# Attachments Tutorial ## Attachables BOSL2 introduces the concept of attachables. You can do the following things with attachable shapes: * Control where the shape appears and how it is oriented by anchoring and specifying orientation and spin * Position or attach shapes relative to parent objects * Tag objects and then control boolean operations based on their tags. * Change the color of objects so that child objects are different colors than their parents The various attachment features may seem complex at first, but attachability is one of the most important features of the BOSL2 library. It enables you to position objects relative to other objects in your model instead of having to keep track of absolute positions. It makes models simpler, more intuitive, and easier to maintain. Almost all objects defined by BOSL2 are attachable. In addition, BOSL2 overrides the built-in definitions for `cube()`, `cylinder()`, `sphere()`, `square()`, `circle()` and `text()` and makes them attachable as well. However, some basic OpenSCAD built-in definitions are not attachable and will not work with the features described in this tutorial. The non-attachables are `polyhedron()`, `linear_extrude()`, `rotate_extrude()`, `surface()`, `projection()` and `polygon()`. Some of these have attachable alternatives: `vnf_polyhedron()`, `linear_sweep()`, `rotate_sweep()`, and `region()`. ## Anchoring Anchoring allows you to align a specified part of an object or point on an object with the origin. The alignment point can be the center of a side, the center of an edge, a corner, or some other distinguished point on the object. This is done by passing a vector or text string into the `anchor=` argument. For roughly cubical or prismoidal shapes, that vector points in the general direction of the side, edge, or corner that will be aligned to. For example, a vector of [1,0,-1] refers to the lower-right edge of the shape. Each vector component should be -1, 0, or 1: ```openscad-3D include // Anchor at upper-front-left corner cube([40,30,50], anchor=[-1,-1,1]); ``` ```openscad-3D include // Anchor at upper-right edge cube([40,30,50], anchor=[1,0,1]); ``` ```openscad-3D include // Anchor at bottom face cube([40,30,50], anchor=[0,0,-1]); ``` Since manually written vectors are not very intuitive, BOSL2 defines some standard directional vector constants that can be added together: Constant | Direction | Value -------- | --------- | ----------- `LEFT` | X- | `[-1, 0, 0]` `RIGHT` | X+ | `[ 1, 0, 0]` `FRONT`/`FORWARD`/`FWD` | Y− | `[ 0, −1, 0]` `BACK` | Y+ | `[ 0, 1, 0]` `BOTTOM`/`BOT`/`DOWN` | Z− (Y− in 2D) | `[ 0, 0, −1]` (`[0, −1]` in 2D.) `TOP`/`UP` | Z+ (Y+ in 2D) | `[ 0, 0, 1]` (`[0, 1]` in 2D.) `CENTER`/`CTR` | Centered | `[ 0, 0, 0]` If you want a vector pointing towards the bottom−left edge, just add the `BOTTOM` and `LEFT` vector constants together like `BOTTOM + LEFT`. This will result in a vector of `[−1,0,−1]`. You can pass that to the `anchor=` argument for a clearly understandable anchoring: ```openscad-3D include cube([40,30,50], anchor=BACK+TOP); ``` ```openscad-3D include cube([40,30,50], anchor=FRONT); ``` --- For cylindrical type attachables, the Z component of the vector will be −1, 0, or 1, referring to the bottom rim, the middle side, or the top rim of the cylindrical or conical shape. The X and Y components can be any value, pointing towards the circular perimeter of the cone. These combined let you point at any place on the bottom or top rims, or at an arbitrary side wall: ```openscad-3D include cylinder(r1=25, r2=15, h=60, anchor=TOP+LEFT); ``` ```openscad-3D include cylinder(r1=25, r2=15, h=60, anchor=BOTTOM+FRONT); ``` ```openscad-3D include cylinder(r1=25, r2=15, h=60, anchor=UP+spherical_to_xyz(1,30,90)); ``` --- For Spherical type attachables, you can pass a vector that points at any arbitrary place on the surface of the sphere: p ```openscad-3D include sphere(r=50, anchor=TOP); ``` ```openscad-3D include sphere(r=50, anchor=TOP+FRONT); ``` ```openscad-3D include sphere(r=50, anchor=spherical_to_xyz(1,-30,60)); ``` --- Some attachable shapes may provide specific named anchors for shape-specific anchoring. These will be given as strings and will be specific to that type of attachable. When named anchors are supported, they are listed in a "Named Anchors" section of the documentation for the module. The `teardrop()` attachable, for example, has a named anchor called "cap" and in 2D the `star()` attachable has anchors labeled by tip number: ```openscad-3D include teardrop(d=100, l=20, anchor="cap"); ``` ```openscad-2D include star(n=7, od=30, id=20, anchor="tip2"); ``` --- Some shapes, for backwards compatibility reasons, can take a `center=` argument. This just overrides the `anchor=` argument. A `center=true` argument is the same as `anchor=CENTER`. A `center=false` argument chooses the anchor to match the behavior of the builtin version: for a cube it is the same as `anchor=[-1,-1,-1]` but for a cylinder, it is the same as `anchor=BOTTOM`. ```openscad-3D include cube([50,40,30],center=true); ``` ```openscad-3D include cube([50,40,30],center=false); ``` --- Most 2D shapes provided by BOSL2 are also anchorable. The built-in `square()` and `circle()` modules have been overridden to make them attachable.. The `anchor=` options for 2D shapes treat 2D vectors as expected. Special handling occurs with 3D vectors: if the Y coordinate is zero and the Z coordinate is nonzero, then the Z coordinate is used to replace the Y coordinate. This is done so that you can use the TOP and BOTTOM names as anchor for 2D shapes. ```openscad-2D include square([40,30], anchor=BACK+LEFT); ``` ```openscad-2D include circle(d=50, anchor=BACK); ``` ```openscad-2D include hexagon(d=50, anchor=LEFT); ``` ```openscad-2D include ellipse(d=[50,30], anchor=FRONT); This final 2D example shows using the 3D anchor, TOP, with a 2D object. Also notice how the pentagon anchors to its most extreme point on the Y+ axis. ```openscad-2D include pentagon(d=50, anchor=TOP); ``` ## Spin You can spin attachable objects around the origin using the `spin=` argument. The spin applies **after** anchoring, so depending on how you anchor an object, its spin may not be about its center. This means that spin can have an effect even on rotationally symmetric objects like spheres and cylinders. You specify the spin in degrees. A positive number will result in a counter-clockwise spin around the Z axis (as seen from above), and a negative number will make a clockwise spin: ```openscad-3D include cube([20,20,40], center=true, spin=45); ``` You can also spin around other axes, or multiple axes at once, by giving 3 angles (in degrees) to `spin=` as a vector, like [Xang,Yang,Zang]. Similarly to `rotate()`, the rotations apply in the order given, X-axis spin, then Y-axis, then Z-axis: ```openscad-3D include cube([20,20,40], center=true, spin=[10,20,30]); ``` This example shows a cylinder which has been anchored at its FRONT, with a rotated copy in gray. The rotation is performed around the origin, but the cylinder is off the origin, so the rotation **does** have an effect on the cylinder, even though the cylinder has rotational symmetry. ```openscad-3D include cylinder(h=40,d=20,anchor=FRONT+BOT); %cylinder(h=40.2,d=20,anchor=FRONT+BOT,spin=40); ``` You can also apply spin to 2D shapes from BOSL2, though only by scalar angle: ```openscad-2D include square([40,30], spin=30); ``` ```openscad-2D include ellipse(d=[40,30], spin=30); ``` ## Orientation Another way to specify a rotation for an attachable shape, is to pass a 3D vector via the `orient=` argument. This lets you specify what direction to tilt the top of the shape towards. For example, you can make a cone that is tilted up and to the right like this: ```openscad-3D include cylinder(h=100, r1=50, r2=20, orient=UP+RIGHT); ``` More precisely, the Z direction of the shape is rotated to align with the vector you specify. Two dimensional attachables, which have no Z vector, do not accept the `orient=` argument. ## Mixing Anchoring, Spin, and Orientation When giving `anchor=`, `spin=`, and `orient=`, they are applied anchoring first, spin second, then orient last. For example, here's a cube: ```openscad-3D include cube([20,20,50]); ``` You can center it with an `anchor=CENTER` argument: ```openscad-3D include cube([20,20,50], anchor=CENTER); ``` Add a 45 degree spin: ```openscad-3D include cube([20,20,50], anchor=CENTER, spin=45); ``` Now tilt the top up and forward: ```openscad-3D include cube([20,20,50], anchor=CENTER, spin=45, orient=UP+FWD); ``` For 2D shapes, you can mix `anchor=` with `spin=`, but not with `orient=`. ```openscad-2D include square([40,30], anchor=BACK+LEFT, spin=30); ``` ## Positioning Children Positioning is a powerful method for placing an object relative to another object. You do this by making the second object a child of the first object. By default, the child's anchor point will be aligned with the center of the parent. The default anchor for `cyl()` is CENTER, and in this case, the cylinder is centered on the cube's center ```openscad-3D include up(13) cube(50) cyl(d=25,l=95); ``` With `cylinder()` the default anchor is BOTTOM. It's hard to tell, but the cylinder's bottom is placed at the center of the cube. ```openscad-3D include cube(50) cylinder(d=25,h=75); ``` If you explicitly anchor the child object then the anchor you choose will be aligned with the center point of the parent object. In this example the right side of the cylinder is aligned with the center of the cube. ```openscad-3D include cube(50,anchor=FRONT) cylinder(d=25,h=95,anchor=RIGHT); ``` The `position()` module enables you to specify where on the parent to position the child object. You give `position()` an anchor point on the parent, and the child's anchor point is aligned with the specified parent anchor point. In this example the LEFT anchor of the cylinder is positioned on the RIGHT anchor of the cube. ```openscad-3D include cube(50,anchor=FRONT) position(RIGHT) cylinder(d=25,h=75,anchor=LEFT); ``` Using this mechanism you can position objects relative to other objects which are in turn positioned relative to other objects without having to keep track of the transformation math. ```openscad-3D include cube([50,50,30],center=true) position(TOP+RIGHT) cube([25,40,10], anchor=RIGHT+BOT) position(LEFT+FRONT+TOP) cube([12,12,8], anchor=LEFT+FRONT+BOT) cylinder(h=10,r=3); ``` The positioning mechanism is not magical: it simply applies a `translate()` operation to the child. You can still apply your own additional translations or other transformations if you wish. For example, you can position an object 5 units from the right edge: ```openscad-3D include cube([50,50,20],center=true) position(TOP+RIGHT) left(5) cube([4,50,10], anchor=RIGHT+BOT); ``` Positioning objects works the same way in 2D. ```openscad-2D include square(10) position(RIGHT) square(3,anchor=LEFT); ``` ## Using position() with orient() When positioning an object near an edge or corner you may wish to orient the object relative to some face other than the TOP face that meets at that edge or corner. You can always apply `rot()` to change the orientation of the child object, but in order to do this, you need to figure out the correct rotation. The `orient()` module provides a mechanism for re-orienting the child() that eases this burden: it can orient the child relative to the parent anchor directions. This is different than giving an `orient=` argument to the child, because that orients relative to the parent's global coordinate system by just using the vector directly, instead of orienting to the parent's anchor, which takes account of face orientation. A series of three examples shows the different results. In the first example, we use only `position()`. The child cube is erected pointing upwards, in the Z direction. In the second example we use `orient=RIGHT` in the child and the result is that the child object points in the X+ direction, without regard for the shape of the parent object. In the final example we apply `orient(RIGHT)` and the child is oriented relative to the slanted right face of the parent using the parent RIGHT anchor. ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) cube([15,15,25],anchor=RIGHT+BOT); ``` ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) cube([15,15,25],orient=RIGHT,anchor=LEFT+BOT); ``` ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) orient(RIGHT) cube([15,15,25],anchor=BACK+BOT); ``` You may have noticed that the children in the above three examples have different anchors. Why is that? The first and second examples differ because anchoring up and anchoring to the right require anchoring on opposite sides of the child. But the third case differs because the spin has changed. The examples below show the same models but with arrows replacing the child cube. The red flags on the arrows mark the zero spin direction. Examine the red flags to see how the spin changes. The Y+ direction of the child will point towards that red flag. ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) anchor_arrow(40); ``` ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) anchor_arrow(40, orient=RIGHT); ``` ```openscad-3D include prismoid([50,50],[30,30],h=40) position(RIGHT+TOP) orient(RIGHT) anchor_arrow(40); ``` ## Aligning children with align() You may have noticed that with position() and orient(), specifying the child anchors to position objects flush with their parent can be annoying, or sometimes even tricky. You can simplify this task by using the align() module. This module positions children on faces of a parent and aligns to edges or corners, while picking the correct anchor points on the children so that the children line up correctly with the parent. In the simplest case, if you want to place a child on the RIGHT side of its parent, you need to anchor the child to its LEFT anchor: ```openscad-3D include cuboid([50,40,15]) position(RIGHT) color("lightblue")cuboid(5,anchor=LEFT); ``` Using align(), the determination of the anchor is automatic. Any anchor you do specify is ignored. ```openscad-3D include cuboid([50,40,15]) align(RIGHT) color("lightblue")cuboid(5); ``` To place the child on top of the parent in the corner you can do use align as shown below instead of specifying the RIGHT+FRONT+BOT anchor with position(): ```openscad-3D include cuboid([50,40,15]) align(TOP,RIGHT+FRONT) color("lightblue")prismoid([10,5],[7,4],height=4); ``` Both position() and align() can accept a list of anchor locations and makes several copies of the children, but if you want the children positioned flush, each copy requires a different anchor, so it is impossible to do this with a single call to position(), but easily done using align(): ```openscad-3D include cuboid([50,40,15]) align(TOP,[RIGHT,LEFT]) color("lightblue")prismoid([10,5],[7,4],height=4); ``` If you want the children close to the edge but not actually flush you can use the `inset=` parameter of align to achieve this: ```openscad-3D include cuboid([50,40,15]) align(TOP,[FWD,RIGHT,LEFT,BACK],inset=3) color("lightblue")prismoid([10,5],[7,4],height=4); ``` If you spin the children then align will still do the right thing ```openscad-3D include cuboid([50,40,15]) align(TOP,[RIGHT,LEFT]) color("lightblue")prismoid([10,5],[7,4],height=4,spin=90); ``` If you orient the object DOWN it will be attached from its top anchor, correctly aligned. ```openscad-3D include cuboid([50,40,15]) align(TOP,RIGHT) color("lightblue")prismoid([10,5],[7,4],height=4,orient=DOWN); ``` Note that align() never changes the orientation of the children. If you put the blue prismoid on the right side the anchors line up but the edges of the child and parent don't. ```openscad-3D include prismoid(50,30,25){ align(RIGHT,TOP) color("lightblue")prismoid([10,5],[7,4],height=4); } ``` If you apply spin that is not a multiple of 90 degrees then alignment will line up the corner ```openscad-3D include cuboid([50,40,15]) align(TOP,RIGHT) color("lightblue")cuboid(8,spin=33); ``` You can also attach objects to a cylinder. If you use the usual cubic anchors then a cube will attach on a face as shown here: ```openscad-3D include cyl(h=20,d=10,$fn=128) align(RIGHT,TOP) color("lightblue")cuboid(5); ``` But with a cylinder you can choose an arbitrary horizontal angle for the anchor. If you do this, similar to the case of arbitrary spin, the cube will attach on the nearest corner. ```openscad-3D include cyl(h=20,d=10,$fn=128) align([1,.3],TOP) color("lightblue")cuboid(5); ``` ## Attachment overview Attachables get their name from their ability to be attached to each other. Unlike with positioning, attaching changes the orientation of the child object. Think of it like sticking two objects together: when you attach an object, it appears on the parent relative to the local coordinate system of the parent at the anchor point. To understand what this means, imagine the perspective of an ant walking on a sphere. The meaning of UP varies depending on where on the sphere the ant is standing. If you **attach** a cylinder to the sphere then the cylinder will be "up" from the ant's perspective. The first example shows a cylinder placed with `position()` so it points up in the global parent coordinate system. The second example shows how `attach()` points the cylinder UP from the perspective of an ant standing at the anchor point on the sphere. ```openscad-3D include sphere(40) position(RIGHT+TOP) cylinder(r=8,h=20); ``` ```openscad-3D include sphere(40) attach(RIGHT+TOP) cylinder(r=8,h=20); ``` In the example above, the cylinder's center point is attached to the sphere, pointing "up" from the perspective of the sphere's surface. For a sphere, a surface normal is defined everywhere that specifies what "up" means. But for other objects, it may not be so obvious. Usually at edges and corners the direction is the average of the direction of the faces that meet there. When you specify an anchor you are actually specifying both an anchor point but also an anchor direction. If you want to visualize this direction you can use anchor arrows. ## Anchor Directions and Anchor Arrows For the ant on the sphere it is obvious which direction is UP; that direction corresponds to the Z+ axis. The location of the X and Y axes is less clear and in fact it may be arbitrary. One way that is useful to show the position and orientation of an anchor point is by attaching an anchor arrow to that anchor. As noted before, the small red flag points in the direction of the anchor's Y+ axis when the spin is zero. ```openscad-3D include cube(18, center=true) attach(LEFT+TOP) anchor_arrow(); ``` For large objects, you can change the size of the arrow with the `s=` argument. ```openscad-3D include sphere(d=100) attach(LEFT+TOP) anchor_arrow(s=50); ``` To show all the standard cardinal anchor points, you can use the `show_anchors()` module. ```openscad-3D include cube(40, center=true) show_anchors(); ``` ```openscad-3D include cylinder(h=40, d=40, center=true) show_anchors(); ``` ```openscad-3D include sphere(d=40) show_anchors(); ``` For large objects, you can again change the size of the arrows with the `s=` argument. ```openscad-3D include cylinder(h=100, d=100, center=true) show_anchors(s=30); ``` ## Parent-Child Anchor Attachment (Double Argument Attachment) The `attach()` module has two different modes of operation, parent-child anchor attachment and parent anchor attachment. These are also called double argument attachment and single argument attachment. The parent-child anchor attachment, with two arguments, is usually easier to use and is more powerful because it supports alignment. When you use parent-child anchor attachment you give a parent anchor and a child anchor. Imagine pointing the anchor arrows on the two objects directly at each other and pushing them together in the direction of the arrows until they touch. In many of the examples below we show first the two objects with their anchor arrows and then the result of the attach operation using those anchors. ```openscad-3D include cube(50,anchor=BOT) attach(TOP,BOT) anchor_arrow(30); right(60)cylinder(d1=30,d2=15,h=25) attach(BOT,BOT) anchor_arrow(30); ``` ```openscad-3D include cube(50,anchor=BOT) attach(TOP,BOT) cylinder(d1=30,d2=15,h=25); ``` This example produces the same result as using `align()`, but if the parent anchor is not horizontal, then the child is reoriented: ```openscad-3D include prismoid([50,50],[35,35],h=50,anchor=BOT) attach(RIGHT,BOT) anchor_arrow(30); right(60)cylinder(d1=30,d2=15,h=25) attach(BOT,BOT) anchor_arrow(30); ``` ```openscad-3D include prismoid([50,50],[35,35],h=50,anchor=BOT) attach(RIGHT,BOT) ylinder(d1=30,d2=15,h=25); ``` In this case we attach the curved side of the cone to a cube by lining up the anchor arrows: ```openscad-3D include cube(50,center=true) attach(RIGHT,BOT) anchor_arrow(30); right(80)cylinder(d1=30,d2=15,h=25) attach(LEFT,BOT) anchor_arrow(30); ``` ```openscad-3D include cube(50,center=true) attach(RIGHT,LEFT) cylinder(d1=30,d2=15,h=25); ``` Note that this form of attachent overrides any anchor or orientation specified in the child: **with parent-child anchor attachment the `anchor=` and `orient=` parameters to the child are ignored.** When you specify attachment using a pair of anchors, the attached child can spin around the parent anchor while still being attached. As noted earlier, this ambiguity is resolved by anchors having a defined spin which specifies where the Y+ axis is located. The way that BOSL2 positions objects can be understood by viewing the anchor arrows as shown above, or you can remember these rules: 1. When attaching to the TOP or BOTTOM the FRONT of the child points to the front if possible; otherwise the TOP of the child points BACK. 2. When attaching to other faces, if possible the child's UP anchor will point UP; otherwise, the BACK of the child points up (so the FRONT is pointed down). To show how this works we use this prismoid where the blue arrow is pointing to the front and the green arrow points up. Also note that the front left edge is the only right angle. ```openscad-3D include color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` If we attach this to the TOP by the LEFT side then we get the result below. Notice how the green UP arrow is pointing back. ```openscad-3D include cube(30) attach(TOP,LEFT) color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` If we attach to the RIGHT using the same LEFT side anchor on the prismoid then we get the result below. Note that the green UP anchor is pointing (approximately) UP, in accordance with rule 2 from above. ```openscad-3D include cube(30) attach(TOP,LEFT) color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` The green UP arrow can always be arranged to point up unless we attach either the top or bottom to one of the cube's vertical faces. Here we attach the bottom so you can still see both arrows. The blue FRONT arrow on the object is pointing down, as expected based on rule 2. ```openscad-3D include cube(30) attach(RIGHT,BOT) color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` What do you do if the direction the child appears is not the direction you need? To address this issue `attach()` provides a `spin=` parameter which spins the attached child around the axis defined by the joined anchor vectors. Here is the last example with a rotation applied to bring the front anchor back to the front: ```openscad-3D include cube(30) attach(RIGHT,BOT,spin=-90) color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` Be aware that specifying `spin=` to `attach()` is not equivalent to using the `spin=` argument to the child. Unlike `orient=` and `anchor=`, which are ignored, the child `spin=` argument is still respected, but it may be difficult to figure out which axis it will rotate on. It is more intuitive to ignore the child spin parameter and only use the spin parameter to `attach()`. The spin must be scalar but need not be a multiple of 90 degrees. ```openscad-3D include cube(30) attach(RIGHT,BOT,spin=-37) color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } ``` The last feature provided by the double argument form of `attach()` is alignment, which works in a similar way to `align()`. You can specify `align=` to align the attached child to an edge or corner. The example below shows five different alignments. ```openscad-3D include module thing(){ color_this("orange") prismoid([8,8],[6,6],shift=-[1,1],h=8) { attach(TOP,BOT) anchor_arrow(color=[0,1,0],s=12); attach(FWD,BOT) anchor_arrow(s=12); } } prismoid([50,50],[35,35],h=25,anchor=BOT){ attach(TOP,BOT,align=FRONT) thing(); attach(RIGHT,BOT,align=BOT) thing(); attach(RIGHT,BACK,align=FRONT) thing(); attach(FRONT,BACK,align=BOT,spin=45) thing(); attach(TOP,RIGHT,align=RIGHT,spin=90) thing(); } ``` As with `align()` if you turn an object 90 degrees it can match up with parallel edges, but if you turn it an arbitrary angle, a corner of the child will contact the edge of the parent. Also like align() the anchor points of the parent and child are aligned but this does not necessarily mean that edges line up neatly when the shapes have varying angles. This misalignment is visible in the object attached at the RIGHT and aligned to the FRONT. You may be wondering why all this fuss with align is necessary. Couldn't you just attach an object at an anchor on an edge? When you do this, the object will be attached using the edge anchor, which is not perpendicular to the faces of the object. The example below shows attachment to an edge anchor and also a corner anchor. ```openscad-3D include cube(30) color("orange"){ attach(RIGHT+FRONT,BOT) prismoid([8,8],[6,6],shift=-[1,1],h=8); attach(TOP+LEFT+FWD,BOT) prismoid([8,8],[6,6],shift=-[1,1],h=8); } ``` Attachment with CENTER anchors can be surprising because the anchors point upwards, so in the example below, the child's CENTER anchor points up, so it is inverted when it is attached to the parent cone. Note that the anchors are CENTER anchors, so the bases of the anchors are hidden in the middle of the objects. ```openscad-3D include cylinder(d1=30,d2=15,h=25) attach(CENTER) anchor_arrow(40); right(40)cylinder(d1=30,d2=15,h=25) attach(CENTER) anchor_arrow(40); ``` ```openscad-3D include cylinder(d1=30,d2=15,h=25) attach(CENTER,CENTER) cylinder(d1=30,d2=15,h=25); ``` By default, `attach()` places the child exactly flush with the surface of the parent. Sometimes it's useful to have the child overlap the parent by translating it into the parent. You can do this with the `overlap=` argument to `attach()`. A positive value will cause the child to overlap the parent, and a negative value will move the child away from the parent, leaving a small gap, which may be helpful when doing differences. In the first example we use a very large value of overlap so the cube is sunk deeply into the parent. In the second example a large negative overlap value raises the child high above the parent. ```openscad-3D include cuboid(50) attach(TOP,BOT,overlap=15) color("green")cuboid(20); ``` ```openscad-3D include cube(50,center=true) attach(TOP,BOT,overlap=-20) cyl(d=20,h=20); ``` As with `position()`, you can still apply your own translations and other transformations even after attaching an object. However, the order of operations now matters. If you apply a translation outside of the anchor then it acts in the parent's global coordinate system, so the child moves up in this example, where the light gray shows the untranslated object. ```openscad-3D include cuboid(50){ %attach(RIGHT,BOT) cyl(d1=30,d2=15,h=25); up(13) color("green") attach(RIGHT,BOT) cyl(d1=30,d2=15,h=25); } ``` On the other hand, if you put the translation between the attach and the object in your code, then it will act in the local coordinate system of the parent at the parent's anchor, so in the example below it moves to the right. ```openscad-3D include cuboid(50){ %attach(RIGHT,BOT) cyl(d1=30,d2=15,h=25); color("green") attach(RIGHT,BOT) up(13) cyl(d1=30,d2=15,h=25); } ``` ## Parent Anchor Attachment (Single Argument Attachment) The second form of attachment is parent anchor attachment, which just uses a single argument. This form of attachment is less useful in general and does not provide alignment. When you give `attach()` a parent anchor but no child anchor it orients the child according to the pafrent anchor direction but then simply places the child based on its internally defined anchor at the parent anchor position. For most objects the default anchor is the CENTER anchor, so objects will appear sunk half-way into the parent. ```openscad-3D include cuboid(30) attach(TOP) color("green")cuboid(10); ``` Some objects such as `cylinder()`, `prismoid()`, and `anchor_arrow()` have default anchors on the bottom, so they will appear on the surface. For objects like this you can save a little bit of typing by using parent anchor attachment. But in the case of `cube()` the anchor is not centered, so the result is: ```openscad-3D include cube(30) attach(TOP) color("green")cube(10); ``` In order to make single argument attachment produce the results you need you will probably need to change the child anchor. Note that unlike parent-child anchor attachment, **with parent anchor attachment the `anchor=` and `orient=` arguments are respected.** We could therefore place a cuboid like this: ```openscad-3D include cuboid(30) attach(RIGHT) color("green")cuboid(10,anchor=BOT); ``` If you need to place a cuboid at the anchor point but need it anchored relative to one of the bottom edge or corner anchors then you can do that with parent anchor attachment: ```openscad-3D include cuboid(30) attach(RIGHT) color("green")cuboid(10,anchor=BOT+FWD); ``` Another case where single argument attachment is useful is when the child doesn't have proper attachment support. If you use double argument attachment in such cases the results will be incorrect because the child doesn't properly respond to the internally propagated anchor directives. With single argument attachment, this is not a problem: the origin of the child will be placed at the parent anchor point. One module without attachment support is `linear_extrude()`. ```openscad-3D include cuboid(20) attach(RIGHT) color("red")linear_extrude(height=2) star(n=7,ir=3,or=7); ``` As noted earlier, you can set `orient=` for children with parent anchor attachment, though the behavior may not be intuitive because the attachment process transforms the coordinate system and the orientation is done in the attached coordinate system. It may be helpful to start with the object attached to TOP and recall the rules from the previous section about how orientation works. The same rules apply here. Note that the forward arrow is pointing down after attaching the object on the RIGHT face. ```openscad-3D include cuboid(20){ attach(RIGHT) color_this("red")cuboid([2,4,8],orient=RIGHT,anchor=RIGHT) attach(FWD) anchor_arrow(); attach(TOP) color_this("red")cuboid([2,4,8],orient=RIGHT,anchor=RIGHT) attach(FWD) anchor_arrow(); } ``` ## Positioning and Attaching Multiple Children You can attach or position more than one child at a time by enclosing them all in braces: ```openscad-3D include cube(50, center=true) { attach(TOP) cylinder(d1=50,d2=20,h=20); position(RIGHT) cylinder(d1=50,d2=20,h=20); } ``` If you want to attach the same shape to multiple places on the same parent, you can pass the desired anchors as a list to the `attach()` or `position()` modules: ```openscad-3D include cube(50, center=true) attach([RIGHT,FRONT],TOP) cylinder(d1=35,d2=20,h=25); ``` ```openscad-3D include cube(50, center=true) position([TOP,RIGHT,FRONT]) cylinder(d1=35,d2=20,h=25); ``` ## Attaching 2D Children You can use attachments in 2D as well. As usual for the 2D case you can use TOP and BOTTOM as alternative to BACK and FORWARD. ```openscad-2D include square(50,center=true) attach(RIGHT,FRONT) trapezoid(w1=30,w2=0,h=30); ``` ```openscad-2D include circle(d=50) attach(TOP,BOT,overlap=5) trapezoid(w1=30,w2=0,h=30); ``` ## Tagged Operations BOSL2 introduces the concept of tags. Tags are names that can be given to attachables, so that you can refer to them when performing `diff()`, `intersect()`, and `conv_hull()` operations. Each object can have no more than one tag at a time. ### `diff([remove], [keep])` The `diff()` operator is used to difference away all shapes marked with the tag(s) given to `remove`, from the other shapes. For example, to difference away a child cylinder from the middle of a parent cube, you can do this: ```openscad-3D include diff("hole") cube(100, center=true) tag("hole")cylinder(h=101, d=50, center=true); ``` The `keep=` argument takes tags for shapes that you want to keep in the output. ```openscad-3D include diff("dish", keep="antenna") cube(100, center=true) attach([FRONT,TOP], overlap=33) { tag("dish") cylinder(h=33.1, d1=0, d2=95); tag("antenna") cylinder(h=33.1, d=10); } ``` Remember that tags are inherited by children. In this case, we need to explicitly untag the first cylinder (or change its tag to something else), or it will inherit the "keep" tag and get kept. ```openscad-3D include diff("hole", "keep") tag("keep")cube(100, center=true) attach([RIGHT,TOP]) { tag("") cylinder(d=95, h=5); tag("hole") cylinder(d=50, h=11, anchor=CTR); } ``` You can of course apply `tag()` to several children. ```openscad-3D include diff("hole") cube(100, center=true) attach([FRONT,TOP], overlap=20) tag("hole") { cylinder(h=20.1, d1=0, d2=95); down(10) cylinder(h=30, d=30); } ``` Many of the modules that use tags have default values for their tags. For diff the default remove tag is "remove" and the default keep tag is "keep". In this example we rely on the default values: ```openscad-3D include diff() sphere(d=100) { tag("keep")xcyl(d=40, l=120); tag("remove")cuboid([40,120,100]); } ``` The parent object can be differenced away from other shapes. Tags are inherited by children, though, so you will need to set the tags of the children as well as the parent. ```openscad-3D include diff("hole") tag("hole")cube([20,11,45], center=true) tag("body")cube([40,10,90], center=true); ``` Tags (and therefore tag-based operations like `diff()`) only work correctly with attachable children. However, a number of built-in modules for making shapes are *not* attachable. Some notable non-attachable modules are `text()`, `linear_extrude()`, `rotate_extrude()`, `polygon()`, `polyhedron()`, `import()`, `surface()`, `union()`, `difference()`, `intersection()`, `offset()`, `hull()`, and `minkowski()`. To allow you to use tags-based operations with non-attachable shapes, you can wrap them with the `force_tag()` module to specify their tags. For example: ```openscad-3D include diff("hole") cuboid(50) attach(TOP) force_tag("hole") rotate_extrude() right(15) square(10,center=true); ``` ### `intersect([intersect], [keep])` To perform an intersection of attachables, you can use the `intersect()` module. This is specifically intended to address the situation where you want intersections involving a parent and a child, something that is impossible with the native `intersection()` module. This module treats the children in three groups: objects matching the `intersect` tags, objects matching the tags listed in `keep` and the remaining objects that don't match any listed tags. The intersection is computed between the union of the `intersect` tagged objects and the union of the objects that don't match any listed tags. Finally the objects listed in `keep` are union ed with the result. In this example the parent is intersected with a conical bounding shape. ```openscad-3D include intersect("bounds") cube(100, center=true) tag("bounds") cylinder(h=100, d1=120, d2=95, center=true, $fn=72); ``` In this example the child objects are intersected with the bounding box parent. ```openscad-3D include intersect("pole cap") cube(100, center=true) attach([TOP,RIGHT]) { tag("pole")cube([40,40,80],center=true); tag("cap")sphere(d=40*sqrt(2)); } ``` The default `intersect` tag is "intersect" and the default `keep` tag is "keep". Here is an example where "keep" is used to keep the pole from being removed by the intersection. ```openscad-3D include intersect() cube(100, center=true) { tag("intersect")cylinder(h=100, d1=120, d2=95, center=true, $fn=72); tag("keep")zrot(45) xcyl(h=140, d=20, $fn=36); } ``` ### `conv_hull([keep])` You can use the `conv_hull()` module to hull shapes together. Objects marked with the keep tags are excluded from the hull and unioned into the final result. The default keep tag is "keep". ```openscad-3D include conv_hull() cube(50, center=true) { cyl(h=100, d=20); tag("keep")xcyl(h=100, d=20); } ``` ## 3D Masking Attachments To make it easier to mask away shapes from various edges of an attachable parent shape, there are a few specialized alternatives to the `attach()` and `position()` modules. ### `edge_mask()` If you have a 3D mask shape that you want to difference away from various edges, you can use the `edge_mask()` module. This module will take a vertically oriented shape, and will rotate and move it such that the BACK, RIGHT (X+,Y+) side of the shape will be aligned with the given edges. The shape will be tagged as a "remove" so that you can use `diff()` with its default "remove" tag. For example, here's a shape for rounding an edge: ```openscad-3D include module round_edge(l,r) difference() { translate([-1,-1,-l/2]) cube([r+1,r+1,l]); translate([r,r]) cylinder(h=l+1,r=r,center=true, $fn=quantup(segs(r),4)); } round_edge(l=30, r=19); ``` You can use that mask to round various edges of a cube: ```openscad-3D include module round_edge(l,r) difference() { translate([-1,-1,-l/2]) cube([r+1,r+1,l]); translate([r,r]) cylinder(h=l+1,r=r,center=true, $fn=quantup(segs(r),4)); } diff() cube([50,60,70],center=true) edge_mask([TOP,"Z"],except=[BACK,TOP+LEFT]) round_edge(l=71,r=10); ``` ### `corner_mask()` If you have a 3D mask shape that you want to difference away from various corners, you can use the `corner_mask()` module. This module will take a shape and rotate and move it such that the BACK RIGHT TOP (X+,Y+,Z+) side of the shape will be aligned with the given corner. The shape will be tagged as a "remove" so that you can use `diff()` with its default "remove" tag. For example, here's a shape for rounding a corner: ```openscad-3D include module round_corner(r) difference() { translate(-[1,1,1]) cube(r+1); translate([r,r,r]) spheroid(r=r, style="aligned", $fn=quantup(segs(r),4)); } round_corner(r=10); ``` You can use that mask to round various corners of a cube: ```openscad-3D include module round_corner(r) difference() { translate(-[1,1,1]) cube(r+1); translate([r,r,r]) spheroid(r=r, style="aligned", $fn=quantup(segs(r),4)); } diff() cube([50,60,70],center=true) corner_mask([TOP,FRONT],LEFT+FRONT+TOP) round_corner(r=10); ``` ### Mix and Match Masks You can use `edge_mask()` and `corner_mask()` together as well: ```openscad-3D include module round_corner(r) difference() { translate(-[1,1,1]) cube(r+1); translate([r,r,r]) spheroid(r=r, style="aligned", $fn=quantup(segs(r),4)); } module round_edge(l,r) difference() { translate([-1,-1,-l/2]) cube([r+1,r+1,l]); translate([r,r]) cylinder(h=l+1,r=r,center=true, $fn=quantup(segs(r),4)); } diff() cube([50,60,70],center=true) { edge_mask("ALL") round_edge(l=71,r=10); corner_mask("ALL") round_corner(r=10); } ``` ## 2D Profile Mask Attachments While 3D mask shapes give you a great deal of control, you need to make sure they are correctly sized, and you need to provide separate mask shapes for corners and edges. Often, a single 2D profile could be used to describe the edge mask shape (via `linear_extrude()`), and the corner mask shape (via `rotate_extrude()`). This is where `edge_profile()`, `corner_profile()`, and `face_profile()` come in. ### `edge_profile()` Using the `edge_profile()` module, you can provide a 2D profile shape and it will be linearly extruded to a mask of the appropriate length for each given edge. The resultant mask will be tagged with "remove" so that you can difference it away with `diff()` with the default "remove" tag. The 2D profile is assumed to be oriented with the BACK, RIGHT (X+,Y+) quadrant as the "cutter edge" that gets re-oriented towards the edges of the parent shape. A typical mask profile for chamfering an edge may look like: ```openscad-2D include mask2d_roundover(10); ``` Using that mask profile, you can mask the edges of a cube like: ```openscad-3D include diff() cube([50,60,70],center=true) edge_profile("ALL") mask2d_roundover(10); ``` ### `corner_profile()` You can use the same profile to make a rounded corner mask as well: ```openscad-3D include diff() cube([50,60,70],center=true) corner_profile("ALL", r=10) mask2d_roundover(10); ``` ### `face_profile()` As a simple shortcut to apply a profile mask to all edges and corners of a face, you can use the `face_profile()` module: ```openscad-3D include diff() cube([50,60,70],center=true) face_profile(TOP, r=10) mask2d_roundover(10); ``` ## Coloring Attachables Usually, when coloring a shape with the `color()` module, the parent color overrides the colors of all children. This is often not what you want: ```openscad-3D include $fn = 24; color("red") spheroid(d=3) { attach(CENTER,BOT) color("white") cyl(h=10, d=1) { attach(TOP,BOT) color("green") cyl(h=5, d1=3, d2=0); } } ``` If you use the `recolor()` module, however, the child's color overrides the color of the parent. This is probably easier to understand by example: ```openscad-3D include $fn = 24; recolor("red") spheroid(d=3) { attach(CENTER,BOT) recolor("white") cyl(h=10, d=1) { attach(TOP,BOT) recolor("green") cyl(h=5, d1=3, d2=0); } } ``` Be aware that `recolor()` will only work if you avoid using the native `color()` module. Also note that `recolor()` still affects all its children. If you want to color an object without affecting the children you can use `color_this()`. See the difference below: ```openscad-3D include $fn = 24; recolor("red") spheroid(d=3) { attach(CENTER,BOT) recolor("white") cyl(h=10, d=1) { attach(TOP,BOT) cyl(h=5, d1=3, d2=0); } } right(5) recolor("red") spheroid(d=3) { attach(CENTER,BOT) color_this("white") cyl(h=10, d=1) { attach(TOP,BOT) cyl(h=5, d1=3, d2=0); } } ``` As with all of the attachable features, these color modules only work on attachable objects, so they will have no effect on objects you create using `linear_extrude()` or `rotate_extrude()`. ## Making Attachables To make a shape attachable, you just need to wrap it with an `attachable()` module with a basic description of the shape's geometry. By default, the shape is expected to be centered at the origin. The `attachable()` module expects exactly two children. The first will be the shape to make attachable, and the second will be `children()`, literally. ### Pass-through Attachables The simplest way to make your own attachable module is to simply pass through to a pre-existing attachable submodule. This could be appropriate if you want to rename a module, or if the anchors of an existing module are suited to (or good enough for) your object. In order for your attachable module to work properly you need to accept the `anchor`, `spin` and `orient` parameters, give them suitable defaults, and pass them to the attachable submodule. Don't forget to pass the children to the attachable submodule as well, or your new module will ignore its children. ```openscad-3D include $fn=32; module cutcube(anchor=CENTER,spin=0,orient=UP) { tag_scope(){ diff() cuboid(15, rounding=2, anchor=anchor,spin=spin,orient=orient){ tag("remove")attach(TOP)cuboid(5); children(); } } } diff() cutcube() tag("remove")attach(RIGHT) cyl(d=2,h=8); ``` ### Prismoidal/Cuboidal Attachables To make a cuboidal or prismoidal shape attachable, you use the `size`, `size2`, and `offset` arguments of `attachable()`. In the most basic form, where the shape is fully cuboid, with top and bottom of the same size, and directly over one another, you can just use `size=`. ```openscad-3D include module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=[s*3,s,s]) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` When the shape is prismoidal, where the top is a different size from the bottom, you can use the `size2=` argument as well. While `size=` takes all three axes sizes, the `size2=` argument only takes the [X,Y] sizes of the top of the shape. ```openscad-3D include module prismoidal(size=[100,100,100], scale=0.5, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale) { hull() { up(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } prismoidal([100,60,30], scale=0.5) show_anchors(20); ``` When the top of the prismoid can be shifted away from directly above the bottom, you can use the `shift=` argument. The `shift=` argument takes an [X,Y] vector of the offset of the center of the top from the XY center of the bottom of the shape. ```openscad-3D include module prismoidal(size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, size=size, size2=[size.x, size.y]*scale, shift=shift) { hull() { translate([shift.x, shift.y, size.z/2-0.005]) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } prismoidal([100,60,30], scale=0.5, shift=[-30,20]) show_anchors(20); ``` In the case that the prismoid is not oriented vertically, (ie, where the `shift=` or `size2=` arguments should refer to a plane other than XY) you can use the `axis=` argument. This lets you make prismoids naturally oriented forwards/backwards or sideways. ```openscad-3D include module yprismoidal( size=[100,100,100], scale=0.5, shift=[0,0], anchor=CENTER, spin=0, orient=UP ) { attachable( anchor, spin, orient, size=size, size2=point2d(size)*scale, shift=shift, axis=BACK ) { xrot(-90) hull() { translate([shift.x, shift.y, size.z/2-0.005]) linear_extrude(height=0.01, center=true) square([size.x,size.y]*scale, center=true); down(size.z/2-0.005) linear_extrude(height=0.01, center=true) square([size.x,size.y], center=true); } children(); } } yprismoidal([100,60,30], scale=1.5, shift=[20,20]) show_anchors(20); ``` ### Cylindrical Attachables To make a cylindrical shape attachable, you use the `l`, and `r`/`d`, args of `attachable()`. ```openscad-3D include module twistar(l,r,d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r, l=l) { linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4) star(n=20, r=r, ir=r*0.9); children(); } } twistar(l=100, r=40) show_anchors(20); ``` If the cylinder is elipsoidal in shape, you can pass the unequal X/Y sizes as a 2-item vector to the `r=` or `d=` argument. ```openscad-3D include module ovalstar(l,rx,ry, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, r=[rx,ry], l=l) { linear_extrude(height=l, center=true, convexity=4) scale([1,ry/rx,1]) star(n=20, r=rx, ir=rx*0.9); children(); } } ovalstar(l=100, rx=50, ry=30) show_anchors(20); ``` For cylindrical shapes that aren't oriented vertically, use the `axis=` argument. ```openscad-3D include module ytwistar(l,r,d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r, l=l, axis=BACK) { xrot(-90) linear_extrude(height=l, twist=90, slices=20, center=true, convexity=4) star(n=20, r=r, ir=r*0.9); children(); } } ytwistar(l=100, r=40) show_anchors(20); ``` ### Conical Attachables To make a conical shape attachable, you use the `l`, `r1`/`d1`, and `r2`/`d2`, args of `attachable()`. ```openscad-3D include module twistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) { r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1); r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) { linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4) star(n=20, r=r1, ir=r1*0.9); children(); } } twistar(l=100, r1=40, r2=20) show_anchors(20); ``` If the cone is ellipsoidal in shape, you can pass the unequal X/Y sizes as a 2-item vectors to the `r1=`/`r2=` or `d1=`/`d2=` arguments. ```openscad-3D include module ovalish(l,rx1,ry1,rx2,ry2, anchor=CENTER, spin=0, orient=UP) { attachable(anchor,spin,orient, r1=[rx1,ry1], r2=[rx2,ry2], l=l) { hull() { up(l/2-0.005) linear_extrude(height=0.01, center=true) ellipse([rx2,ry2]); down(l/2-0.005) linear_extrude(height=0.01, center=true) ellipse([rx1,ry1]); } children(); } } ovalish(l=100, rx1=50, ry1=30, rx2=30, ry2=50) show_anchors(20); ``` For conical shapes that are not oriented vertically, use the `axis=` argument to indicate the direction of the primary shape axis: ```openscad-3D include module ytwistar(l, r,r1,r2, d,d1,d2, anchor=CENTER, spin=0, orient=UP) { r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=1); r2 = get_radius(r1=r2,r=r,d1=d2,d=d,dflt=1); attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK) { xrot(-90) linear_extrude(height=l, twist=90, scale=r2/r1, slices=20, center=true, convexity=4) star(n=20, r=r1, ir=r1*0.9); children(); } } ytwistar(l=100, r1=40, r2=20) show_anchors(20); ``` ### Spherical Attachables To make a spherical shape attachable, you use the `r`/`d` args of `attachable()`. ```openscad-3D include module spikeball(r, d, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r*1.1) { union() { sphere_copies(r=r, n=512, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10); sphere(r=r); } children(); } } spikeball(r=50) show_anchors(20); ``` If the shape is an ellipsoid, you can pass a 3-item vector of sizes to `r=` or `d=`. ```openscad-3D include module spikeball(r, d, scale, anchor=CENTER, spin=0, orient=UP) { r = get_radius(r=r,d=d,dflt=1); attachable(anchor,spin,orient, r=r*1.1*scale) { union() { sphere_copies(r=r, n=512, scale=scale, cone_ang=180) cylinder(r1=r/10, r2=0, h=r/10); scale(scale) sphere(r=r); } children(); } } spikeball(r=50, scale=[0.75,1,1.5]) show_anchors(20); ``` ### VNF Attachables If the shape just doesn't fit into any of the above categories, and you constructed it as a [VNF](vnf.scad), you can use the VNF itself to describe the geometry with the `vnf=` argument. There are two variations to how anchoring can work for VNFs. When `extent=true`, (the default) then a plane is projected out from the origin, perpendicularly in the direction of the anchor, to the furthest distance that intersects with the VNF shape. The anchor point is then the center of the points that still intersect that plane. ```openscad-FlatSpin,VPD=500 include module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) { s2 = 3 * s; verts = [ [0,0,-s2*sqrt(2)/2], each down(s/2, p=path3d(square(s,center=true))), each zrot(45, p=path3d(square(s2,center=true))), each up(s/2, p=path3d(square(s,center=true))), [0,0,s2*sqrt(2)/2] ]; faces = [ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [1,2,6], [1,6,9], [6,10,9], [2,10,6], [1,5,4], [1,9,5], [9,12,5], [5,12,4], [4,8,3], [4,12,8], [12,11,8], [11,3,8], [2,3,7], [3,11,7], [7,11,10], [2,7,10], [9,10,13], [10,11,13], [11,12,13], [12,9,13] ]; vnf = [verts, faces]; attachable(anchor,spin,orient, vnf=vnf) { vnf_polyhedron(vnf); children(); } } stellate_cube(25) { attach(UP+RIGHT) { anchor_arrow(20); %cube([100,100,0.1],center=true); } } ``` When `extent=false`, then the anchor point will be the furthest intersection of the VNF with the anchor ray from the origin. The orientation of the anchor point will be the normal of the face at the intersection. If the intersection is at an edge or corner, then the orientation will bisect the angles between the faces. ```openscad-VPD=1250 include module stellate_cube(s=100, anchor=CENTER, spin=0, orient=UP) { s2 = 3 * s; verts = [ [0,0,-s2*sqrt(2)/2], each down(s/2, p=path3d(square(s,center=true))), each zrot(45, p=path3d(square(s2,center=true))), each up(s/2, p=path3d(square(s,center=true))), [0,0,s2*sqrt(2)/2] ]; faces = [ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [1,2,6], [1,6,9], [6,10,9], [2,10,6], [1,5,4], [1,9,5], [9,12,5], [5,12,4], [4,8,3], [4,12,8], [12,11,8], [11,3,8], [2,3,7], [3,11,7], [7,11,10], [2,7,10], [9,10,13], [10,11,13], [11,12,13], [12,9,13] ]; vnf = [verts, faces]; attachable(anchor,spin,orient, vnf=vnf, extent=false) { vnf_polyhedron(vnf); children(); } } stellate_cube() show_anchors(50); ``` ```openscad-3D include $fn=32; R = difference(circle(10), right(2, circle(9))); linear_sweep(R,height=10,atype="hull") attach(RIGHT) anchor_arrow(); ``` ## Making Named Anchors While vector anchors are often useful, sometimes there are logically extra attachment points that aren't on the perimeter of the shape. This is what named string anchors are for. For example, the `teardrop()` shape uses a cylindrical geometry for it's vector anchors, but it also provides a named anchor "cap" that is at the tip of the hat of the teardrop shape. Named anchors are passed as an array of `named_anchor()`s to the `anchors=` argument of `attachable()`. The `named_anchor()` call takes a name string, a positional point, an orientation vector, and a spin. The name is the name of the anchor. The positional point is where the anchor point is at. The orientation vector is the direction that a child attached at that anchor point should be oriented. The spin is the number of degrees that an attached child should be rotated counter-clockwise around the orientation vector. Spin is optional, and defaults to 0. To make a simple attachable shape similar to a `teardrop()` that provides a "cap" anchor, you may define it like this: ```openscad-3D include module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) { anchors = [ named_anchor("cap", [0,r/sin(45),0], BACK, 0) ]; attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) { linear_extrude(height=thick, center=true) { circle(r=r); back(r*sin(45)) zrot(45) square(r, center=true); } children(); } } raindrop(r=25, thick=20, anchor="cap"); ``` If you want multiple named anchors, just add them to the list of anchors: ```openscad-FlatSpin,VPD=150 include module raindrop(r, thick, anchor=CENTER, spin=0, orient=UP) { anchors = [ named_anchor("captop", [0,r/sin(45), thick/2], BACK+UP, 0), named_anchor("cap", [0,r/sin(45), 0 ], BACK, 0), named_anchor("capbot", [0,r/sin(45),-thick/2], BACK+DOWN, 0) ]; attachable(anchor,spin,orient, r=r, l=thick, anchors=anchors) { linear_extrude(height=thick, center=true) { circle(r=r); back(r*sin(45)) zrot(45) square(r, center=true); } children(); } } raindrop(r=15, thick=10) show_anchors(); ``` Sometimes the named anchor you want to add may be at a point that is reached through a complicated set of translations and rotations. One quick way to calculate that point is to reproduce those transformations in a transformation matrix chain. This is simplified by how you can use the function forms of almost all the transformation modules to get the transformation matrices, and chain them together with matrix multiplication. For example, if you have: ``` scale([1.1, 1.2, 1.3]) xrot(15) zrot(25) right(20) sphere(d=1); ``` and you want to calculate the center point of the sphere, you can do it like: ``` sphere_pt = apply( scale([1.1, 1.2, 1.3]) * xrot(15) * zrot(25) * right(20), [0,0,0] ); ``` ## Overriding Standard Anchors Sometimes you may want to use the standard anchors but override some of them. Returning to the square barebell example above, the anchors at the right and left sides are on the cubes at each end, but the anchors at x=0 are in floating in space. For prismoidal/cubic anchors in 3D and trapezoidal/rectangular anchors in 2D we can override a single anchor by specifying the override option and giving the anchor that is being overridden, and then the replacement in the form `[position, direction, spin]`. Most often you will only want to override the position. If you omit the other list items then the value drived from the standard anchor will be used. Below we override position of the FWD anchor: ``` module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ [FWD, [[0,-s/8,0]]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` Note how the FWD anchor is now rooted on the cylindrical portion. If you wanted to also change its direction and spin you could do it like this: ``` module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ [FWD, [[0,-s/8,0], FWD+LEFT, 225]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(60); ``` In the above example we give three values for the override. As before, the first one places the anchor on the cylinder. We have added the second entry which points the anchor off to the left. The third entry gives a spin override, whose effect is shown by the position of the red flag on the arrow. If you want to override all of the x=0 anchors to be on the cylinder, with their standard directions, you can do that by supplying a list: ``` module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = [ for(j=[-1:1:1], k=[-1:1:1]) if ([j,k]!=[0,0]) [[0,j,k], [s/8*unit([0,j,k])]] ]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(30); ``` Now all of the anchors in the middle are all rooted to the cylinder. Another way to do the same thing is to use a function literal for override. It will be called with the anchor as its argument and needs to return undef to just use the default, or a `[position, direction, spin]` triple to override the default. As before, you can omit values to keep their default. Here is the same example using a function literal for the override: ``` module cubic_barbell(s=100, anchor=CENTER, spin=0, orient=UP) { override = function (anchor) anchor.x!=0 || anchor==CTR ? undef // Keep these : [s/8*unit(anchor)]; attachable(anchor,spin,orient, size=[s*3,s,s],override=override) { union() { xcopies(2*s) cube(s, center=true); xcyl(h=2*s, d=s/4); } children(); } } cubic_barbell(100) show_anchors(30); ```