////////////////////////////////////////////////////////////////////// // LibFile: vectors.scad // Vector math functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// /* BSD 2-Clause License Copyright (c) 2017-2019, Revar Desmera All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Section: Vector Manipulation // Function: vmul() // Description: // Element-wise vector multiplication. Multiplies each element of vector `v1` by // the corresponding element of vector `v2`. Returns a vector of the products. // Arguments: // v1 = The first vector. // v2 = The second vector. // Example: // vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30] function vmul(v1, v2) = [for (i = [0:len(v1)-1]) v1[i]*v2[i]]; // Function: vdiv() // Description: // Element-wise vector division. Divides each element of vector `v1` by // the corresponding element of vector `v2`. Returns a vector of the quotients. // Arguments: // v1 = The first vector. // v2 = The second vector. // Example: // vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5] function vdiv(v1, v2) = [for (i = [0:len(v1)-1]) v1[i]/v2[i]]; // Function: vabs() // Description: Returns a vector of the absolute value of each element of vector `v`. // Arguments: // v = The vector to get the absolute values of. function vabs(v) = [for (x=v) abs(x)]; // Function: normalize() // Description: // Returns unit length normalized version of vector v. // Arguments: // v = The vector to normalize. function normalize(v) = v/norm(v); // Function: vector_angle() // Usage: // vector_angle(v1,v2); // Description: // Returns angle in degrees between two vectors of similar dimensions. // Arguments: // v1 = First vector. // v2 = Second vector. // NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain. function vector_angle(v1,v2) = assert(is_vector(v1)) assert(is_vector(v2)) acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1)); // Function: vector_axis() // Usage: // vector_xis(v1,v2); // Description: // Returns the vector perpendicular to both of the given vectors. // Arguments: // v1 = First vector. // v2 = Second vector. function vector_axis(v1,v2) = let( eps = 1e-6, v1 = point3d(v1/norm(v1)), v2 = point3d(v2/norm(v2)), v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 : (norm(vabs(v2)-UP) > eps)? UP : RIGHT ) normalize(cross(v1,v3)); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap