////////////////////////////////////////////////////////////////////// // LibFile: shapes.scad // Common useful shapes and structured objects. // To use, add the following lines to the beginning of your file: // ``` // include // ``` ////////////////////////////////////////////////////////////////////// // Section: Cuboids // Module: cuboid() // // Description: // Creates a cube or cuboid object, with optional chamfering or rounding. // Negative chamfers and roundings can be applied to create external masks, // but only apply to edges around the top or bottom faces. // // Arguments: // size = The size of the cube. // chamfer = Size of chamfer, inset from sides. Default: No chamfering. // rounding = Radius of the edge rounding. Default: No rounding. // edges = Edges to chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges. // except_edges = Edges to explicitly NOT chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges. // trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true` // p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=ALLNEG`. // p2 = If given with `p1`, defines the cornerpoints of the cuboid. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP` // // Example: Simple regular cube. // cuboid(40); // Example: Cube with minimum cornerpoint given. // cuboid(20, p1=[10,0,0]); // Example: Rectangular cube, with given X, Y, and Z sizes. // cuboid([20,40,50]); // Example: Cube by Opposing Corners. // cuboid(p1=[0,10,0], p2=[20,30,30]); // Example: Chamferred Edges and Corners. // cuboid([30,40,50], chamfer=5); // Example: Chamferred Edges, Untrimmed Corners. // cuboid([30,40,50], chamfer=5, trimcorners=false); // Example: Rounded Edges and Corners // cuboid([30,40,50], rounding=10); // Example: Rounded Edges, Untrimmed Corners // cuboid([30,40,50], rounding=10, trimcorners=false); // Example: Chamferring Selected Edges // cuboid([30,40,50], chamfer=5, edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], $fn=24); // Example: Rounding Selected Edges // cuboid([30,40,50], rounding=5, edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], $fn=24); // Example: Negative Chamferring // cuboid([30,40,50], chamfer=-5, edges=[TOP,BOT], except_edges=RIGHT, $fn=24); // Example: Negative Chamferring, Untrimmed Corners // cuboid([30,40,50], chamfer=-5, edges=[TOP,BOT], except_edges=RIGHT, trimcorners=false, $fn=24); // Example: Negative Rounding // cuboid([30,40,50], rounding=-5, edges=[TOP,BOT], except_edges=RIGHT, $fn=24); // Example: Negative Rounding, Untrimmed Corners // cuboid([30,40,50], rounding=-5, edges=[TOP,BOT], except_edges=RIGHT, trimcorners=false, $fn=24); // Example: Standard Connectors // cuboid(40) show_anchors(); module cuboid( size=[1,1,1], p1=undef, p2=undef, chamfer=undef, rounding=undef, edges=EDGES_ALL, except_edges=[], trimcorners=true, anchor=CENTER, spin=0, orient=UP ) { size = scalar_vec3(size); edges = edges(edges, except=except_edges); if (!is_undef(p1)) { if (!is_undef(p2)) { translate(pointlist_bounds([p1,p2])[0]) { cuboid(size=vabs(p2-p1), chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children(); } } else { translate(p1) { cuboid(size=size, chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children(); } } } else { if (chamfer != undef) { if (any(edges[0])) assert(chamfer <= size.y/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube length or height."); if (any(edges[1])) assert(chamfer <= size.x/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube width or height."); if (any(edges[2])) assert(chamfer <= size.x/2 && chamfer <=size.y/2, "chamfer must be smaller than half the cube width or length."); } if (rounding != undef) { if (any(edges[0])) assert(rounding <= size.y/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube length or height."); if (any(edges[1])) assert(rounding <= size.x/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube width or height."); if (any(edges[2])) assert(rounding <= size.x/2 && rounding<=size.y/2, "rounding radius must be smaller than half the cube width or length."); } majrots = [[0,90,0], [90,0,0], [0,0,0]]; attachable(anchor,spin,orient, size=size) { if (chamfer != undef) { if (edges == EDGES_ALL && trimcorners) { if (chamfer<0) { cube(size, center=true) { attach(TOP) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP); attach(BOT) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP); } } else { isize = [for (v = size) max(0.001, v-2*chamfer)]; hull() { cube([size.x, isize.y, isize.z], center=true); cube([isize.x, size.y, isize.z], center=true); cube([isize.x, isize.y, size.z], center=true); } } } else if (chamfer<0) { ach = abs(chamfer); cube(size, center=true); // External-Chamfer mask edges difference() { union() { for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(vmul(vec/2, size+[ach,ach,-ach])) { rotate(majrots[axis]) { cube([ach, ach, size[axis]], center=true); } } } } // Add multi-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { if (corner_edge_count(edges, [xa,ya,za]) > 1) { translate(vmul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) { cube([ach+0.01,ach+0.01,ach], center=true); } } } } } // Remove bevels from overhangs. for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(vmul(vec/2, size+[2*ach,2*ach,-2*ach])) { rotate(majrots[axis]) { zrot(45) cube([ach*sqrt(2), ach*sqrt(2), size[axis]+2.1*ach], center=true); } } } } } } else { difference() { cube(size, center=true); // Chamfer edges for (i = [0:3], axis=[0:2]) { if (edges[axis][i]>0) { translate(vmul(EDGE_OFFSETS[axis][i], size/2)) { rotate(majrots[axis]) { zrot(45) cube([chamfer*sqrt(2), chamfer*sqrt(2), size[axis]+0.01], center=true); } } } } // Chamfer triple-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { if (corner_edge_count(edges, [xa,ya,za]) > 2) { translate(vmul([xa,ya,za]/2, size-[1,1,1]*chamfer*4/3)) { rot(from=UP, to=[xa,ya,za]) { cube(chamfer*3, anchor=BOTTOM); } } } } } } } } else if (rounding != undef) { sides = quantup(segs(rounding),4); if (edges == EDGES_ALL) { if(rounding<0) { cube(size, center=true); zflip_copy() { up(size.z/2) { difference() { down(-rounding/2) cube([size.x-2*rounding, size.y-2*rounding, -rounding], center=true); down(-rounding) { ycopies(size.y-2*rounding) xcyl(l=size.x-3*rounding, r=-rounding); xcopies(size.x-2*rounding) ycyl(l=size.y-3*rounding, r=-rounding); } } } } } else { isize = [for (v = size) max(0.001, v-2*rounding)]; minkowski() { cube(isize, center=true); if (trimcorners) { spheroid(r=rounding, $fn=sides); } else { intersection() { cyl(r=rounding, h=rounding*2, $fn=sides); rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides); rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides); } } } } } else if (rounding<0) { ard = abs(rounding); cube(size, center=true); // External-Chamfer mask edges difference() { union() { for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(vmul(vec/2, size+[ard,ard,-ard])) { rotate(majrots[axis]) { cube([ard, ard, size[axis]], center=true); } } } } // Add multi-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { if (corner_edge_count(edges, [xa,ya,za]) > 1) { translate(vmul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) { cube([ard+0.01,ard+0.01,ard], center=true); } } } } } // Remove roundings from overhangs. for (i = [0:3], axis=[0:1]) { if (edges[axis][i]>0) { vec = EDGE_OFFSETS[axis][i]; translate(vmul(vec/2, size+[2*ard,2*ard,-2*ard])) { rotate(majrots[axis]) { cyl(l=size[axis]+2.1*ard, r=ard); } } } } } } else { difference() { cube(size, center=true); // Round edges. for (i = [0:3], axis=[0:2]) { if (edges[axis][i]>0) { difference() { translate(vmul(EDGE_OFFSETS[axis][i], size/2)) { rotate(majrots[axis]) cube([rounding*2, rounding*2, size[axis]+0.1], center=true); } translate(vmul(EDGE_OFFSETS[axis][i], size/2 - [1,1,1]*rounding)) { rotate(majrots[axis]) cyl(h=size[axis]+0.2, r=rounding, $fn=sides); } } } } // Round triple-edge corners. if (trimcorners) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { if (corner_edge_count(edges, [xa,ya,za]) > 2) { difference() { translate(vmul([xa,ya,za], size/2)) { cube(rounding*2, center=true); } translate(vmul([xa,ya,za], size/2-[1,1,1]*rounding)) { spheroid(r=rounding, $fn=sides); } } } } } } } } else { cube(size=size, center=true); } children(); } } } // Section: Prismoids // Function&Module: prismoid() // // Usage: As Module // prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]); // prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]); // Usage: As Function // vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]); // vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]); // // Description: // Creates a rectangular prismoid shape with optional roundovers and chamfering. // You can only round or chamfer the vertical(ish) edges. For those edges, you can // specify rounding and/or chamferring per-edge, and for top and bottom separately. // Note: if using chamfers or rounding, you **must** also include the hull.scad file: // ``` // include // ``` // // Arguments: // size1 = [width, length] of the axis-negative end of the prism. // size2 = [width, length] of the axis-positive end of the prism. // h|l = Height of the prism. // shift = [X,Y] amount to shift the center of the top with respect to the center of the bottom. // rounding = The roundover radius for the edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding) // rounding1 = The roundover radius for the bottom corners of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // rounding2 = The roundover radius for the top corners of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // chamfer = The chamfer size for the edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer) // chamfer1 = The chamfer size for the bottom corners of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // chamfer2 = The chamfer size for the top corners of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: Rectangular Pyramid // prismoid([40,40], [0,0], h=20); // Example: Prism // prismoid(size1=[40,40], size2=[0,40], h=20); // Example: Truncated Pyramid // prismoid(size1=[35,50], size2=[20,30], h=20); // Example: Wedge // prismoid(size1=[60,35], size2=[30,0], h=30); // Example: Truncated Tetrahedron // prismoid(size1=[10,40], size2=[40,10], h=40); // Example: Inverted Truncated Pyramid // prismoid(size1=[15,5], size2=[30,20], h=20); // Example: Right Prism // prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30); // Example(FlatSpin): Shifting/Skewing // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]); // Example: Rounding // include // prismoid(100, 80, rounding=10, h=30); // Example: Outer Chamfer Only // include // prismoid(100, 80, chamfer=5, h=30); // Example: Gradiant Rounding // include // prismoid(100, 80, rounding1=10, rounding2=0, h=30); // Example: Per Corner Rounding // include // prismoid(100, 80, rounding=[0,5,10,15], h=30); // Example: Per Corner Chamfer // include // prismoid(100, 80, chamfer=[0,5,10,15], h=30); // Example: Mixing Chamfer and Rounding // include // prismoid(100, 80, chamfer=[0,5,0,10], rounding=[5,0,10,0], h=30); // Example: Really Mixing It Up // include // prismoid( // size1=[100,80], size2=[80,60], h=20, // chamfer1=[0,5,0,10], chamfer2=[5,0,10,0], // rounding1=[5,0,10,0], rounding2=[0,5,0,10] // ); // Example(Spin): Standard Connectors // prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]) // show_anchors(); module prismoid( size1, size2, h, shift=[0,0], rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, center, anchor, spin=0, orient=UP ) { assert(is_num(size1) || is_vector(size1,2)); assert(is_num(size2) || is_vector(size2,2)); assert(is_num(h) || is_num(l)); assert(is_vector(shift,2)); assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument."); assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument."); assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument."); assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument."); assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument."); assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument."); eps = pow(2,-14); size1 = is_num(size1)? [size1,size1] : size1; size2 = is_num(size2)? [size2,size2] : size2; s1 = [max(size1.x, eps), max(size1.y, eps)]; s2 = [max(size2.x, eps), max(size2.y, eps)]; rounding1 = default(rounding1, rounding); rounding2 = default(rounding2, rounding); chamfer1 = default(chamfer1, chamfer); chamfer2 = default(chamfer2, chamfer); anchor = get_anchor(anchor, center, BOT, BOT); vnf = prismoid( size1=size1, size2=size2, h=h, shift=shift, rounding=rounding, rounding1=rounding1, rounding2=rounding2, chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2, l=l, center=CENTER ); attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) { vnf_polyhedron(vnf, convexity=4); children(); } } function prismoid( size1, size2, h, shift=[0,0], rounding=0, rounding1, rounding2, chamfer=0, chamfer1, chamfer2, l, center, anchor=DOWN, spin=0, orient=UP ) = assert(is_vector(size1,2)) assert(is_vector(size2,2)) assert(is_num(h) || is_num(l)) assert(is_vector(shift,2)) assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.") assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.") assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.") assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.") assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.") assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument.") let( eps = pow(2,-14), h = first_defined([h,l,1]), shiftby = point3d(point2d(shift)), s1 = [max(size1.x, eps), max(size1.y, eps)], s2 = [max(size2.x, eps), max(size2.y, eps)], rounding1 = default(rounding1, rounding), rounding2 = default(rounding2, rounding), chamfer1 = default(chamfer1, chamfer), chamfer2 = default(chamfer2, chamfer), anchor = get_anchor(anchor, center, BOT, BOT), vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? ( let( corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5, points = [ for (p=corners) point3d(vmul(s2,p), +h/2) + shiftby, for (p=corners) point3d(vmul(s1,p), -h/2) ], faces=[ [0,1,2], [0,2,3], [0,4,5], [0,5,1], [1,5,6], [1,6,2], [2,6,7], [2,7,3], [3,7,4], [3,4,0], [4,7,6], [4,6,5], ] ) [points, faces] ) : ( let( path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR), path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR), points = [ each path3d(path1, -h/2), each path3d(move(shiftby, p=path2), +h/2), ], faces = hull(points) ) [points, faces] ) ) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf); // Module: right_triangle() // // Usage: // right_triangle(size, [center]); // // Description: // Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant. // // Arguments: // size = [width, thickness, height] // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `ALLNEG` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: Centered // right_triangle([60, 40, 10], center=true); // Example: *Non*-Centered // right_triangle([60, 40, 10]); // Example: Standard Connectors // right_triangle([60, 40, 15]) show_anchors(); module right_triangle(size=[1, 1, 1], center, anchor, spin=0, orient=UP) { size = scalar_vec3(size); anchor = get_anchor(anchor, center, ALLNEG, ALLNEG); attachable(anchor,spin,orient, size=size) { linear_extrude(height=size.z, convexity=2, center=true) { polygon([[-size.x/2,-size.y/2], [-size.x/2,size.y/2], [size.x/2,-size.y/2]]); } children(); } } // Section: Cylindroids // Module: cyl() // // Description: // Creates cylinders in various anchors and orientations, // with optional rounding and chamfers. You can use `r` and `l` // interchangably, and all variants allow specifying size // by either `r`|`d`, or `r1`|`d1` and `r2`|`d2`. // Note that that chamfers and rounding cannot cross the // midpoint of the cylinder's length. // // Usage: Normal Cylinders // cyl(l|h, r|d, [circum], [realign], [center]); // cyl(l|h, r1|d1, r2/d2, [circum], [realign], [center]); // // Usage: Chamferred Cylinders // cyl(l|h, r|d, chamfer, [chamfang], [from_end], [circum], [realign], [center]); // cyl(l|h, r|d, chamfer1, [chamfang1], [from_end], [circum], [realign], [center]); // cyl(l|h, r|d, chamfer2, [chamfang2], [from_end], [circum], [realign], [center]); // cyl(l|h, r|d, chamfer1, chamfer2, [chamfang1], [chamfang2], [from_end], [circum], [realign], [center]); // // Usage: Rounded End Cylinders // cyl(l|h, r|d, rounding, [circum], [realign], [center]); // cyl(l|h, r|d, rounding1, [circum], [realign], [center]); // cyl(l|h, r|d, rounding2, [circum], [realign], [center]); // cyl(l|h, r|d, rounding1, rounding2, [circum], [realign], [center]); // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: 1.0) // r = Radius of cylinder. // r1 = Radius of the negative (X-, Y-, Z-) end of cylinder. // r2 = Radius of the positive (X+, Y+, Z+) end of cylinder. // d = Diameter of cylinder. // d1 = Diameter of the negative (X-, Y-, Z-) end of cylinder. // d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder. // circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false` // chamfer = The size of the chamfers on the ends of the cylinder. Default: none. // chamfer1 = The size of the chamfer on the axis-negative end of the cylinder. Default: none. // chamfer2 = The size of the chamfer on the axis-positive end of the cylinder. Default: none. // chamfang = The angle in degrees of the chamfers on the ends of the cylinder. // chamfang1 = The angle in degrees of the chamfer on the axis-negative end of the cylinder. // chamfang2 = The angle in degrees of the chamfer on the axis-positive end of the cylinder. // from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`. // rounding = The radius of the rounding on the ends of the cylinder. Default: none. // rounding1 = The radius of the rounding on the axis-negative end of the cylinder. // rounding2 = The radius of the rounding on the axis-positive end of the cylinder. // realign = If true, rotate the cylinder by half the angle of one face. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`. // // Example: By Radius // xdistribute(30) { // cyl(l=40, r=10); // cyl(l=40, r1=10, r2=5); // } // // Example: By Diameter // xdistribute(30) { // cyl(l=40, d=25); // cyl(l=40, d1=25, d2=10); // } // // Example: Chamferring // xdistribute(60) { // // Shown Left to right. // cyl(l=40, d=40, chamfer=7); // Default chamfang=45 // cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=false); // cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=true); // } // // Example: Rounding // cyl(l=40, d=40, rounding=10); // // Example: Heterogenous Chamfers and Rounding // ydistribute(80) { // // Shown Front to Back. // cyl(l=40, d=40, rounding1=15, orient=UP); // cyl(l=40, d=40, chamfer2=5, orient=UP); // cyl(l=40, d=40, chamfer1=12, rounding2=10, orient=UP); // } // // Example: Putting it all together // cyl(l=40, d1=25, d2=15, chamfer1=10, chamfang1=30, from_end=true, rounding2=5); // // Example: External Chamfers // cyl(l=50, r=30, chamfer=-5, chamfang=30, $fa=1, $fs=1); // // Example: External Roundings // cyl(l=50, r=30, rounding1=-5, rounding2=5, $fa=1, $fs=1); // // Example: Standard Connectors // xdistribute(40) { // cyl(l=30, d=25) show_anchors(); // cyl(l=30, d1=25, d2=10) show_anchors(); // } // module cyl( l=undef, h=undef, r=undef, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, chamfer=undef, chamfer1=undef, chamfer2=undef, chamfang=undef, chamfang1=undef, chamfang2=undef, rounding=undef, rounding1=undef, rounding2=undef, circum=false, realign=false, from_end=false, center, anchor, spin=0, orient=UP ) { r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1); l = first_defined([l, h, 1]); sides = segs(max(r1,r2)); sc = circum? 1/cos(180/sides) : 1; phi = atan2(l, r2-r1); anchor = get_anchor(anchor,center,BOT,CENTER); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { zrot(realign? 180/sides : 0) { if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])) { cylinder(h=l, r1=r1*sc, r2=r2*sc, center=true, $fn=sides); } else { vang = atan2(l, r1-r2)/2; chang1 = 90-first_defined([chamfang1, chamfang, vang]); chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]); cham1 = first_defined([chamfer1, chamfer]) * (from_end? 1 : tan(chang1)); cham2 = first_defined([chamfer2, chamfer]) * (from_end? 1 : tan(chang2)); fil1 = first_defined([rounding1, rounding]); fil2 = first_defined([rounding2, rounding]); if (chamfer != undef) { assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder."); assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder."); } if (cham1 != undef) { assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder."); } if (cham2 != undef) { assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder."); } if (rounding != undef) { assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder."); assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder."); } if (fil1 != undef) { assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder."); } if (fil2 != undef) { assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder."); } dy1 = abs(first_defined([cham1, fil1, 0])); dy2 = abs(first_defined([cham2, fil2, 0])); assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder."); path = concat( [[0,l/2]], !is_undef(cham2)? ( let( p1 = [r2-cham2/tan(chang2),l/2], p2 = lerp([r2,l/2],[r1,-l/2],abs(cham2)/l) ) [p1,p2] ) : !is_undef(fil2)? ( let( cn = find_circle_2tangents([r2-fil2,l/2], [r2,l/2], [r1,-l/2], r=abs(fil2)), ang = fil2<0? phi : phi-180, steps = ceil(abs(ang)/360*segs(abs(fil2))), step = ang/steps, pts = [for (i=[0:1:steps]) let(a=90+i*step) cn[0]+abs(fil2)*[cos(a),sin(a)]] ) pts ) : [[r2,l/2]], !is_undef(cham1)? ( let( p1 = lerp([r1,-l/2],[r2,l/2],abs(cham1)/l), p2 = [r1-cham1/tan(chang1),-l/2] ) [p1,p2] ) : !is_undef(fil1)? ( let( cn = find_circle_2tangents([r1-fil1,-l/2], [r1,-l/2], [r2,l/2], r=abs(fil1)), ang = fil1<0? 180-phi : -phi, steps = ceil(abs(ang)/360*segs(abs(fil1))), step = ang/steps, pts = [for (i=[0:1:steps]) let(a=(fil1<0?180:0)+(phi-90)+i*step) cn[0]+abs(fil1)*[cos(a),sin(a)]] ) pts ) : [[r1,-l/2]], [[0,-l/2]] ); rotate_extrude(convexity=2) { polygon(path); } } } children(); } } // Module: xcyl() // // Description: // Creates a cylinder oriented along the X axis. // // Usage: // xcyl(l|h, r|d, [anchor]); // xcyl(l|h, r1|d1, r2|d2, [anchor]); // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: `1.0`) // r = Radius of cylinder. // r1 = Optional radius of left (X-) end of cylinder. // r2 = Optional radius of right (X+) end of cylinder. // d = Optional diameter of cylinder. (use instead of `r`) // d1 = Optional diameter of left (X-) end of cylinder. // d2 = Optional diameter of right (X+) end of cylinder. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // // Example: By Radius // ydistribute(50) { // xcyl(l=35, r=10); // xcyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // ydistribute(50) { // xcyl(l=35, d=20); // xcyl(l=35, d1=30, d2=10); // } module xcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER) { anchor = rot(from=RIGHT, to=UP, p=anchor); cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=RIGHT, anchor=anchor) children(); } // Module: ycyl() // // Description: // Creates a cylinder oriented along the Y axis. // // Usage: // ycyl(l|h, r|d, [anchor]); // ycyl(l|h, r1|d1, r2|d2, [anchor]); // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: `1.0`) // r = Radius of cylinder. // r1 = Radius of front (Y-) end of cone. // r2 = Radius of back (Y+) end of one. // d = Diameter of cylinder. // d1 = Diameter of front (Y-) end of one. // d2 = Diameter of back (Y+) end of one. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // // Example: By Radius // xdistribute(50) { // ycyl(l=35, r=10); // ycyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // xdistribute(50) { // ycyl(l=35, d=20); // ycyl(l=35, d1=30, d2=10); // } module ycyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER) { anchor = rot(from=BACK, to=UP, p=anchor); cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=BACK, anchor=anchor) children(); } // Module: zcyl() // // Description: // Creates a cylinder oriented along the Z axis. // // Usage: // zcyl(l|h, r|d, [anchor]); // zcyl(l|h, r1|d1, r2|d2, [anchor]); // // Arguments: // l / h = Length of cylinder along oriented axis. (Default: 1.0) // r = Radius of cylinder. // r1 = Radius of front (Y-) end of cone. // r2 = Radius of back (Y+) end of one. // d = Diameter of cylinder. // d1 = Diameter of front (Y-) end of one. // d2 = Diameter of back (Y+) end of one. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // // Example: By Radius // xdistribute(50) { // zcyl(l=35, r=10); // zcyl(l=35, r1=15, r2=5); // } // // Example: By Diameter // xdistribute(50) { // zcyl(l=35, d=20); // zcyl(l=35, d1=30, d2=10); // } module zcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=undef, anchor=CENTER) { cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) children(); } // Module: tube() // // Description: // Makes a hollow tube with the given outer size and wall thickness. // // Usage: // tube(h|l, ir|id, wall, [realign]); // tube(h|l, or|od, wall, [realign]); // tube(h|l, ir|id, or|od, [realign]); // tube(h|l, ir1|id1, ir2|id2, wall, [realign]); // tube(h|l, or1|od1, or2|od2, wall, [realign]); // tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]); // // Arguments: // h|l = height of tube. (Default: 1) // or = Outer radius of tube. // or1 = Outer radius of bottom of tube. (Default: value of r) // or2 = Outer radius of top of tube. (Default: value of r) // od = Outer diameter of tube. // od1 = Outer diameter of bottom of tube. // od2 = Outer diameter of top of tube. // wall = horizontal thickness of tube wall. (Default 0.5) // ir = Inner radius of tube. // ir1 = Inner radius of bottom of tube. // ir2 = Inner radius of top of tube. // id = Inner diameter of tube. // id1 = Inner diameter of bottom of tube. // id2 = Inner diameter of top of tube. // realign = If true, rotate the tube by half the angle of one face. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: These all Produce the Same Tube // tube(h=30, or=40, wall=5); // tube(h=30, ir=35, wall=5); // tube(h=30, or=40, ir=35); // tube(h=30, od=80, id=70); // Example: These all Produce the Same Conical Tube // tube(h=30, or1=40, or2=25, wall=5); // tube(h=30, ir1=35, or2=20, wall=5); // tube(h=30, or1=40, or2=25, ir1=35, ir2=20); // Example: Circular Wedge // tube(h=30, or1=40, or2=30, ir1=20, ir2=30); // Example: Standard Connectors // tube(h=30, or=40, wall=5) show_anchors(); module tube( h, wall=undef, r=undef, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, or=undef, or1=undef, or2=undef, od=undef, od1=undef, od2=undef, ir=undef, id=undef, ir1=undef, ir2=undef, id1=undef, id2=undef, anchor, spin=0, orient=UP, center, realign=false, l ) { h = first_defined([h,l,1]); r1 = first_defined([or1, od1/2, r1, d1/2, or, od/2, r, d/2, ir1+wall, id1/2+wall, ir+wall, id/2+wall]); r2 = first_defined([or2, od2/2, r2, d2/2, or, od/2, r, d/2, ir2+wall, id2/2+wall, ir+wall, id/2+wall]); ir1 = first_defined([ir1, id1/2, ir, id/2, r1-wall, d1/2-wall, r-wall, d/2-wall]); ir2 = first_defined([ir2, id2/2, ir, id/2, r2-wall, d2/2-wall, r-wall, d/2-wall]); assert(ir1 <= r1, "Inner radius is larger than outer radius."); assert(ir2 <= r2, "Inner radius is larger than outer radius."); sides = segs(max(r1,r2)); anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { zrot(realign? 180/sides : 0) { difference() { cyl(h=h, r1=r1, r2=r2, $fn=sides) children(); cyl(h=h+0.05, r1=ir1, r2=ir2); } } children(); } } // Module: rect_tube() // Usage: // rect_tube(size, wall, h, [center]); // rect_tube(isize, wall, h, [center]); // rect_tube(size, isize, h, [center]); // rect_tube(size1, size2, wall, h, [center]); // rect_tube(isize1, isize2, wall, h, [center]); // rect_tube(size1, size2, isize1, isize2, h, [center]); // Description: // Creates a rectangular or prismoid tube with optional roundovers and/or chamfers. // You can only round or chamfer the vertical(ish) edges. For those edges, you can // specify rounding and/or chamferring per-edge, and for top and bottom, inside and // outside separately. // Note: if using chamfers or rounding, you **must** also include the hull.scad file: // ``` // include // ``` // Arguments: // size = The outer [X,Y] size of the rectangular tube. // isize = The inner [X,Y] size of the rectangular tube. // h|l = The height or length of the rectangular tube. Default: 1 // wall = The thickness of the rectangular tube wall. // size1 = The [X,Y] side of the outside of the bottom of the rectangular tube. // size2 = The [X,Y] side of the outside of the top of the rectangular tube. // isize1 = The [X,Y] side of the inside of the bottom of the rectangular tube. // isize2 = The [X,Y] side of the inside of the top of the rectangular tube. // rounding = The roundover radius for the outside edges of the rectangular tube. // rounding1 = The roundover radius for the outside bottom corner of the rectangular tube. // rounding2 = The roundover radius for the outside top corner of the rectangular tube. // chamfer = The chamfer size for the outside edges of the rectangular tube. // chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube. // chamfer2 = The chamfer size for the outside top corner of the rectangular tube. // irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding` // irounding1 = The roundover radius for the inside bottom corner of the rectangular tube. // irounding2 = The roundover radius for the inside top corner of the rectangular tube. // ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer` // ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube. // ichamfer2 = The chamfer size for the inside top corner of the rectangular tube. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `BOTTOM` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Examples: // rect_tube(size=50, wall=5, h=30); // rect_tube(size=[100,60], wall=5, h=30); // rect_tube(isize=[60,80], wall=5, h=30); // rect_tube(size=[100,60], isize=[90,50], h=30); // rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30); // rect_tube(size1=[100,60], size2=[70,40], isize1=[40,20], isize2=[65,35], h=15); // Example: Outer Rounding Only // include // rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30); // Example: Outer Chamfer Only // include // rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30); // Example: Outer Rounding, Inner Chamfer // include // rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30); // Example: Inner Rounding, Outer Chamfer // include // rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30); // Example: Gradiant Rounding // include // rect_tube(size1=100, size2=80, wall=5, rounding1=10, rounding2=0, irounding1=8, irounding2=0, h=30); // Example: Per Corner Rounding // include // rect_tube(size=100, wall=10, rounding=[0,5,10,15], irounding=0, h=30); // Example: Per Corner Chamfer // include // rect_tube(size=100, wall=10, chamfer=[0,5,10,15], ichamfer=0, h=30); // Example: Mixing Chamfer and Rounding // include // rect_tube(size=100, wall=10, chamfer=[0,5,0,10], ichamfer=0, rounding=[5,0,10,0], irounding=0, h=30); // Example: Really Mixing It Up // include // rect_tube( // size1=[100,80], size2=[80,60], // isize1=[50,30], isize2=[70,50], h=20, // chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8], // chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0], // rounding1=[5,0,10,0], irounding1=[3,0,8,0], // rounding2=[0,5,0,10], irounding2=[0,3,0,8] // ); module rect_tube( size, isize, h, shift=[0,0], wall, size1, size2, isize1, isize2, rounding=0, rounding1, rounding2, irounding=0, irounding1, irounding2, chamfer=0, chamfer1, chamfer2, ichamfer=0, ichamfer1, ichamfer2, anchor, spin=0, orient=UP, center, l ) { h = first_defined([h,l,1]); assert(is_num(h), "l or h argument required."); assert(is_vector(shift,2)); s1 = is_num(size1)? [size1, size1] : is_vector(size1,2)? size1 : is_num(size)? [size, size] : is_vector(size,2)? size : undef; s2 = is_num(size2)? [size2, size2] : is_vector(size2,2)? size2 : is_num(size)? [size, size] : is_vector(size,2)? size : undef; is1 = is_num(isize1)? [isize1, isize1] : is_vector(isize1,2)? isize1 : is_num(isize)? [isize, isize] : is_vector(isize,2)? isize : undef; is2 = is_num(isize2)? [isize2, isize2] : is_vector(isize2,2)? isize2 : is_num(isize)? [isize, isize] : is_vector(isize,2)? isize : undef; size1 = is_def(s1)? s1 : (is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) : undef; size2 = is_def(s2)? s2 : (is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) : undef; isize1 = is_def(is1)? is1 : (is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) : undef; isize2 = is_def(is2)? is2 : (is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) : undef; assert(wall==undef || is_num(wall)); assert(size1!=undef, "Bad size/size1 argument."); assert(size2!=undef, "Bad size/size2 argument."); assert(isize1!=undef, "Bad isize/isize1 argument."); assert(isize2!=undef, "Bad isize/isize2 argument."); assert(isize1.x < size1.x, "Inner size is larger than outer size."); assert(isize1.y < size1.y, "Inner size is larger than outer size."); assert(isize2.x < size2.x, "Inner size is larger than outer size."); assert(isize2.y < size2.y, "Inner size is larger than outer size."); anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) { diff("_H_o_L_e_") prismoid( size1, size2, h=h, shift=shift, rounding=rounding, rounding1=rounding1, rounding2=rounding2, chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2, anchor=CTR ) { children(); tags("_H_o_L_e_") prismoid( isize1, isize2, h=h+0.05, shift=shift, rounding=irounding, rounding1=irounding1, rounding2=irounding2, chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2, anchor=CTR ); } children(); } } // Module: torus() // // Descriptiom: // Creates a torus shape. // // Usage: // torus(r|d, r2|d2); // torus(or|od, ir|id); // // Arguments: // r = major radius of torus ring. (use with of 'r2', or 'd2') // r2 = minor radius of torus ring. (use with of 'r', or 'd') // d = major diameter of torus ring. (use with of 'r2', or 'd2') // d2 = minor diameter of torus ring. (use with of 'r', or 'd') // or = outer radius of the torus. (use with 'ir', or 'id') // ir = inside radius of the torus. (use with 'or', or 'od') // od = outer diameter of the torus. (use with 'ir' or 'id') // id = inside diameter of the torus. (use with 'or' or 'od') // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: // // These all produce the same torus. // torus(r=22.5, r2=7.5); // torus(d=45, d2=15); // torus(or=30, ir=15); // torus(od=60, id=30); // Example: Standard Connectors // torus(od=60, id=30) show_anchors(); module torus( r=undef, d=undef, r2=undef, d2=undef, or=undef, od=undef, ir=undef, id=undef, center, anchor, spin=0, orient=UP ) { orr = get_radius(r=or, d=od, dflt=1.0); irr = get_radius(r=ir, d=id, dflt=0.5); majrad = get_radius(r=r, d=d, dflt=(orr+irr)/2); minrad = get_radius(r=r2, d=d2, dflt=(orr-irr)/2); anchor = get_anchor(anchor, center, BOT, CENTER); attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) { rotate_extrude(convexity=4) { right(majrad) circle(r=minrad); } children(); } } // Section: Spheroid // Function&Module: spheroid() // Usage: As Module // spheroid(r|d, [circum], [style]) // Usage: As Function // vnf = spheroid(r|d, [circum], [style]) // Description: // Creates a spheroid object, with support for anchoring and attachments. // This is a drop-in replacement for the built-in `sphere()` module. // When called as a function, returns a [VNF](vnf.scad) for a spheroid. // Arguments: // r = Radius of the spheroid. // d = Diameter of the spheroid. // circum = If true, the spheroid is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes) // style = The style of the spheroid's construction. One of "orig", "aligned", "stagger", or "icosa". Default: "aligned" // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // Example: By Radius // spheroid(r=50); // Example: By Diameter // spheroid(d=100); // Example: style="orig" // spheroid(d=100, style="orig", $fn=10); // Example: style="aligned" // spheroid(d=100, style="aligned", $fn=10); // Example: style="stagger" // spheroid(d=100, style="stagger", $fn=10); // Example: style="icosa" // spheroid(d=100, style="icosa", $fn=10); // // In "icosa" style, $fn is quantized // // to the nearest multiple of 5. // Example: Anchoring // spheroid(d=100, anchor=FRONT); // Example: Spin // spheroid(d=100, anchor=FRONT, spin=45); // Example: Orientation // spheroid(d=100, anchor=FRONT, spin=45, orient=FWD); // Example: Standard Connectors // spheroid(d=50) show_anchors(); // Example: Called as Function // vnf = spheroid(d=100, style="icosa"); // vnf_polyhedron(vnf); module spheroid(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); sides = segs(r); attachable(anchor,spin,orient, r=r) { if (style=="orig") { rotate_extrude(convexity=2,$fn=sides) { difference() { zrot(180/sides) oval(r=r, circum=circum, $fn=sides); left(r) square(2*r,center=true); } } } else if (style=="aligned") { rotate_extrude(convexity=2,$fn=sides) { difference() { oval(r=r, circum=circum, $fn=sides); left(r) square(2*r,center=true); } } } else { vnf = spheroid(r=r, circum=circum, style=style); vnf_polyhedron(vnf, convexity=2); } children(); } } function spheroid(r, d, circum=false, style="aligned", anchor=CENTER, spin=0, orient=UP) = let( r = get_radius(r=r, d=d, dflt=1), hsides = segs(r), vsides = max(2,ceil(hsides/2)), icosa_steps = round(max(5,hsides)/5), rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r, stagger = style=="stagger", verts = style=="orig"? [ for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides)) for (j=[0:1:hsides-1]) let(theta = j*360/hsides) spherical_to_xyz(rr, theta, phi), ] : style=="aligned" || style=="stagger"? [ spherical_to_xyz(rr, 0, 0), for (i=[1:1:vsides-1]) let(phi = i*180/vsides) for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides) spherical_to_xyz(rr, theta, phi), spherical_to_xyz(rr, 0, 180) ] : style=="icosa"? [ for (tb=[0,1], j=[0,2], i = [0:1:4]) let( theta0 = i*360/5, theta1 = (i-0.5)*360/5, theta2 = (i+0.5)*360/5, phi0 = 180/3 * j, phi1 = 180/3, v0 = spherical_to_xyz(1,theta0,phi0), v1 = spherical_to_xyz(1,theta1,phi1), v2 = spherical_to_xyz(1,theta2,phi1), ax0 = vector_axis(v0, v1), ang0 = vector_angle(v0, v1), ax1 = vector_axis(v0, v2), ang1 = vector_angle(v0, v2) ) for (k = [0:1:icosa_steps]) let( u = k/icosa_steps, vv0 = rot(ang0*u, ax0, p=v0), vv1 = rot(ang1*u, ax1, p=v0), ax2 = vector_axis(vv0, vv1), ang2 = vector_angle(vv0, vv1) ) for (l = [0:1:k]) let( v = k? l/k : 0, pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1) ) pt ] : assert(in_list(style,["orig","aligned","stagger","icosa"])), lv = len(verts), faces = style=="orig"? [ [for (i=[0:1:hsides-1]) hsides-i-1], [for (i=[0:1:hsides-1]) lv-hsides+i], for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [ [(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides], [(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides], ] ] : style=="aligned" || style=="stagger"? [ for (i=[0:1:hsides-1]) let( b2 = lv-2-hsides ) each [ [i+1, 0, ((i+1)%hsides)+1], [lv-1, b2+i+1, b2+((i+1)%hsides)+1], ], for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let( base = 1 + hsides*i ) each ( (stagger && i%2!=0)? [ [base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides], [base+j, base+(j+1)%hsides, base+hsides+j], ] : [ [base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides], [base+j, base+hsides+(j+1)%hsides, base+hsides+j], ] ) ] : style=="icosa"? let( pyr = [for (x=[0:1:icosa_steps+1]) x], tri = sum(pyr), soff = cumsum(pyr) ) [ for (tb=[0,1], j=[0,1], i = [0:1:4]) let( base = ((((tb*2) + j) * 5) + i) * tri ) for (k = [0:1:icosa_steps-1]) for (l = [0:1:k]) let( v1 = base + soff[k] + l, v2 = base + soff[k+1] + l, v3 = base + soff[k+1] + (l + 1), faces = [ if(l>0) [v1-1,v1,v2], [v1,v3,v2], ], faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces ) each faces2 ] : [] ) [reorient(anchor,spin,orient, r=r, p=verts), faces]; // Section: 3D Printing Shapes // Module: teardrop() // // Description: // Makes a teardrop shape in the XZ plane. Useful for 3D printable holes. // // Usage: // teardrop(r|d, l|h, [ang], [cap_h]) // // Arguments: // r = Radius of circular part of teardrop. (Default: 1) // d = Diameter of circular portion of bottom. (Use instead of r) // l = Thickness of teardrop. (Default: 1) // ang = Angle of hat walls from the Z axis. (Default: 45 degrees) // cap_h = If given, height above center where the shape will be truncated. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: Typical Shape // teardrop(r=30, h=10, ang=30); // Example: Crop Cap // teardrop(r=30, h=10, ang=30, cap_h=40); // Example: Close Crop // teardrop(r=30, h=10, ang=30, cap_h=20); module teardrop(r=undef, d=undef, l=undef, h=undef, ang=45, cap_h=undef, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); l = first_defined([l, h, 1]); size = [r*2,l,r*2]; attachable(anchor,spin,orient, size=size) { rot(from=UP,to=FWD) { linear_extrude(height=l, center=true, slices=2) { teardrop2d(r=r, ang=ang, cap_h=cap_h); } } children(); } } // Module: onion() // // Description: // Creates a sphere with a conical hat, to make a 3D teardrop. // // Usage: // onion(r|d, [maxang], [cap_h]); // // Arguments: // r = radius of spherical portion of the bottom. (Default: 1) // d = diameter of spherical portion of bottom. // cap_h = height above sphere center to truncate teardrop shape. // maxang = angle of cone on top from vertical. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: Typical Shape // onion(r=30, maxang=30); // Example: Crop Cap // onion(r=30, maxang=30, cap_h=40); // Example: Close Crop // onion(r=30, maxang=30, cap_h=20); // Example: Standard Connectors // onion(r=30, maxang=30, cap_h=40) show_anchors(); module onion(cap_h=undef, r=undef, d=undef, maxang=45, h=undef, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r, d=d, dflt=1); h = first_defined([cap_h, h]); maxd = 3*r/tan(maxang); anchors = [ ["cap", [0,0,h], UP, 0] ]; attachable(anchor,spin,orient, r=r, anchors=anchors) { rotate_extrude(convexity=2) { difference() { teardrop2d(r=r, ang=maxang, cap_h=h); left(r) square(size=[2*r,maxd], center=true); } } children(); } } // Section: Miscellaneous // Module: nil() // // Description: // Useful when you MUST pass a child to a module, but you want it to be nothing. module nil() union(){} // Module: noop() // // Description: // Passes through the children passed to it, with no action at all. // Useful while debugging when you want to replace a command. // // Arguments: // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` module noop(spin=0, orient=UP) attachable(CENTER,spin,orient, d=0.01) {nil(); children();} // Module: pie_slice() // // Description: // Creates a pie slice shape. // // Usage: // pie_slice(ang, l|h, r|d, [center]); // pie_slice(ang, l|h, r1|d1, r2|d2, [center]); // // Arguments: // ang = pie slice angle in degrees. // h = height of pie slice. // r = radius of pie slice. // r1 = bottom radius of pie slice. // r2 = top radius of pie slice. // d = diameter of pie slice. // d1 = bottom diameter of pie slice. // d2 = top diameter of pie slice. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`. // // Example: Cylindrical Pie Slice // pie_slice(ang=45, l=20, r=30); // Example: Conical Pie Slice // pie_slice(ang=60, l=20, d1=50, d2=70); module pie_slice( ang=30, l=undef, r=10, r1=undef, r2=undef, d=undef, d1=undef, d2=undef, h=undef, center, anchor, spin=0, orient=UP ) { l = first_defined([l, h, 1]); r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10); maxd = max(r1,r2)+0.1; anchor = get_anchor(anchor, center, BOT, BOT); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { difference() { cyl(r1=r1, r2=r2, h=l); if (ang<180) rotate(ang) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true); difference() { fwd(maxd/2) cube([2*maxd, maxd, l+0.2], center=true); if (ang>180) rotate(ang-180) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true); } } children(); } } // Module: interior_fillet() // // Description: // Creates a shape that can be unioned into a concave joint between two faces, to fillet them. // Center this part along the concave edge to be chamfered and union it in. // // Usage: // interior_fillet(l, r, [ang], [overlap]); // // Arguments: // l = length of edge to fillet. // r = radius of fillet. // ang = angle between faces to fillet. // overlap = overlap size for unioning with faces. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `FRONT+LEFT` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // // Example: // union() { // translate([0,2,-4]) cube([20, 4, 24], anchor=BOTTOM); // translate([0,-10,-4]) cube([20, 20, 4], anchor=BOTTOM); // color("green") interior_fillet(l=20, r=10, spin=180, orient=RIGHT); // } // // Example: // interior_fillet(l=40, r=10, spin=-90); // // Example: Using with Attachments // cube(50,center=true) { // position(FRONT+LEFT) // interior_fillet(l=50, r=10, spin=-90); // position(BOT+FRONT) // interior_fillet(l=50, r=10, spin=180, orient=RIGHT); // } module interior_fillet(l=1.0, r=1.0, ang=90, overlap=0.01, anchor=FRONT+LEFT, spin=0, orient=UP) { dy = r/tan(ang/2); steps = ceil(segs(r)*ang/360); step = ang/steps; attachable(anchor,spin,orient, size=[r,r,l]) { linear_extrude(height=l, convexity=4, center=true) { path = concat( [[0,0]], [for (i=[0:1:steps]) let(a=270-i*step) r*[cos(a),sin(a)]+[dy,r]] ); translate(-[r,r]/2) polygon(path); } children(); } } // Module: slot() // // Description: // Makes a linear slot with rounded ends, appropriate for bolts to slide along. // // Usage: // slot(h, l, r|d, [center]); // slot(h, p1, p2, r|d, [center]); // slot(h, l, r1|d1, r2|d2, [center]); // slot(h, p1, p2, r1|d1, r2|d2, [center]); // // Arguments: // p1 = center of starting circle of slot. // p2 = center of ending circle of slot. // l = length of slot along the X axis. // h = height of slot shape. (default: 10) // r = radius of slot circle. (default: 5) // r1 = bottom radius of slot cone. // r2 = top radius of slot cone. // d = diameter of slot circle. // d1 = bottom diameter of slot cone. // d2 = top diameter of slot cone. // // Example: Between Two Points // slot([0,0,0], [50,50,0], r1=5, r2=10, h=5); // Example: By Length // slot(l=50, r1=5, r2=10, h=5); module slot( p1=undef, p2=undef, h=10, l=undef, r=undef, r1=undef, r2=undef, d=undef, d1=undef, d2=undef ) { r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=5); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=5); sides = quantup(segs(max(r1, r2)), 4); // TODO: implement orient and anchors. hull() line_of(p1=p1, p2=p2, l=l, n=2) cyl(l=h, r1=r1, r2=r2, center=true, $fn=sides); } // Module: arced_slot() // // Description: // Makes an arced slot, appropriate for bolts to slide along. // // Usage: // arced_slot(h, r|d, sr|sd, [sa], [ea], [center], [$fn2]); // arced_slot(h, r|d, sr1|sd1, sr2|sd2, [sa], [ea], [center], [$fn2]); // // Arguments: // cp = Centerpoint of slot arc. Default: `[0, 0, 0]` // h = Height of slot arc shape. Default: `1` // r = Radius of slot arc. Default: `0.5` // d = Diameter of slot arc. Default: `1` // sr = Radius of slot channel. Default: `0.5` // sd = Diameter of slot channel. Default: `0.5` // sr1 = Bottom radius of slot channel cone. Use instead of `sr`. // sr2 = Top radius of slot channel cone. Use instead of `sr`. // sd1 = Bottom diameter of slot channel cone. Use instead of `sd`. // sd2 = Top diameter of slot channel cone. Use instead of `sd`. // sa = Starting angle. Default: `0` // ea = Ending angle. Default: `90` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP` // $fn2 = The `$fn` value to use on the small round endcaps. The major arcs are still based on `$fn`. Default: `$fn` // // Example(Med): Typical Arced Slot // arced_slot(d=60, h=5, sd=10, sa=60, ea=280); // Example(Med): Conical Arced Slot // arced_slot(r=60, h=5, sd1=10, sd2=15, sa=45, ea=180); module arced_slot( r=undef, d=undef, h=1.0, sr=undef, sr1=undef, sr2=undef, sd=undef, sd1=undef, sd2=undef, sa=0, ea=90, cp=[0,0,0], anchor=TOP, spin=0, orient=UP, $fn2 = undef ) { r = get_radius(r=r, d=d, dflt=2); sr1 = get_radius(r1=sr1, r=sr, d1=sd1, d=sd, dflt=2); sr2 = get_radius(r1=sr2, r=sr, d1=sd2, d=sd, dflt=2); fn_minor = first_defined([$fn2, $fn]); da = ea - sa; attachable(anchor,spin,orient, r1=r+sr1, r2=r+sr2, l=h) { translate(cp) { zrot(sa) { difference() { pie_slice(ang=da, l=h, r1=r+sr1, r2=r+sr2, orient=UP, anchor=CENTER); cyl(h=h+0.1, r1=r-sr1, r2=r-sr2); } right(r) cyl(h=h, r1=sr1, r2=sr2, $fn=fn_minor); zrot(da) right(r) cyl(h=h, r1=sr1, r2=sr2, $fn=fn_minor); } } children(); } } // Module: heightfield() // Usage: // heightfield(heightfield, [size], [bottom]); // Description: // Given a regular rectangular 2D grid of scalar values, generates a 3D surface where the height at // any given point is the scalar value for that position. // Arguments: // heightfield = The 2D rectangular array of heights. // size = The [X,Y] size of the surface to create. If given as a scalar, use it for both X and Y sizes. // bottom = The Z coordinate for the bottom of the heightfield object to create. Must be less than the minimum heightfield value. Default: 0 // convexity = Max number of times a line could intersect a wall of the surface being formed. // Example: // heightfield(size=[100,100], bottom=-20, heightfield=[ // for (x=[-180:4:180]) [for(y=[-180:4:180]) 10*cos(3*norm([x,y]))] // ]); // Example: // intersection() { // heightfield(size=[100,100], heightfield=[ // for (x=[-180:5:180]) [for(y=[-180:5:180]) 10+5*cos(3*x)*sin(3*y)] // ]); // cylinder(h=50,d=100); // } module heightfield(heightfield, size=[100,100], bottom=0, convexity=10) { size = is_num(size)? [size,size] : point2d(size); dim = array_dim(heightfield); assert(dim.x!=undef); assert(dim.y!=undef); assert(bottom