = Profile shift factor x. // herringbone = If true, and helical is set, creates a herringbone gear. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Side Effects: // If internal is true then the default tag is "remove" // Example: Spur Gear // spur_gear(circ_pitch=5, teeth=20, thickness=8, shaft_diam=5); // Example: Metric Gear // spur_gear(mod=2, teeth=20, thickness=8, shaft_diam=5); // Example: Helical Gear // spur_gear( // circ_pitch=5, teeth=20, thickness=10, // shaft_diam=5, helical=-30, slices=12, // $fa=1, $fs=1 // ); // Example: Herringbone Gear // spur_gear( // circ_pitch=5, teeth=20, thickness=10, shaft_diam=5, // helical=30, herringbone=true, slices=5 // ); // Example(Big): Effects of Profile Shifting. // circ_pitch=5; teeth=7; thick=10; shaft=5; strokewidth=0.2; // pr = pitch_radius(circ_pitch, teeth); // left(10) { // profile_shift = 0; // mr = mesh_radius(circ_pitch,teeth,profile_shift=profile_shift); // back(mr) spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=profile_shift); // rack(circ_pitch, teeth=3, thickness=thick, height=5, orient=BACK); // color("black") up(thick/2) linear_extrude(height=0.1) { // back(mr) dashed_stroke(circle(r=pr), width=strokewidth, closed=true); // dashed_stroke([[-7.5,0],[7.5,0]], width=strokewidth); // } // } // right(10) { // spur_gear(circ_pitch, teeth, thick, shaft, profile_shift=0.59); // fwd(pr+0.59*circ_pitch/PI) // rack(circ_pitch, teeth=3, thickness=thick, height=5, orient=BACK); // color("black") up(thick/2) linear_extrude(height=0.1) { // dashed_stroke(circle(r=pr), width=strokewidth, closed=true); // fwd(pr+0.59*circ_pitch/PI) // dashed_stroke([[-7.5,0],[7.5,0]], width=strokewidth); // } // } // Example(Anim,Frames=8,VPT=[0,30,0],VPR=[0,0,0],VPD=300): Assembly of Gears // n1 = 11; //red gear number of teeth // n2 = 20; //green gear // n3 = 5; //blue gear // n4 = 16; //orange gear // n5 = 9; //gray rack // circ_pitch = 9; //all meshing gears need the same `circ_pitch` (and the same `pressure_angle`) // thickness = 6; // hole = 3; // rack_base = 12; // r1 = mesh_radius(circ_pitch,n1); // r2 = mesh_radius(circ_pitch,n2); // r3 = mesh_radius(circ_pitch,n3); // r4 = mesh_radius(circ_pitch,n4); // r5 = mesh_radius(circ_pitch,n5); // a1 = $t * 360 / n1; // a2 = -$t * 360 / n2 + 180/n2; // a3 = -$t * 360 / n3; // a4 = -$t * 360 / n4 - 7.5*180/n4; // color("#f77") zrot(a1) spur_gear(circ_pitch,n1,thickness,hole); // color("#7f7") back(r1+r2) zrot(a2) spur_gear(circ_pitch,n2,thickness,hole); // color("#77f") right(r1+r3) zrot(a3) spur_gear(circ_pitch,n3,thickness,hole); // color("#fc7") left(r1+r4) zrot(a4) spur_gear(circ_pitch,n4,thickness,hole,hide=n4-3); // color("#ccc") fwd(r1) right(circ_pitch*$t) // rack(pitch=circ_pitch,teeth=n5,thickness=thickness,height=rack_base,anchor=CENTER,orient=BACK); // Example: Helical gears meshing with non-parallel shafts // ang1 = 30; // ang2 = 10; // circ_pitch = 5; // n = 20; // r = mesh_radius(circ_pitch,n); // left(r) spur_gear( // circ_pitch, n, thickness=10, // shaft_diam=5, helical=ang1, slices=12, // $fa=1, $fs=1 // ); // right(r) // xrot(ang1+ang2) // zrot(360/n/2-5) spur_gear( // circ_pitch=circ_pitch, teeth=n, thickness=10, // shaft_diam=5, helical=ang2, slices=12, // $fa=1, $fs=1 // ); // Example(Anim,Frames=36,VPT=[0,0,0],VPR=[55,0,25],VPD=375): Planetary Gear Assembly // rteeth=56; pteeth=16; cteeth=24; // circ_pitch=5; thick=10; pa=20; // cr = mesh_radius(circ_pitch,cteeth); // pr = mesh_radius(circ_pitch,pteeth); // ring_gear( // circ_pitch=circ_pitch, // teeth=rteeth, // thickness=thick, // pressure_angle=pa); // for (a=[0:3]) { // zrot($t*90+a*90) back(cr+pr) { // color("green") // spur_gear( // circ_pitch=circ_pitch, // teeth=pteeth, // thickness=thick, // shaft_diam=5, // pressure_angle=pa, // spin=-$t*90*rteeth/pteeth); // } // } // color("orange") // zrot($t*90*rteeth/cteeth+$t*90+180/cteeth) // spur_gear( // circ_pitch=circ_pitch, // teeth=cteeth, // thickness=thick, // shaft_diam=5, // pressure_angle=pa); function spur_gear( circ_pitch, teeth=11, thickness, shaft_diam = 0, hide = 0, pressure_angle, clearance, backlash = 0.0, helical, interior, internal, profile_shift, slices, herringbone=false, diam_pitch, mod, pitch, gear_spin = 0, anchor = CENTER, spin = 0, orient = UP ) = let( dummy = !is_undef(interior) ? echo("In spur_gear(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0, internal = first_defined([internal,interior,false]), circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), helical = _inherit_gear_helical(helical, invert=!internal), thickness = _inherit_gear_thickness(thickness), profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)), pr = pitch_radius(circ_pitch, teeth, helical), circum = 2 * PI * pr, twist = 360*thickness*tan(helical)/circum, slices = default(slices, ceil(twist/360*segs(pr)+1)), rgn = spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, hide = hide, helical = helical, clearance = clearance, backlash = backlash, internal = internal, profile_shift = profile_shift, hub_diam = shaft_diam ), rvnf = herringbone ? zrot(twist/2, p=linear_sweep(rgn, height=thickness, twist=twist, slices=slices, center=true)) : let( wall_vnf = linear_sweep(rgn, height=thickness/2, twist=twist/2, slices=ceil(slices/2), center=false, caps=false), cap_vnf = vnf_from_region(rgn, transform=up(thickness/2)*zrot(twist/2)) ) vnf_join([ wall_vnf, zflip(p=wall_vnf), cap_vnf, zflip(p=cap_vnf), ]), vnf = zrot(gear_spin, p=rvnf) ) reorient(anchor,spin,orient, h=thickness, r=pr, p=vnf); module spur_gear( circ_pitch, teeth=11, thickness, shaft_diam = 0, hide = 0, pressure_angle, clearance, backlash = 0.0, helical, internal, interior, profile_shift, slices, herringbone=false, pitch, diam_pitch, mod, gear_spin = 0, anchor = CENTER, spin = 0, orient = UP ) { dummy = !is_undef(interior) ? echo("In spur_gear(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0; internal = first_defined([internal,interior,false]); circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical, invert=!internal); thickness = _inherit_gear_thickness(thickness); profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)); pr = pitch_radius(circ_pitch, teeth, helical); circum = 2 * PI * pr; twist = 360*thickness*tan(helical)/circum; slices = default(slices, ceil(twist/360*segs(pr)+1)); default_tag("remove", internal) { attachable(anchor,spin,orient, r=pr, l=thickness) { zrot(gear_spin) if (herringbone) { zflip_copy() down(0.01) linear_extrude( height=thickness/2+0.01, center=false, twist=twist/2, slices=ceil(slices/2), convexity=teeth/2 ) { spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, hide = hide, helical = helical, clearance = clearance, backlash = backlash, internal = internal, profile_shift = profile_shift, hub_diam = shaft_diam ); } } else { zrot(twist/2) linear_extrude( height=thickness, center=true, twist=twist, slices=slices, convexity=teeth/2 ) { spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, hide = hide, helical = helical, clearance = clearance, backlash = backlash, internal = internal, profile_shift = profile_shift, hub_diam = shaft_diam ); } } union() { $parent_gear_type = "spur"; $parent_gear_pitch = circ_pitch; $parent_gear_teeth = teeth; $parent_gear_pa = PA; $parent_gear_helical = helical; $parent_gear_thickness = thickness; union() children(); } } } } // Function&Module: spur_gear2d() // Synopsis: Creates a 2D spur gear or internal ring gear. // SynTags: Geom, Region // Topics: Gears, Parts // See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: As Module // spur_gear2d(circ_pitch, teeth, [hide=], [pressure_angle=], [clearance=], [backlash=], [internal=]) [ATTACHMENTS]; // spur_gear2d(mod=, teeth=, [hide=], [pressure_angle=], [clearance=], [backlash=], [internal=]) [ATTACHMENTS]; // Usage: As Function // rgn = spur_gear2d(circ_pitch, teeth, [hide=], [pressure_angle=], [clearance=], [backlash=], [internal=]); // rgn = spur_gear2d(mod=, teeth=, [hide=], [pressure_angle=], [clearance=], [backlash=], [internal=]); // Description: // When called as a module, creates a 2D involute spur gear. When called as a function, // returns a 2D region for the 2D involute spur gear. Normally, you should just specify the // first 2 parameters `circ_pitch` and `teeth`, and let the rest be default values. // Meshing gears must match in `circ_pitch`, `pressure_angle`, and `helical`, and be separated by // the sum of their meshing radii, which can be found with `mesh_radius()`. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. // teeth = Total number of teeth around the spur gear. // hide = Number of teeth to delete to make this only a fraction of a circle // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. // --- // hide = Number of teeth to delete to make this only a fraction of a circle // clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters) // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle // helical = The angle of the rack teeth away from perpendicular to the gear axis of rotation. Stretches out the tooth shapes. Used to match helical spur gear pinions. Default: 0 // internal = If true, create a mask for difference()ing from something else. // profile_shift = Profile shift factor x. // hub_diam = If given, the diameter of the central hub hole. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D): Typical Gear Shape // spur_gear2d(circ_pitch=5, teeth=20); // Example(2D): Metric Gear // spur_gear2d(mod=2, teeth=20); // Example(2D): Lower Pressure Angle // spur_gear2d(circ_pitch=5, teeth=20, pressure_angle=20); // Example(2D): Partial Gear // spur_gear2d(circ_pitch=5, teeth=20, hide=15, pressure_angle=20); // Example(2D): Effects of Profile Shifting. // circ_pitch=5; teeth=7; shaft=5; strokewidth=0.2; // module the_gear(profile_shift=0) { // pr = pitch_radius(circ_pitch,teeth); // mr = mesh_radius(circ_pitch,teeth,profile_shift=profile_shift); // back(mr) { // spur_gear2d(circ_pitch, teeth, hub_diam=shaft, profile_shift=profile_shift); // up(0.1) color("black") // dashed_stroke(circle(r=pr), width=strokewidth, closed=true); // } // } // module the_rack() { // rack2d(circ_pitch, teeth=3, height=5); // up(0.1) color("black") // dashed_stroke([[-7.5,0],[7.5,0]], width=strokewidth); // } // left(10) { the_gear(0); the_rack(); } // right(10) { the_gear(0.59); the_rack(); } // Example(2D): Planetary Gear Assembly // rteeth=56; pteeth=16; cteeth=24; // circ_pitch=5; pa=20; // cr = mesh_radius(circ_pitch, cteeth); // pr = mesh_radius(circ_pitch, pteeth); // ring_gear2d( // circ_pitch=circ_pitch, // teeth=rteeth, // pressure_angle=pa); // for (a=[0:3]) { // zrot(a*90) back(cr+pr) { // color("green") // spur_gear2d( // circ_pitch=circ_pitch, // teeth=pteeth, // pressure_angle=pa); // } // } // color("orange") // zrot(180/cteeth) // spur_gear2d( // circ_pitch=circ_pitch, // teeth=cteeth, // pressure_angle=pa); // Example(2D): Called as a Function // rgn = spur_gear2d(circ_pitch=8, teeth=16, hub_diam=5); // region(rgn); function spur_gear2d( circ_pitch, teeth = 11, hide = 0, pressure_angle, clearance, backlash = 0.0, internal, interior, profile_shift, helical, hub_diam, pitch, diam_pitch, mod, gear_spin = 0, anchor = CENTER, spin = 0 ) = let( dummy = !is_undef(interior) ? echo("In spur_gear2d(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0, internal = first_defined([internal,interior,false]), circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), helical = _inherit_gear_helical(helical, invert=!internal), profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)), pr = pitch_radius(circ_pitch, teeth, helical=helical), tooth = _gear_tooth_profile( circ_pitch=circ_pitch, teeth=teeth, pressure_angle=PA, clearance=clearance, backlash=backlash, profile_shift=profile_shift, helical=helical, internal=internal ), perim = [ for (i = [0:1:teeth-1-hide]) each zrot(-i*360/teeth+gear_spin, p=tooth), if (hide>0) [0,0], ], rgn = [ list_unwrap(deduplicate(perim)), if (is_finite(hub_diam) && hub_diam>0 && !hide) reverse(circle(d=hub_diam)), ] ) reorient(anchor,spin, two_d=true, r=pr, p=rgn); module spur_gear2d( circ_pitch, teeth = 11, hide = 0, pressure_angle, clearance, backlash = 0.0, internal, interior, profile_shift, helical, hub_diam=0, pitch, diam_pitch, mod, gear_spin = 0, anchor = CENTER, spin = 0 ) { dummy = !is_undef(interior) ? echo("In spur_gear2d(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0; internal = first_defined([internal,interior,false]); circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical, invert=!internal); profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)); rgn = spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, hide = hide, pressure_angle = PA, clearance = clearance, helical = helical, backlash = backlash, profile_shift = profile_shift, internal = internal, hub_diam = hub_diam ); pr = pitch_radius(circ_pitch, teeth, helical=helical); attachable(anchor,spin, two_d=true, r=pr) { zrot(gear_spin) region(rgn); union() { $parent_gear_type = "spur2D"; $parent_gear_pitch = circ_pitch; $parent_gear_teeth = teeth; $parent_gear_pa = PA; $parent_gear_helical = helical; $parent_gear_thickness = 0; union() children(); } } } // Module: ring_gear() // Synopsis: Creates a 3D ring gear. // SynTags: Geom // Topics: Gears, Parts // See Also: rack(), ring_gear2d(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: // ring_gear(circ_pitch, teeth, thickness=, [pressure_angle=], [clearance=], [backlash=], [profile_shift=]) [ATTACHMENTS]; // ring_gear(mod=, teeth=, thickness=, [pressure_angle=], [clearance=], [backlash=], [profile_shift=]) [ATTACHMENTS]; // Description: // Creates a 3D involute ring gear. Normally, you should just specify the // first 3 parameters `circ_pitch`, `teeth`, and `thickness`, and let the rest be default values. // Meshing gears must match in `circ_pitch`, `pressure_angle`, and `helical`, and be separated by // the sum of their profile shifts and pitch radii, which can be found with `mesh_radius()`. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. // teeth = Total number of teeth around the spur gear. // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. // thickness = Thickness of ring gear in mm // --- // clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters) // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle // helical = The angle of the rack teeth away from perpendicular to the gear axis of rotation. Stretches out the tooth shapes. Used to match helical spur gear pinions. Default: 0 // profile_shift = Profile shift factor x. // herringbone = If true, and helical is set, creates a herringbone gear. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example: // ring_gear(circ_pitch=5, teeth=48, thickness=10); // Example: Adjusting Backing // ring_gear(circ_pitch=5, teeth=48, thickness=10, backing=20); // Example: Adjusting Pressure Angle // ring_gear(circ_pitch=5, teeth=48, thickness=10, pressure_angle=28); // Example: Tooth Profile Shifting // ring_gear(circ_pitch=5, teeth=48, thickness=10, profile_shift=0.5); // Example: Helical Ring Gear // ring_gear(circ_pitch=5, teeth=48, thickness=10, helical=30); // Example: Herringbone Ring Gear // ring_gear(circ_pitch=5, teeth=48, thickness=10, helical=30, herringbone=true); module ring_gear( circ_pitch, teeth = 50, pressure_angle, clearance, backlash = 0.0, profile_shift, helical, backing = 10, thickness = 10, herringbone = false, pitch, diam_pitch, mod, slices, gear_spin = 0, anchor = CENTER, spin = 0 ) { circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical); thickness = _inherit_gear_thickness(thickness); profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)); pr = pitch_radius(circ_pitch, teeth, helical=helical); ar = outer_radius(circ_pitch, teeth, helical=helical, profile_shift=profile_shift, internal=true); circum = 2 * PI * pr; twist = 360*thickness*tan(helical)/circum; slices = default(slices, ceil(twist/360*segs(pr)+1)); attachable(anchor,spin, h=thickness, r=pr) { zrot(gear_spin) if (herringbone) { zflip_copy() down(0.01) linear_extrude(height=thickness/2, center=false, twist=twist/2, slices=ceil(slices/2), convexity=teeth/4) { difference() { circle(r=ar+backing); spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, helical = helical, clearance = clearance, backlash = backlash, profile_shift = profile_shift, internal = true ); } } } else { zrot(twist/2) linear_extrude(height=thickness,center=true, twist=twist, convexity=teeth/4) { difference() { circle(r=ar+backing); spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, helical = helical, clearance = clearance, backlash = backlash, profile_shift = profile_shift, internal = true ); } } } children(); } } // Module: ring_gear2d() // Synopsis: Creates a 2D ring gear. // SynTags: Geom // Topics: Gears, Parts // See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: // ring_gear2d(circ_pitch, teeth, [pressure_angle=], [clearance=], [backlash=], [profile_shift=]) [ATTACHMENTS]; // ring_gear2d(mod=, teeth=, [pressure_angle=], [clearance=], [backlash=], [profile_shift=]) [ATTACHMENTS]; // Description: // Creates a 2D involute ring gear. Normally, you should just specify the // first 2 parameters `circ_pitch` and `teeth`, and let the rest be default values. // Meshing gears must match in `circ_pitch`, `pressure_angle`, and `helical`, and be separated by // the sum of their profile shifts and pitch radii, which can be found with `mesh_radius()`. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. // teeth = Total number of teeth around the spur gear. // --- // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. // clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters) // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle // profile_shift = Profile shift factor x. // helical = The angle of the rack teeth away from perpendicular to the gear axis of rotation. Stretches out the tooth shapes. Used to match helical spur gear pinions. Default: 0 // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Example(2D;Big): // circ_pitch=5; teeth1=50; teeth2=16; // pr1 = pitch_radius(circ_pitch, teeth1); // pr2 = pitch_radius(circ_pitch, teeth2); // ring_gear2d(circ_pitch=circ_pitch, teeth=teeth1); // back(pr1-pr2) spur_gear2d(circ_pitch=circ_pitch, teeth=teeth2); module ring_gear2d( circ_pitch, teeth = 50, pressure_angle, clearance, backlash = 0.0, profile_shift, helical, backing = 10, pitch, diam_pitch, mod, gear_spin = 0, anchor = CENTER, spin = 0 ) { circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical); profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)); pr = pitch_radius(circ_pitch, teeth, helical=helical); ar = outer_radius(circ_pitch, teeth, helical=helical, profile_shift=profile_shift, internal=true); attachable(anchor,spin, two_d=true, r=pr) { zrot(gear_spin) difference() { circle(r=ar+backing); spur_gear2d( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, helical = helical, clearance = clearance, backlash = backlash, profile_shift = profile_shift, internal = true ); } children(); } } // Function&Module: rack() // Synopsis: Creates a straight or helical gear rack. // SynTags: Geom, VNF // Topics: Gears, Parts // See Also: rack2d(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: As a Module // rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=], [clearance=], [helical=]) [ATTACHMENTS]; // rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash]=, [clearance=], [helical=]) [ATTACHMENTS]; // Usage: As a Function // vnf = rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=], [clearance=], [helical=]); // vnf = rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash=], [clearance=], [helical=]); // Description: // This is used to create a 3D rack, which is a linear bar with teeth that a gear can roll along. // A rack can mesh with any gear that has the same `pitch` and `pressure_angle`. // When called as a function, returns a 3D [VNF](vnf.scad) for the rack. // When called as a module, creates a 3D rack shape. // Arguments: // pitch = The pitch, or distance in mm between teeth along the rack. Matches up with circular pitch on a spur gear. Default: 5 // teeth = Total number of teeth along the rack. Default: 20 // thickness = Thickness of rack in mm (affects each tooth). Default: 5 // height = Height of rack in mm, from tooth top to back of rack. Default: 10 // --- // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20 // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0 // clearance = Clearance gap at the bottom of the inter-tooth valleys. // helical = The angle of the rack teeth away from perpendicular to the rack length. Used to match helical spur gear pinions. Default: 0 // profile_shift = Profile shift factor x. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Extra Anchors: // "adendum" = At the tips of the teeth, at the center of rack. // "adendum-left" = At the tips of the teeth, at the left end of the rack. // "adendum-right" = At the tips of the teeth, at the right end of the rack. // "adendum-back" = At the tips of the teeth, at the back of the rack. // "adendum-front" = At the tips of the teeth, at the front of the rack. // "dedendum" = At the base of the teeth, at the center of rack. // "dedendum-left" = At the base of the teeth, at the left end of the rack. // "dedendum-right" = At the base of the teeth, at the right end of the rack. // "dedendum-back" = At the base of the teeth, at the back of the rack. // "dedendum-front" = At the base of the teeth, at the front of the rack. // Example(VPR=[60,0,325],VPD=130): // rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20); // Example: Rack for Helical Gear // rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20, helical=30); // Example: Alternate Helical Gear // rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20, helical=-30); // Example: Metric Rack // rack(mod=2, teeth=10, thickness=5, height=5, pressure_angle=20); // Example(Anim,VPT=[0,0,12],VPD=100,Frames=6): Rack and Pinion // teeth1 = 16; teeth2 = 16; // pitch = 5; thick = 5; helical = 30; // pr = pitch_radius(pitch, teeth2, helical=helical); // right(pr*2*PI/teeth2*$t) // rack(pitch, teeth1, thickness=thick, height=5, helical=helical); // up(pr) yrot(186.5-$t*360/teeth2) // spur_gear(pitch, teeth2, thickness=thick, helical=helical, shaft_diam=5, orient=BACK); module rack( pitch, teeth = 20, thickness, height = 10, pressure_angle, backlash = 0.0, clearance, helical, profile_shift = 0, gear_travel=0, circ_pitch, diam_pitch, mod, anchor = CENTER, spin = 0, orient = UP ) { pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical); thickness = _inherit_gear_thickness(thickness); trans_pitch = pitch / cos(helical); a = _adendum(pitch, profile_shift); d = _dedendum(pitch, clearance, profile_shift); l = teeth * trans_pitch; anchors = [ named_anchor("adendum", [0,0,a], BACK), named_anchor("adendum-left", [-l/2,0,a], LEFT), named_anchor("adendum-right", [ l/2,0,a], RIGHT), named_anchor("adendum-front", [0,-thickness/2,a], DOWN), named_anchor("adendum-back", [0, thickness/2,a], UP), named_anchor("dedendum", [0,0,-d], BACK), named_anchor("dedendum-left", [-l/2,0,-d], LEFT), named_anchor("dedendum-right", [ l/2,0,-d], RIGHT), named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN), named_anchor("dedendum-back", [0, thickness/2,-d], UP), ]; size = [l, thickness, 2*height]; attachable(anchor,spin,orient, size=size, anchors=anchors) { right(gear_travel) skew(sxy=tan(helical)) xrot(90) { linear_extrude(height=thickness, center=true, convexity=teeth*2) { rack2d( pitch = pitch, teeth = teeth, height = height, pressure_angle = PA, backlash = backlash, clearance = clearance, helical = helical, profile_shift = profile_shift ); } } children(); } } function rack( pitch, teeth = 20, thickness, height = 10, pressure_angle, backlash = 0.0, clearance, helical, profile_shift = 0, circ_pitch, diam_pitch, mod, gear_travel=0, anchor = CENTER, spin = 0, orient = UP ) = let( pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), helical = _inherit_gear_helical(helical), thickness = _inherit_gear_thickness(thickness), trans_pitch = pitch / cos(helical), a = _adendum(pitch, profile_shift), d = _dedendum(pitch, clearance, profile_shift), l = teeth * trans_pitch, path = rack2d( pitch = pitch, teeth = teeth, height = height, pressure_angle = PA, backlash = backlash, clearance = clearance, helical = helical, profile_shift = profile_shift ), vnf = linear_sweep(path, height=thickness, anchor="origin", orient=FWD), m = product([ right(gear_travel), if (helical) skew(sxy=tan(helical)), ]), out = apply(m, vnf), size = [l, thickness, 2*height], anchors = [ named_anchor("adendum", [0,0,a], BACK), named_anchor("adendum-left", [-l/2,0,a], LEFT), named_anchor("adendum-right", [ l/2,0,a], RIGHT), named_anchor("adendum-front", [0,-thickness/2,a], DOWN), named_anchor("adendum-back", [0, thickness/2,a], UP), named_anchor("dedendum", [0,0,-d], BACK), named_anchor("dedendum-left", [-l/2,0,-d], LEFT), named_anchor("dedendum-right", [ l/2,0,-d], RIGHT), named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN), named_anchor("dedendum-back", [0, thickness/2,-d], UP), ] ) reorient(anchor,spin,orient, size=size, anchors=anchors, p=out); // Function&Module: rack2d() // Synopsis: Creates a 2D gear rack. // SynTags: Geom, Path // Topics: Gears, Parts // See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear() // Usage: As a Module // rack2d(pitch, teeth, height, [pressure_angle=], [backlash=], [clearance=]) [ATTACHMENTS]; // rack2d(mod=, teeth=, height=, [pressure_angle=], [backlash=], [clearance=]) [ATTACHMENTS]; // Usage: As a Function // path = rack2d(pitch, teeth, height, [pressure_angle=], [backlash=], [clearance=]); // path = rack2d(mod=, teeth=, height=, [pressure_angle=], [backlash=], [clearance=]); // Description: // This is used to create a 2D rack, which is a linear bar with teeth that a gear can roll along. // A rack can mesh with any gear that has the same `pitch` and `pressure_angle`. // When called as a function, returns a 2D path for the outline of the rack. // When called as a module, creates a 2D rack shape. // Arguments: // pitch = The pitch, or distance in mm between teeth along the rack. Matches up with circular pitch on a spur gear. Default: 5 // teeth = Total number of teeth along the rack // height = Height of rack in mm, from pitch line to back of rack. // --- // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle // clearance = Clearance gap at the bottom of the inter-tooth valleys. // helical = The angle of the rack teeth away from perpendicular to the rack length. Stretches out the tooth shapes. Used to match helical spur gear pinions. Default: 0 // profile_shift = Profile shift factor x. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // Extra Anchors: // "adendum" = At the tips of the teeth, at the center of rack. // "adendum-left" = At the tips of the teeth, at the left end of the rack. // "adendum-right" = At the tips of the teeth, at the right end of the rack. // "dedendum" = At the height of the teeth, at the center of rack. // "dedendum-left" = At the height of the teeth, at the left end of the rack. // "dedendum-right" = At the height of the teeth, at the right end of the rack. // Example(2D): // rack2d(pitch=5, teeth=10, height=10, pressure_angle=20); // Example(2D): Called as a Function // path = rack2d(pitch=8, teeth=8, height=10, pressure_angle=20); // polygon(path); function rack2d( pitch, teeth = 20, height = 10, pressure_angle, backlash = 0, clearance, helical, profile_shift = 0, circ_pitch, diam_pitch, mod, gear_travel = 0, anchor = CENTER, spin = 0 ) = let( pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), helical = _inherit_gear_helical(helical), adendum = _adendum(pitch, profile_shift), dedendum = _dedendum(pitch, clearance, profile_shift) ) assert(dedendum < height) let( trans_pitch = pitch / cos(helical), trans_pa = atan(tan(PA)/cos(helical)), tthick = trans_pitch/PI * (PI/2 + 2*profile_shift * tan(PA)) - backlash, l = teeth * trans_pitch, ax = ang_adj_to_opp(trans_pa, adendum), dx = ang_adj_to_opp(trans_pa, dedendum), poff = tthick/2 - backlash, tooth = [ [-trans_pitch/2, -dedendum], each arc(n=4, r=dedendum-adendum, corner=[ [-trans_pitch/2, -dedendum], [-poff-dx, -dedendum], [-poff+ax, +adendum], ]), each arc(n=4, r=trans_pitch/16, corner=[ [-poff-dx, -dedendum], [-poff+ax, +adendum], [+poff-ax, +adendum], ]), each arc(n=4, r=trans_pitch/16, corner=[ [-poff+ax, +adendum], [+poff-ax, +adendum], [+poff+dx, -dedendum], ]), each arc(n=4, r=dedendum-adendum, corner=[ [+poff-ax, +adendum], [+poff+dx, -dedendum], [+trans_pitch/2, -dedendum], ]), [+trans_pitch/2, -dedendum], ], path2 = [ for(m = xcopies(trans_pitch,n=teeth)) each apply(m,tooth) ], path = right(gear_travel, p=[ [path2[0].x, -height], each path2, [last(path2).x, -height], ]), size=[l,2*height], anchors = [ named_anchor("adendum", [ 0, adendum,0], BACK), named_anchor("adendum-left", [-l/2, adendum,0], LEFT), named_anchor("adendum-right", [ l/2, adendum,0], RIGHT), named_anchor("dedendum", [ 0,-dedendum,0], BACK), named_anchor("dedendum-left", [-l/2,-dedendum,0], LEFT), named_anchor("dedendum-right", [ l/2,-dedendum,0], RIGHT), ] ) reorient(anchor,spin, two_d=true, size=size, anchors=anchors, p=path); module rack2d( pitch, teeth = 20, height = 10, pressure_angle, backlash = 0.0, clearance, helical, profile_shift = 0, gear_travel = 0, circ_pitch, diam_pitch, mod, anchor = CENTER, spin = 0 ) { pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); helical = _inherit_gear_helical(helical); trans_pitch = pitch / cos(helical); a = _adendum(pitch, profile_shift); d = _dedendum(pitch, clearance, profile_shift); l = teeth * trans_pitch; path = rack2d( pitch = pitch, teeth = teeth, height = height, pressure_angle = PA, backlash = backlash, clearance = clearance, helical = helical, profile_shift= profile_shift ); size = [l, 2*height]; anchors = [ named_anchor("adendum", [ 0, a,0], BACK), named_anchor("adendum-left", [-l/2, a,0], LEFT), named_anchor("adendum-right", [ l/2, a,0], RIGHT), named_anchor("dedendum", [ 0,-d,0], BACK), named_anchor("dedendum-left", [-l/2,-d,0], LEFT), named_anchor("dedendum-right", [ l/2,-d,0], RIGHT), ]; attachable(anchor,spin, two_d=true, size=size, anchors=anchors) { right(gear_travel) polygon(path); children(); } } // Function&Module: bevel_gear() // Synopsis: Creates a straight or spiral bevel gear. // SynTags: Geom, VNF // Topics: Gears, Parts // See Also: rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear() // Usage: As a Module // bevel_gear(circ_pitch, teeth, face_width, [pitch_angle=]|[mate_teeth=], [shaft_diam=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [internal=]); // bevel_gear(mod=, teeth=, face_width=, [pitch_angle=]|[mate_teeth=], [shaft_diam=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [internal=]); // Usage: As a Function // vnf = bevel_gear(circ_pitch, teeth, face_width, [pitch_angle=]|[mate_teeth=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [internal=]); // vnf = bevel_gear(mod=, teeth=, face_width=, [pitch_angle=]|[mate_teeth=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [internal=]); // Description: // Creates a (potentially spiral) bevel gear. The module `bevel_gear()` gives a bevel gear, with // reasonable defaults for all the parameters. Normally, you should just choose the first 4 // parameters, and let the rest be default values. In straight bevel gear sets, when each tooth // engages it inpacts the corresponding tooth. The abrupt tooth engagement causes impact stress // which makes them more prone to breakage. Spiral bevel gears have teeth formed along spirals so // they engage more gradually, resulting in a less abrupt transfer of force, so they are quieter // in operation and less likely to break. // . // The module `bevel_gear()` gives a gear in the XY plane, centered on the origin, with one tooth // centered on the positive Y axis. The various functions below it take the same parameters, and // return various measurements for the gear. The most important function is `mesh_radius()`, which tells // how far apart to space gears that are meshing, and `outer_radius()`, which gives the size of the // region filled by the gear. A gear has a "pitch circle", which is an invisible circle that cuts // through the middle of each tooth (though not the exact center). In order for two gears to mesh, // their pitch circles should just touch, if no profile shifting is done). So the distance between // their centers should be `mesh_radius()` for one, plus `mesh_radius()` for the other, which gives // the radii of their pitch circles and profile shifts. In order for two gears to mesh, they must // have the same `circ_pitch` and `pressure_angle` parameters. `circ_pitch` gives the number of millimeters // of arc around the pitch circle covered by one tooth and one space between teeth. The `pressure_angle` // controls how flat or bulged the sides of the teeth are. Common values include 14.5 degrees and 20 // degrees, and occasionally 25. The default here is 20 degrees. Larger numbers bulge out more, // giving stronger teeth. The ratio of `teeth` for two meshing gears gives how many times one will make a full // revolution when the the other makes one full revolution. If the two numbers are coprime (i.e. // are not both divisible by the same number greater than 1), then every tooth on one gear will meet // every tooth on the other, for more even wear. So coprime numbers of teeth are good. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5 // teeth = Total number of teeth around the entire perimeter. Default: 20 // face_width = Width of the toothed surface in mm, from inside to outside. Default: 10 // --- // pitch_angle = Angle of beveled gear face. Default: 45 // mate_teeth = The number of teeth in the gear that this gear will mate with. Overrides `pitch_angle` if given. // shaft_diam = Diameter of the hole in the center, in mm. Module use only. Default: 0 (no shaft hole) // hide = Number of teeth to delete to make this only a fraction of a circle. Default: 0 // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20 // clearance = Clearance gap at the bottom of the inter-tooth valleys. // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0 // cutter_radius = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0 // spiral_angle = The base angle for spiral teeth. Default: 0 // left_handed = If true, the gear returned will have a left-handed spiral. Default: false // slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`. Default: 1 // internal = If true, create a mask for difference()ing from something else. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Extra Anchors: // "apex" = At the pitch cone apex for the bevel gear. // "pitchbase" = At the natural height of the pitch radius of the beveled gear. // "flattop" = At the top of the flat top of the bevel gear. // Side Effects: // If internal is true then the default tag is "remove" // Example: Beveled Gear // bevel_gear( // circ_pitch=5, teeth=36, face_width=10, shaft_diam=5, // pitch_angle=45, spiral_angle=0 // ); // Example: Spiral Beveled Gear and Pinion // t1 = 16; t2 = 28; // bevel_gear( // circ_pitch=5, teeth=t1, mate_teeth=t2, // slices=12, anchor="apex", orient=FWD // ); // bevel_gear( // circ_pitch=5, teeth=t2, mate_teeth=t1, left_handed=true, // slices=12, anchor="apex", spin=180/t2 // ); // Example(Anim,Frames=4,VPD=175): Manual Spacing of Pinion and Gear // t1 = 14; t2 = 28; circ_pitch=5; // back(pitch_radius(circ_pitch, t2)) { // yrot($t*360/t1) // bevel_gear( // circ_pitch=circ_pitch, teeth=t1, mate_teeth=t2, shaft_diam=5, // slices=12, orient=FWD // ); // } // down(pitch_radius(circ_pitch, t1)) { // zrot($t*360/t2) // bevel_gear( // circ_pitch=circ_pitch, teeth=t2, mate_teeth=t1, left_handed=true, // shaft_diam=5, slices=12, spin=180/t2 // ); // } function bevel_gear( circ_pitch = 5, teeth = 20, face_width = 10, pitch_angle = 45, mate_teeth, hide = 0, pressure_angle = 20, clearance, backlash = 0.0, cutter_radius = 30, spiral_angle = 35, left_handed = false, slices = 5, internal, interior, pitch, diam_pitch, mod, anchor = "pitchbase", spin = 0, orient = UP ) = let( dummy = !is_undef(interior) ? echo("In bevel_gear(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0, internal = first_defined([internal,interior,false]), circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), spiral_angle = _inherit_gear_helical(spiral_angle, invert=!internal), face_width = _inherit_gear_thickness(face_width), slices = cutter_radius==0? 1 : slices, pitch_angle = is_undef(mate_teeth)? pitch_angle : atan(teeth/mate_teeth), pr = pitch_radius(circ_pitch, teeth), rr = _root_radius(circ_pitch, teeth, clearance, internal), pitchoff = (pr-rr) * sin(pitch_angle), ocone_rad = opp_ang_to_hyp(pr, pitch_angle), icone_rad = ocone_rad - face_width, cutter_radius = cutter_radius==0? 1000 : cutter_radius, midpr = (icone_rad + ocone_rad) / 2, radcp = [0, midpr] + polar_to_xy(cutter_radius, 180+spiral_angle), angC1 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=ocone_rad), angC2 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=icone_rad), radcpang = v_theta(radcp), sang = radcpang - (180-angC1), eang = radcpang - (180-angC2), profile = _gear_tooth_profile( circ_pitch = circ_pitch, teeth = teeth, pressure_angle = PA, clearance = clearance, backlash = backlash, internal = internal, center = true ), verts1 = [ for (v = lerpn(0,1,slices+1)) let( p = radcp + polar_to_xy(cutter_radius, lerp(sang,eang,v)), ang = v_theta(p)-90, dist = norm(p) ) [ let( u = dist / ocone_rad, m = up((1-u) * pr / tan(pitch_angle)) * up(pitchoff) * zrot(ang/sin(pitch_angle)) * back(u * pr) * xrot(pitch_angle) * scale(u) ) for (tooth=[0:1:teeth-1]) each apply(xflip() * zrot(360*tooth/teeth) * m, path3d(profile)) ] ], botz = verts1[0][0].z, topz = last(verts1)[0].z, thickness = abs(topz - botz), cpz = (topz + botz) / 2, vertices = [for (x=verts1) reverse(x)], sides_vnf = vnf_vertex_array(vertices, caps=false, col_wrap=true, reverse=true), top_verts = last(vertices), bot_verts = vertices[0], gear_pts = len(top_verts), face_pts = gear_pts / teeth, top_faces =[ for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-1]) each [ [i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2], [i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1] ], for (i=[0:1:teeth-1]) each [ [gear_pts, (i+1)*face_pts-1, i*face_pts], [gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1] ] ], vnf1 = vnf_join([ [ [each top_verts, [0,0,top_verts[0].z]], top_faces ], [ [each bot_verts, [0,0,bot_verts[0].z]], [for (x=top_faces) reverse(x)] ], sides_vnf ]), lvnf = left_handed? vnf1 : xflip(p=vnf1), vnf = down(cpz, p=lvnf), anchors = [ named_anchor("pitchbase", [0,0,pitchoff-thickness/2]), named_anchor("flattop", [0,0,thickness/2]), named_anchor("apex", [0,0,hyp_ang_to_opp(ocone_rad,90-pitch_angle)+pitchoff-thickness/2]) ] ) reorient(anchor,spin,orient, vnf=vnf, extent=true, anchors=anchors, p=vnf); module bevel_gear( circ_pitch = 5, teeth = 20, face_width = 10, pitch_angle = 45, mate_teeth, shaft_diam = 0, pressure_angle = 20, clearance = undef, backlash = 0.0, cutter_radius = 30, spiral_angle = 35, left_handed = false, slices = 5, internal, interior, pitch, diam_pitch, mod, anchor = "pitchbase", spin = 0, orient = UP ) { dummy = !is_undef(interior) ? echo("In bevel_gear(), the argument 'interior=' has been deprecated, and may be removed in the future. Please use 'internal=' instead."):0; internal = first_defined([internal,interior,false]); circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); spiral_angle = _inherit_gear_helical(spiral_angle, invert=!internal); face_width = _inherit_gear_thickness(face_width); slices = cutter_radius==0? 1 : slices; pitch_angle = is_undef(mate_teeth)? pitch_angle : atan(teeth/mate_teeth); pr = pitch_radius(circ_pitch, teeth); ipr = pr - face_width*sin(pitch_angle); rr = _root_radius(circ_pitch, teeth, clearance, internal); pitchoff = (pr-rr) * sin(pitch_angle); vnf = bevel_gear( circ_pitch = circ_pitch, teeth = teeth, face_width = face_width, pitch_angle = pitch_angle, pressure_angle = PA, clearance = clearance, backlash = backlash, cutter_radius = cutter_radius, spiral_angle = spiral_angle, left_handed = left_handed, slices = slices, internal = internal, anchor=CENTER ); axis_zs = [for (p=vnf[0]) if(norm(point2d(p)) < EPSILON) p.z]; thickness = max(axis_zs) - min(axis_zs); anchors = [ named_anchor("pitchbase", [0,0,pitchoff-thickness/2]), named_anchor("flattop", [0,0,thickness/2]), named_anchor("apex", [0,0,adj_ang_to_opp(pr,90-pitch_angle)+pitchoff-thickness/2]) ]; default_tag("remove",internal) { attachable(anchor,spin,orient, r1=pr, r2=ipr, h=thickness, anchors=anchors) { difference() { vnf_polyhedron(vnf, convexity=teeth/2); if (shaft_diam > 0) { cylinder(h=2*thickness+1, r=shaft_diam/2, center=true, $fn=max(12,segs(shaft_diam/2))); } } children(); } } } // Function&Module: worm() // Synopsis: Creates a worm that will mate with a worm gear. // SynTags: Geom, VNF // Topics: Gears, Parts // See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear() // Usage: As a Module // worm(circ_pitch, d, l, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]); // worm(mod=, d=, l=, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]); // Usage: As a Function // vnf = worm(circ_pitch, d, l, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]); // vnf = worm(mod=, d=, l=, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]); // Description: // Creates a worm shape that can be matched to a worm gear. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5 // d = The diameter of the worm. Default: 30 // l = The length of the worm. Default: 100 // starts = The number of lead starts. Default: 1 // left_handed = If true, the gear returned will have a left-handed spiral. Default: false // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20 // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0 // clearance = Clearance gap at the bottom of the inter-tooth valleys. // profile_shift = Profile shift factor x. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: // worm(circ_pitch=8, d=30, l=50, $fn=72); // Example: Multiple Starts. // worm(circ_pitch=8, d=30, l=50, starts=3, $fn=72); // Example: Left Handed // worm(circ_pitch=8, d=30, l=50, starts=3, left_handed=true, $fn=72); // Example: Called as Function // vnf = worm(circ_pitch=8, d=35, l=50, starts=2, left_handed=true, pressure_angle=20, $fn=72); // vnf_polyhedron(vnf); function worm( circ_pitch, d=30, l=100, starts=1, left_handed=false, pressure_angle, backlash=0, clearance, profile_shift, diam_pitch, mod, pitch, anchor=CENTER, spin=0, orient=UP ) = let( circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), profile_shift = default(profile_shift, 0), helical = asin(starts * circ_pitch / PI / d), trans_pitch = circ_pitch / cos(helical), tooth = xflip( p=select(rack2d( pitch=circ_pitch, teeth=1, pressure_angle=PA, clearance=clearance, backlash=backlash, helical=helical, profile_shift=profile_shift ), 1, -2) ), rack_profile = [ for (t = xcopies(trans_pitch, n=2*ceil(l/trans_pitch)+1)) each apply(t, tooth) ], steps = max(36, segs(d/2)), step = 360 / steps, zsteps = ceil(l / circ_pitch * cos(helical) / starts * steps), zstep = l / zsteps, profiles = [ for (j = [0:1:zsteps]) [ for (i = [0:1:steps-1]) let( u = i / steps - 0.5, ang = 360 * (1 - u) + 90, z = j*zstep - l/2, zoff = circ_pitch * starts * u / cos(helical), h = lookup(z+zoff, rack_profile) ) cylindrical_to_xyz(d/2+h, ang, z) ] ], vnf1 = vnf_vertex_array(profiles, caps=true, col_wrap=true, style="alt"), vnf = left_handed? xflip(p=vnf1) : vnf1 ) reorient(anchor,spin,orient, d=d, l=l, p=vnf); module worm( circ_pitch, d=15, l=100, starts=1, left_handed=false, pressure_angle, backlash=0, clearance, profile_shift=0, pitch, diam_pitch, mod, gear_spin=0, anchor=CENTER, spin=0, orient=UP ) { circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); profile_shift = default(profile_shift, auto_profile_shift(starts,PA)); vnf = worm( circ_pitch=circ_pitch, starts=starts, d=d, l=l, left_handed=left_handed, pressure_angle=PA, backlash=backlash, clearance=clearance, profile_shift=profile_shift, mod=mod ); attachable(anchor,spin,orient, d=d, l=l) { zrot(gear_spin) vnf_polyhedron(vnf, convexity=ceil(l/circ_pitch)*2); children(); } } // Function&Module: worm_gear() // Synopsis: Creates a worm gear that will mate with a worm. // SynTags: Geom, VNF // Topics: Gears, Parts // See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear() // Usage: As a Module // worm_gear(circ_pitch, teeth, worm_diam, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=], [shaft_diam=]) [ATTACHMENTS]; // worm_gear(mod=, teeth=, worm_diam=, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=], [shaft_diam=]) [ATTACHMENTS]; // Usage: As a Function // vnf = worm_gear(circ_pitch, teeth, worm_diam, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=]); // vnf = worm_gear(mod=, teeth=, worm_diam=, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=]); // Description: // Creates a worm gear to match with a worm. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5 // teeth = Total number of teeth along the rack. Default: 30 // worm_diam = The pitch diameter of the worm gear to match to. Default: 30 // worm_starts = The number of lead starts on the worm gear to match to. Default: 1 // worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees // crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fit the work easier. Default: 1 // left_handed = If true, the gear returned will have a left-handed spiral. Default: false // pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20 // backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0 // clearance = Clearance gap at the bottom of the inter-tooth valleys. // profile_shift = Profile shift factor x. // slices = The number of vertical slices to refine the curve of the worm throat. Default: 10 // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // Example: Right-Handed // worm_gear(circ_pitch=5, teeth=36, worm_diam=30, worm_starts=1); // Example: Left-Handed // worm_gear(circ_pitch=5, teeth=36, worm_diam=30, worm_starts=1, left_handed=true); // Example: Multiple Starts // worm_gear(circ_pitch=5, teeth=36, worm_diam=30, worm_starts=4); // Example: Metric Worm Gear // worm_gear(mod=2, teeth=32, worm_diam=30, worm_starts=1); // Example(Anim,Frames=4,FrameMS=125,VPD=220,VPT=[-15,0,0]): Meshing Worm and Gear // $fn=36; // circ_pitch = 5; starts = 4; // worm_diam = 30; worm_length = 50; // gear_teeth=36; // right(worm_diam/2) // yrot($t*360/starts) // worm( // d=worm_diam, // l=worm_length, // circ_pitch=circ_pitch, // starts=starts, // orient=BACK); // left(pitch_radius(circ_pitch, gear_teeth)) // zrot(-$t*360/gear_teeth) // worm_gear( // circ_pitch=circ_pitch, // teeth=gear_teeth, // worm_diam=worm_diam, // worm_starts=starts); // Example: Meshing Worm and Gear Metricly // $fn = 72; // modulus = 2; starts = 3; // worm_diam = 30; worm_length = 50; // gear_teeth=36; // right(worm_diam/2) // worm(d=worm_diam, l=worm_length, mod=modulus, starts=starts, orient=BACK); // left(pitch_radius(mod=modulus, teeth=gear_teeth)) // worm_gear(mod=modulus, teeth=gear_teeth, worm_diam=worm_diam, worm_starts=starts); // Example: Called as Function // vnf = worm_gear(circ_pitch=8, teeth=30, worm_diam=30, worm_starts=1); // vnf_polyhedron(vnf); function worm_gear( circ_pitch, teeth = 36, worm_diam = 30, worm_starts = 1, worm_arc = 60, crowning = 0.1, left_handed = false, pressure_angle, backlash = 0, clearance, profile_shift, slices = 10, gear_spin=0, pitch, diam_pitch, mod, anchor = CENTER, spin = 0, orient = UP ) = assert(worm_arc >= 10 && worm_arc <= 60) let( circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod), PA = _inherit_gear_pa(pressure_angle), profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)), helical = asin(worm_starts * circ_pitch / PI / worm_diam), pr = pitch_radius(circ_pitch, teeth, helical), hob_rad = worm_diam / 2 + crowning, thickness = worm_gear_thickness(circ_pitch=circ_pitch, teeth=teeth, worm_diam=worm_diam, worm_arc=worm_arc, crowning=crowning, clearance=clearance), tooth_profile = _gear_tooth_profile( circ_pitch=circ_pitch, teeth=teeth, pressure_angle=PA, clearance=clearance, backlash=backlash, helical=helical, profile_shift=profile_shift, center=true ), tbot = min(column(tooth_profile,1)), arcthick = hob_rad * sin(worm_arc/2) * 2, twist = sin(helical)*arcthick / (2*PI*pr) * 360, profiles = [ for (slice = [0:1:slices]) let( u = slice/slices - 0.5 ) [ for (i = [0:1:teeth-1]) each apply( zrot(-i*360/teeth + twist*u - 0.5) * right(pr+hob_rad) * yrot(u*worm_arc) * left(hob_rad) * zrot(-90) * back(tbot) * scale(cos(u*worm_arc)) * fwd(tbot), path3d(tooth_profile) ) ] ], top_verts = last(profiles), bot_verts = profiles[0], face_pts = len(tooth_profile), gear_pts = face_pts * teeth, top_faces =[ for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-2]) each [ [i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2], [i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1] ], for (i=[0:1:teeth-1]) each [ [gear_pts, (i+1)*face_pts-1, i*face_pts], [gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1] ] ], sides_vnf = vnf_vertex_array(profiles, caps=false, col_wrap=true, style="min_edge"), vnf1 = vnf_join([ [ [each top_verts, [0,0,top_verts[0].z]], [for (x=top_faces) reverse(x)] ], [ [each bot_verts, [0,0,bot_verts[0].z]], top_faces ], sides_vnf ]), m = product([ zrot(gear_spin), if (left_handed) xflip(), ]), vnf = apply(m,vnf1) ) reorient(anchor,spin,orient, r=pr, l=thickness, p=vnf); module worm_gear( circ_pitch, teeth = 36, worm_diam = 30, worm_starts = 1, worm_arc = 60, crowning = 0.1, left_handed = false, pressure_angle, backlash = 0, slices = 10, clearance, profile_shift, gear_spin=0, pitch, diam_pitch, mod, shaft_diam = 0, anchor = CENTER, spin = 0, orient = UP ) { circ_pitch = _inherit_gear_pitch(pitch, circ_pitch, diam_pitch, mod); PA = _inherit_gear_pa(pressure_angle); profile_shift = default(profile_shift, auto_profile_shift(teeth,PA)); helical = asin(worm_starts * circ_pitch / PI / worm_diam); pr = pitch_radius(circ_pitch, teeth, helical); vnf = worm_gear( circ_pitch = circ_pitch, teeth = teeth, worm_diam = worm_diam, worm_starts = worm_starts, worm_arc = worm_arc, crowning = crowning, left_handed = left_handed, pressure_angle = PA, backlash = backlash, clearance = clearance, profile_shift = profile_shift, slices = slices ); thickness = pointlist_bounds(vnf[0])[1].z; attachable(anchor,spin,orient, r=pr, l=thickness) { zrot(gear_spin) difference() { vnf_polyhedron(vnf, convexity=teeth/2); if (shaft_diam > 0) { cylinder(d=shaft_diam, l=worm_diam, center=true); } } children(); } } /// Function: _gear_tooth_profile() /// Usage: As Function /// path = _gear_tooth_profile(pitch, teeth, [pressure_angle], [clearance], [backlash], [internal]); /// Topics: Gears /// See Also: spur_gear2d() /// Description: /// When called as a function, returns the 2D profile path for an individual gear tooth. /// When called as a module, creates the 2D profile shape for an individual gear tooth. /// Arguments: /// circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. /// teeth = Total number of teeth on the spur gear that this is a tooth for. /// pressure_angle = Pressure Angle. Controls how straight or bulged the tooth sides are. In degrees. /// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters) /// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle /// internal = If true, create a mask for difference()ing from something else. /// center = If true, centers the pitch circle of the tooth profile at the origin. Default: false. /// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. /// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. /// Example(2D): /// _gear_tooth_profile(circ_pitch=5, teeth=20, pressure_angle=20); /// Example(2D): Metric Gear Tooth /// _gear_tooth_profile(mod=2, teeth=20, pressure_angle=20); /// Example(2D): /// _gear_tooth_profile( /// circ_pitch=5, teeth=20, pressure_angle=20 /// ); /// Example(2D): As a function /// path = _gear_tooth_profile( /// circ_pitch=5, teeth=20, pressure_angle=20 /// ); /// stroke(path, width=0.1); function _gear_tooth_profile( circ_pitch, teeth, pressure_angle = 20, clearance, backlash = 0.0, helical = 0, internal = false, profile_shift = 0.0, center = false ) = let( // Calculate a point on the involute curve, by angle. _involute = function(base_r,a) let(b=a*PI/180) base_r * [cos(a)+b*sin(a), sin(a)-b*cos(a)], steps = 16, // Calculate the important circle radii arad = outer_radius(circ_pitch, teeth, helical=helical, profile_shift=profile_shift, internal=internal), prad = pitch_radius(circ_pitch, teeth, helical=helical), brad = _base_radius(circ_pitch, teeth, pressure_angle, helical=helical), rrad = _root_radius(circ_pitch, teeth, clearance, helical=helical, profile_shift=profile_shift, internal=internal), srad = max(rrad,brad), clear = default(clearance, circ_pitch/PI * 0.25), tthick = circ_pitch/PI / cos(helical) * (PI/2 + 2*profile_shift * tan(pressure_angle)) - backlash, tang = tthick / prad / 2 * 180 / PI, // Generate a lookup table for the involute curve angles, by radius involute_lup = [ if (rrad < brad) each xy_to_polar(arc(n=4, r=min(brad-rrad,clear), corner=[ polar_to_xy(rrad,90+180/teeth), polar_to_xy(rrad,90), polar_to_xy(brad,90), ])), for (i=[0:5:arad/PI/brad*360]) let( xy = _involute(brad,i), pol = xy_to_polar(xy) ) if (pol.x <= arad * 1.1) [pol.x, 90-pol.y] ], // Generate reverse lookup table for involute radii, by angle involute_rlup = mirror([-1,1],p=involute_lup), // swaps X and Y columns. a_ang = lookup(arad, involute_lup), p_ang = lookup(prad, involute_lup), b_ang = lookup(brad, involute_lup), r_ang = lookup(rrad, involute_lup), s_ang = lookup(srad, involute_lup), soff = tang + (b_ang - p_ang), ma_rad = min(arad, lookup(90-soff+0.05*360/teeth/2, involute_rlup)), ma_ang = lookup(ma_rad, involute_lup), cap_steps = ceil((ma_ang + soff - 90) / 5), cap_step = (ma_ang + soff - 90) / cap_steps, ax = circ_pitch/4 - ang_adj_to_opp(pressure_angle, circ_pitch/PI), // Calculate the undercut a meshing rack might carve out of this tooth. undercut = [ for (a=[atan2(ax,rrad):-1:-90]) let( bx = -a/360 * 2*PI*prad, x = bx + ax, y = prad - circ_pitch/PI + profile_shift*circ_pitch/PI, pol = xy_to_polar(x,y) ) if (pol.x < arad*1.05) [pol.x, pol.y-a+180/teeth] ], uc_min = min_index(column(undercut,0)), // Generate a fast lookup table for the undercut. undercut_lup = [for (i=idx(undercut)) if (i>=uc_min) undercut[i]], // The u values to use when generating the tooth. us = [ for (i=[0:1:20-1]) 0.2*sin(i/20*90), for (i=[2:1:steps-1]) i/(steps-1), ], // Generate the left half of the tooth. tooth_half_raw = deduplicate([ for (u = us) let( r = lerp(rrad, ma_rad, u), a1 = lookup(r, involute_lup) + soff, a2 = lookup(r, undercut_lup), a = internal || r < undercut_lup[0].x? a1 : min(a1,a2) ) if(a<90+180/teeth) polar_to_xy(r, a), for (i=[0:1:cap_steps-1]) let( a = ma_ang + soff - i * (cap_step-1) ) polar_to_xy(ma_rad, a), ]), // Find undercut bottom "jaggie" if it exists. minima = [ for (i = idx(tooth_half_raw)) let(p = tooth_half_raw[i]) if (i > 0 && i < len(tooth_half_raw)-1 && norm(p) <= prad) let( pp = tooth_half_raw[i-1], np = tooth_half_raw[i+1] ) if (p.x > pp.x && p.x > np.x) i ], // Strip "jaggies" if found. tooth_half = len(minima)<2? tooth_half_raw : [ for (i = idx(tooth_half_raw)) let(p = tooth_half_raw[i]) if (i <= minima[0] || i >= last(minima)) p ], // Mirror the tooth to complete it. tooth = deduplicate([ each tooth_half, each reverse(xflip(tooth_half)), ]), out = center? fwd(prad, p=tooth) : tooth ) out; // Section: Computing Gear Dimensions // These functions let the user find the derived dimensions of the gear. // A gear fits within a circle of radius outer_radius, and two gears should have // their centers separated by the sum of their pitch_radius. // Function: circular_pitch() // Synopsis: Returns tooth density expressed as "circular pitch". // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value() // Usage: // circ_pitch = circular_pitch(circ_pitch); // circ_pitch = circular_pitch(mod=); // circ_pitch = circular_pitch(diam_pitch=); // Description: // Get tooth density expressed as "circular pitch", or the distance in mm between teeth around the pitch circle. // For example, if you have a gear with 11 teeth, and the pitch diameter is 35mm, then the circumfrence // of the pitch diameter is really close to 110mm, making the circular pitch of that gear about 10mm/tooth. // Arguments: // circ_pitch = The circular pitch, or distance in mm between teeth around the pitch circle. // --- // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // circ_pitch = circular_pitch(circ_pitch=5); // circ_pitch = circular_pitch(diam_pitch=12); // circ_pitch = circular_pitch(mod=2); function circular_pitch(circ_pitch, mod, pitch, diam_pitch) = assert(one_defined([pitch, mod, circ_pitch, diam_pitch], "pitch,mod,circ_pitch,diam_pitch")) pitch != undef? assert(is_finite(pitch) && pitch>0) pitch : circ_pitch != undef? assert(is_finite(circ_pitch) && circ_pitch>0) circ_pitch : diam_pitch != undef? assert(is_finite(diam_pitch) && diam_pitch>0) PI / diam_pitch * INCH : assert(is_finite(mod) && mod>0) mod * PI; // Function: diametral_pitch() // Synopsis: Returns tooth density expressed as "diametral pitch". // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value() // Usage: // dp = diametral_pitch(circ_pitch); // dp = diametral_pitch(mod=); // dp = diametral_pitch(diam_pitch=); // Description: // Returns tooth density expressed as "diametral pitch", the number of teeth per inch of pitch diameter. // For example, if you have a gear with 30 teeth, with a 1.5 inch pitch diameter, then you have a // diametral pitch of 20 teeth/inch. // Arguments: // circ_pitch = The circular pitch, or distance in mm between teeth around the pitch circle. // --- // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // diam_pitch = diametral_pitch(mod=2); // diam_pitch = diametral_pitch(circ_pitch=8); // diam_pitch = diametral_pitch(diam_pitch=16); function diametral_pitch(circ_pitch, mod, pitch, diam_pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch) ) PI / circ_pitch / INCH; // Function: pitch_value() // Synopsis: Returns tooth density expressed as "circular pitch". // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value() // Usage: // circ_pitch = pitch_value(mod); // circ_pitch = pitch_value(circ_pitch=); // circ_pitch = pitch_value(diam_pitch=); // Description: // Returns the circular pitch in mm from module/modulus or diametral pitch. // The circular pitch of a gear is the number of millimeters per tooth around the pitch radius circle. // For example, if you have a gear with 11 teeth, and the pitch diameter is 35mm, then the circumfrence // of the pitch diameter is really close to 110mm, making the circular pitch of that gear about 10mm/tooth. // Arguments: // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // --- // circ_pitch = The circular pitch, or distance in mm between teeth around the pitch circle. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // circ_pitch = pitch_value(mod=2); // circ_pitch = pitch_value(circ_pitch=8); // circ_pitch = pitch_value(diam_pitch=16); function pitch_value(mod, circ_pitch, diam_pitch) = circular_pitch(mod=mod, circ_pitch=circ_pitch, diam_pitch=diam_pitch); // Function: module_value() // Synopsis: Returns tooth density expressed as "module" or "modulus" in millimeters. // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value() // Usage: // mod = module_value(circ_pitch); // mod = module_value(mod=); // mod = module_value(diam_pitch=); // Description: // Get tooth density expressed as "module" or "modulus" in millimeters. The module is the pitch // diameter of the gear divided by the number of teeth on it. For example, a gear with a pitch // diameter of 40mm, with 20 teeth on it will have a modulus of 2. // Arguments: // circ_pitch = The circular pitch, or distance in mm between teeth around the pitch circle. // --- // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // mod = module_value(circ_pitch=8); // mod = module_value(mod=2); // mod = module_value(diam_pitch=16); function module_value(circ_pitch, mod, pitch, diam_pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch) ) circ_pitch / PI; /// Function: _adendum() /// Usage: /// ad = _adendum(circ_pitch, [profile_shift]); /// ad = _adendum(diam_pitch=, [profile_shift=]); /// ad = _adendum(mod=, [profile_shift=]); /// Topics: Gears /// Description: /// The height of the top of a gear tooth above the pitch radius circle. /// Arguments: /// circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. /// profile_shift = Profile shift factor x. /// --- /// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. /// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. /// Example: /// ad = _adendum(circ_pitch=5); /// ad = _adendum(mod=2); /// Example(2D): /// circ_pitch = 5; teeth = 17; /// pr = pitch_radius(circ_pitch, teeth); /// adn = _adendum(circ_pitch=5); /// #spur_gear2d(circ_pitch=circ_pitch, teeth=teeth); /// color("black") { /// stroke(circle(r=pr),width=0.1,closed=true); /// stroke(circle(r=pr+adn),width=0.1,closed=true); /// } function _adendum( circ_pitch, profile_shift=0, diam_pitch, mod, pitch ) = let( mod = module_value(circ_pitch, mod, pitch, diam_pitch) ) mod * (1 + profile_shift); /// Function: _dedendum() /// Usage: /// ddn = _dedendum(circ_pitch=, [clearance], [profile_shift]); /// ddn = _dedendum(diam_pitch=, [clearance=], [profile_shift=]); /// ddn = _dedendum(mod=, [clearance=], [profile_shift=]); /// Topics: Gears /// Description: /// The depth of the gear tooth valley, below the pitch radius. /// Arguments: /// circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. /// clearance = If given, sets the clearance between meshing teeth. /// profile_shift = Profile shift factor x. /// --- /// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. /// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. /// Example: /// ddn = _dedendum(circ_pitch=5); /// ddn = _dedendum(mod=2); /// Example(2D): /// circ_pitch = 5; teeth = 17; /// pr = pitch_radius(circ_pitch, teeth); /// ddn = _dedendum(circ_pitch=5); /// #spur_gear2d(circ_pitch=circ_pitch, teeth=teeth); /// color("black") { /// stroke(circle(r=pr),width=0.1,closed=true); /// stroke(circle(r=pr-ddn),width=0.1,closed=true); /// } function _dedendum( circ_pitch, clearance, profile_shift=0, diam_pitch, mod, pitch ) = let( mod = module_value(circ_pitch, mod, pitch, diam_pitch), clearance = default(clearance, 0.25 * mod) ) mod * (1 - profile_shift) + clearance; // Function: pitch_radius() // Synopsis: Returns the pitch radius for a gear. // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value(), outer_radius() // Usage: // pr = pitch_radius(pitch, teeth, [helical]); // pr = pitch_radius(mod=, teeth=, [helical=]); // Description: // Calculates the pitch radius for the gear. Two mated gears will have their centers spaced apart // by the sum of the two gear's pitch radii. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. // teeth = The number of teeth on the gear. // helical = The helical angle (from vertical) of the teeth on the gear. Default: 0 // --- // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // pr = pitch_radius(circ_pitch=5, teeth=11); // pr = pitch_radius(circ_pitch=5, teeth=11, helical=30); // pr = pitch_radius(diam_pitch=10, teeth=11); // pr = pitch_radius(mod=2, teeth=20); // pr = pitch_radius(mod=2, teeth=20, helical=30); // Example(2D): // pr = pitch_radius(circ_pitch=5, teeth=11); // #spur_gear2d(circ_pitch=5, teeth=11); // color("black") // stroke(circle(r=pr),width=0.1,closed=true); function pitch_radius( circ_pitch, teeth, helical=0, mod, diam_pitch, pitch ) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch) ) circ_pitch * teeth / PI / 2 / cos(helical); // Function: outer_radius() // Synopsis: Returns the outer radius for a gear. // Topics: Gears, Parts // See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value(), pitch_radius(), outer_radius() // Usage: // or = outer_radius(circ_pitch, teeth, [helical=], [clearance=], [internal=], [profile_shift=]); // or = outer_radius(mod=, teeth=, [helical=], [clearance=], [internal=], [profile_shift=]); // or = outer_radius(diam_pitch=, teeth=, [helical=], [clearance=], [internal=], [profile_shift=]); // Description: // Calculates the outer radius for the gear. The gear fits entirely within a cylinder of this radius. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. // teeth = The number of teeth on the gear. // --- // clearance = If given, sets the clearance between meshing teeth. // profile_shift = Profile shift factor x. // internal = If true, calculate for an internal gear. // helical = The helical angle (from vertical) of the teeth on the gear. Default: 0 // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // or = outer_radius(circ_pitch=5, teeth=20); // or = outer_radius(circ_pitch=5, teeth=20, helical=30); // or = outer_radius(diam_pitch=10, teeth=17); // or = outer_radius(mod=2, teeth=16); // Example(2D): // pr = outer_radius(circ_pitch=5, teeth=11); // #spur_gear2d(circ_pitch=5, teeth=11); // color("black") // stroke(circle(r=pr),width=0.1,closed=true); function outer_radius(circ_pitch=5, teeth=11, clearance, internal=false, helical=0, profile_shift=0, mod, pitch, diam_pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch) ) pitch_radius(circ_pitch, teeth, helical) + ( internal ? _dedendum(circ_pitch, clearance, profile_shift=profile_shift) : _adendum(circ_pitch, profile_shift=profile_shift) ); /// Function: _root_radius() /// Usage: /// rr = _root_radius(circ_pitch, teeth, [helical], [clearance=], [internal=], [profile_shift=]); /// rr = _root_radius(diam_pitch=, teeth=, [helical=], [clearance=], [internal=], [profile_shift=]); /// rr = _root_radius(mod=, teeth=, [helical=], [clearance=], [internal=], [profile_shift=]); /// Topics: Gears /// Description: /// Calculates the root radius for the gear, at the base of the dedendum. /// Arguments: /// circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. /// teeth = The number of teeth on the gear. /// --- /// clearance = If given, sets the clearance between meshing teeth. /// internal = If true, calculate for an internal gear. /// helical = The helical angle (from vertical) of the teeth on the gear. Default: 0 /// profile_shift = Profile shift factor x. /// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. /// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. /// Example: /// rr = _root_radius(circ_pitch=5, teeth=11); /// rr = _root_radius(circ_pitch=5, teeth=16, helical=30); /// rr = _root_radius(diam_pitch=10, teeth=11); /// rr = _root_radius(mod=2, teeth=16); /// Example(2D): /// pr = _root_radius(circ_pitch=5, teeth=11); /// #spur_gear2d(pitch=5, teeth=11); /// color("black") /// stroke(circle(r=pr),width=0.1,closed=true); function _root_radius(circ_pitch, teeth, clearance, internal=false, helical=0, profile_shift=0, diam_pitch, mod, pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch) ) pitch_radius(circ_pitch, teeth, helical) - ( internal ? _adendum(circ_pitch, profile_shift=profile_shift) : _dedendum(circ_pitch, clearance, profile_shift=profile_shift) ); /// Function: _base_radius() /// Usage: /// br = _base_radius(circ_pitch, teeth, [pressure_angle], [helical]); /// br = _base_radius(diam_pitch=, teeth=, [pressure_angle=], [helical=]); /// br = _base_radius(mod=, teeth=, [pressure_angle=], [helical=]); /// Topics: Gears /// Description: /// Get the base circle for involute teeth, at the base of the teeth. /// Arguments: /// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. /// teeth = The number of teeth on the gear. /// pressure_angle = Pressure angle in degrees. Controls how straight or bulged the tooth sides are. /// helical = The helical angle (from vertical) of the teeth on the gear. Default: 0 /// --- /// mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. /// diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. /// Example: /// br = _base_radius(circ_pitch=5, teeth=20, pressure_angle=20); /// br = _base_radius(circ_pitch=5, teeth=20, pressure_angle=20, helical=30); /// br = _base_radius(diam_pitch=10, teeth=20, pressure_angle=20); /// br = _base_radius(mod=2, teeth=18, pressure_angle=20); /// Example(2D): /// pr = _base_radius(circ_pitch=5, teeth=11); /// #spur_gear2d(circ_pitch=5, teeth=11); /// color("black") /// stroke(circle(r=pr),width=0.1,closed=true); function _base_radius(circ_pitch, teeth, pressure_angle=20, helical=0, diam_pitch, mod, pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch), trans_pa = atan(tan(pressure_angle)/cos(helical)) ) pitch_radius(circ_pitch, teeth, helical) * cos(trans_pa); // Function: bevel_pitch_angle() // Synopsis: Returns the pitch cone angle for a bevel gear. // Topics: Gears, Parts // See Also: bevel_gear(), pitch_radius(), outer_radius() // Usage: // ang = bevel_pitch_angle(teeth, mate_teeth, [drive_angle=]); // Description: // Returns the correct pitch cone angle for a bevel gear with a given number of teeth, that is // matched to another bevel gear with a (possibly different) number of teeth. // Arguments: // teeth = Number of teeth that this gear has. // mate_teeth = Number of teeth that the matching gear has. // drive_angle = Angle between the drive shafts of each gear. Default: 90ยบ. // Example: // ang = bevel_pitch_angle(teeth=18, mate_teeth=30); // Example(2D): // t1 = 13; t2 = 19; pitch=5; // pang = bevel_pitch_angle(teeth=t1, mate_teeth=t2, drive_angle=90); // color("black") { // zrot_copies([0,pang]) // stroke([[0,0,0], [0,-20,0]],width=0.2); // stroke(arc(r=3, angle=[270,270+pang]),width=0.2); // } // #bevel_gear( // pitch=5, teeth=t1, mate_teeth=t2, // spiral_angle=0, cutter_radius=1000, // slices=12, anchor="apex", orient=BACK // ); function bevel_pitch_angle(teeth, mate_teeth, drive_angle=90) = atan(sin(drive_angle)/((mate_teeth/teeth)+cos(drive_angle))); // Function: worm_gear_thickness() // Synopsis: Returns the thickness for a worm gear. // Topics: Gears, Parts // See Also: worm(), worm_gear(), pitch_radius(), outer_radius() // Usage: // thick = worm_gear_thickness(pitch, teeth, worm_diam, [worm_arc=], [crowning=], [clearance=]); // thick = worm_gear_thickness(mod=, teeth=, worm_diam=, [worm_arc=], [crowning=], [clearance=]); // Description: // Calculate the thickness of the worm gear. // Arguments: // circ_pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5 // teeth = Total number of teeth along the rack. Default: 30 // worm_diam = The pitch diameter of the worm gear to match to. Default: 30 // --- // worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees // crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fit the work easier. Default: 1 // clearance = Clearance gap at the bottom of the inter-tooth valleys. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // Example: // thick = worm_gear_thickness(circ_pitch=5, teeth=36, worm_diam=30); // thick = worm_gear_thickness(mod=2, teeth=28, worm_diam=25); // Example(2D): // circ_pitch = 5; teeth=17; // worm_diam = 30; starts=2; // y = worm_gear_thickness(circ_pitch=circ_pitch, teeth=teeth, worm_diam=worm_diam); // #worm_gear( // circ_pitch=circ_pitch, teeth=teeth, // worm_diam=worm_diam, // worm_starts=starts, // orient=BACK // ); // color("black") { // ycopies(y) stroke([[-25,0],[25,0]], width=0.5); // stroke([[-20,-y/2],[-20,y/2]],width=0.5,endcaps="arrow"); // } function worm_gear_thickness(circ_pitch, teeth, worm_diam, worm_arc=60, crowning=1, clearance, diam_pitch, mod, pitch) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch), r = worm_diam/2 + crowning, pitch_thick = r * sin(worm_arc/2) * 2, pr = pitch_radius(circ_pitch, teeth), rr = _root_radius(circ_pitch, teeth, clearance, false), pitchoff = (pr-rr) * sin(worm_arc/2), thickness = pitch_thick + 2*pitchoff ) thickness; // Function: mesh_radius() // Synopsis: Returns the distance between two gear centers. // Topics: Gears, Parts // See Also: worm(), worm_gear(), pitch_radius(), outer_radius() // Usage: // dist = mesh_radius(pitch, teeth, [helical=], [profile_shift=], [pressure_angle=]); // dist = mesh_radius(mod=, teeth=, [helical=], [profile_shift=], [pressure_angle=]); // Description: // Calculate the distance between the centers of two gears. // Arguments: // pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5 // teeth = Total number of teeth in the first gear. If given 0, we assume this is a rack or worm. // --- // helical = The helical angle (from vertical) of the teeth on the first gear. Default: 0 // profile_shift = Profile shift factor x for the first gear. Default: 0 // pressure_angle = The pressure angle of the gear. // diam_pitch = The diametral pitch, or number of teeth per inch of pitch diameter. Note that the diametral pitch is a completely different thing than the pitch diameter. // mod = The metric module/modulus of the gear, or mm of pitch diameter per tooth. // Example(2D): // pitch=5; teeth1=7; teeth2=24; // mr1 = mesh_radius(pitch, teeth1); // mr2 = mesh_radius(pitch, teeth2); // left(mr1) spur_gear2d(pitch, teeth1, gear_spin=-90); // right(mr2) spur_gear2d(pitch, teeth2, gear_spin=90-180/teeth2); // Example: Non-parallel Helical Gears // pitch=5; teeth1=15; teeth2=24; ha1=45; ha2=30; thick=10; // mr1 = mesh_radius(pitch, teeth1, helical=ha1); // mr2 = mesh_radius(pitch, teeth2, helical=ha2); // left(mr1) spur_gear(pitch, teeth1, helical=ha1, thickness=thick, gear_spin=-90); // right(mr2) xrot(ha1+ha2) spur_gear(pitch, teeth2, helical=ha2, thickness=thick, gear_spin=90-180/teeth2); // Example(2D): Disable Auto Profile Shifting on the Small Gear // pitch=5; teeth1=7; teeth2=24; // mr1 = mesh_radius(pitch, teeth1, profile_shift=0); // mr2 = mesh_radius(pitch, teeth2); // left(mr1) spur_gear2d(pitch, teeth1, profile_shift=0, gear_spin=-90); // right(mr2) spur_gear2d(pitch, teeth2, gear_spin=90-180/teeth2); // Example(2D): Manual Profile Shifting // pitch=5; teeth1=7; teeth2=24; ps1 = 0.5; ps2 = -0.2; // mr1 = mesh_radius(pitch, teeth1, profile_shift=ps1); // mr2 = mesh_radius(pitch, teeth2, profile_shift=ps2); // left(mr1) spur_gear2d(pitch, teeth1, profile_shift=ps1, gear_spin=-90); // right(mr2) spur_gear2d(pitch, teeth2, profile_shift=ps2, gear_spin=90-180/teeth2); function mesh_radius( circ_pitch, teeth, helical=0, profile_shift, pressure_angle=20, diam_pitch, mod, pitch ) = let( circ_pitch = circular_pitch(pitch, mod, circ_pitch, diam_pitch), profile_shift = default(profile_shift, teeth>0? auto_profile_shift(teeth,pressure_angle) : 0), mod = circ_pitch / PI, pr = teeth>0? pitch_radius(circ_pitch, teeth, helical) : 0, r = pr + profile_shift * mod ) r; // Function: auto_profile_shift() // Synopsis: Returns the recommended profile shift for a gear. // Topics: Gears, Parts // See Also: worm(), worm_gear(), pitch_radius(), outer_radius() // Usage: // x = auto_profile_shift(teeth, pressure_angle); // x = auto_profile_shift(teeth, min_teeth=); // Description: // Calculates the recommended profile shift to avoid gear tooth undercutting. // Arguments: // teeth = Total number of teeth in the gear. // pressure_angle = The pressure angle of the gear. // --- // min_teeth = If given, the minimum number of teeth on a gear that has acceptable undercut. function auto_profile_shift(teeth, pressure_angle=20, min_teeth) = let( min_teeth = is_undef(min_teeth) ? 2 / pow(sin(pressure_angle),2) : min_teeth ) teeth > floor(min_teeth)? 0 : 1 - (teeth / min_teeth); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap