////////////////////////////////////////////////////////////////////// // LibFile: mutators.scad // Functions and modules to mutate children in various ways. // Includes: // include ////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////// // Section: Volume Division Mutators ////////////////////////////////////////////////////////////////////// // Module: bounding_box() // Usage: // bounding_box() ... // Description: // Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D) // children given. The module children() is supposed to be a 3d shape when planar=false and // a 2d shape when planar=true otherwise the system will issue a warning of mixing dimension // or scaling by 0. // Arguments: // excess = The amount that the bounding box should be larger than needed to bound the children, in each axis. // planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false // Example(3D): // module shapes() { // translate([10,8,4]) cube(5); // translate([3,0,12]) cube(2); // } // #bounding_box() shapes(); // shapes(); // Example(2D): // module shapes() { // translate([10,8]) square(5); // translate([3,0]) square(2); // } // #bounding_box(planar=true) shapes(); // shapes(); module bounding_box(excess=0, planar=false) { // a 3d (or 2d when planar=true) approx. of the children projection on X axis module _xProjection() { if (planar) { projection() rotate([90,0,0]) linear_extrude(1, center=true) hull() children(); } else { xs = excess<.1? 1: excess; linear_extrude(xs, center=true) projection() rotate([90,0,0]) linear_extrude(xs, center=true) projection() hull() children(); } } // a bounding box with an offset of 1 in all axis module _oversize_bbox() { if (planar) { minkowski() { _xProjection() children(); // x axis rotate(-90) _xProjection() rotate(90) children(); // y axis } } else { minkowski() { _xProjection() children(); // x axis rotate(-90) _xProjection() rotate(90) children(); // y axis rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis } } } // offsets a cube by `excess` module _shrink_cube() { intersection() { translate((1-excess)*[ 1, 1, 1]) children(); translate((1-excess)*[-1,-1,-1]) children(); } } if(planar) { offset(excess-1/2) _oversize_bbox() children(); } else { render(convexity=2) if (excess>.1) { _oversize_bbox() children(); } else { _shrink_cube() _oversize_bbox() children(); } } } // Function&Module: half_of() // // Usage: as module // half_of(v, [cp], [s], [planar]) ... // Usage: as function // result = half_of(p,v,[cp]); // // Description: // Slices an object at a cut plane, and masks away everything that is on one side. The v parameter is either a plane specification or // a normal vector. The s parameter is needed for the module // version to control the size of the masking cube, which affects preview display. // When called as a function, you must supply a vnf, path or region in p. If planar is set to true for the module version the operation // is performed in and UP and DOWN are treated as equivalent to BACK and FWD respectively. // // Arguments: // p = path, region or VNF to slice. (Function version) // v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP) // cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0] // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Ignored for function version. Default: 100 // planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively. // // Examples: // half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false); // half_of(DOWN+LEFT, s=200) sphere(d=150); // Example(2D): // half_of([1,1], planar=true) circle(d=50); module half_of(v=UP, cp, s=100, planar=false) { cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] : is_vector(cp)? cp : is_num(cp)? cp*unit(v) : [0,0,0]; v = is_vector(v,4)? plane_normal(v) : v; if (cp != [0,0,0]) { translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children(); } else if (planar) { v = (v==UP)? BACK : (v==DOWN)? FWD : v; ang = atan2(v.y, v.x); difference() { children(); rotate(ang+90) { back(s/2) square(s, center=true); } } } else { difference() { children(); rot(from=UP, to=-v) { up(s/2) cube(s, center=true); } } } } function half_of(p, v=UP, cp) = is_vnf(p) ? assert(is_vector(v) && (len(v)==3 || len(v)==4),str("Must give 3-vector or plane specification",v)) assert(select(v,0,2)!=[0,0,0], "vector v must be nonzero") let( plane = is_vector(v,4) ? assert(cp==undef, "Don't use cp with plane definition.") v : is_undef(cp) ? [each v, 0] : is_num(cp) ? [each v, cp*(v*v)/norm(v)] : assert(is_vector(cp,3),"Centerpoint must be a 3-vector") [each v, cp*v] ) vnf_halfspace(plane, p) : is_path(p) || is_region(p) ? let( v = (v==UP)? BACK : (v==DOWN)? FWD : v, cp = is_undef(cp) ? [0,0] : is_num(cp) ? v*cp : assert(is_vector(cp,2) || (is_vector(cp,3) && cp.z==0),"Centerpoint must be 2-vector") cp ) assert(is_vector(v,2) || (is_vector(v,3) && v.z==0),"Must give 2-vector") assert(!all_zero(v), "Vector v must be nonzero") let( bounds = pointlist_bounds(move(-cp,p)), L = 2*max(flatten(bounds)), n = unit(v), u = [-n.y,n.x], box = [cp+u*L, cp+(v+u)*L, cp+(v-u)*L, cp-u*L] ) intersection(box,p) : assert(false, "Input must be a region, path or VNF"); /* This code cut 3d paths but leaves behind connecting line segments is_path(p) ? //assert(len(p[0]) == d, str("path must have dimension ", d)) let(z = [for(x=p) (x-cp)*v]) [ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [], // we assume a closed path here; // to make this correct for an open path, // just replace this by [] when i==len(p)-1: let(j=(i+1)%len(p)) // the remaining path may have flattened sections, but this cannot // create self-intersection or whiskers: z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ] : */ // Function&Module: left_half() // // Usage: as module // left_half([s], [x]) ... // left_half(planar=true, [s], [x]) ... // Usage: as function // result = left_half(p, [x]); // // Description: // Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // x = The X coordinate of the cut-plane. Default: 0 // planar = If true, perform a 2D operation. // // Examples: // left_half() sphere(r=20); // left_half(x=-8) sphere(r=20); // Example(2D): // left_half(planar=true) circle(r=20); module left_half(s=100, x=0, planar=false) { dir = LEFT; difference() { children(); translate([x,0,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]); // Function&Module: right_half() // // Usage: as module // right_half([s], [x]) ... // right_half(planar=true, [s], [x]) ... // Usage: as function // result = right_half(p, [x]); // // Description: // Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // x = The X coordinate of the cut-plane. Default: 0 // planar = If true perform a 2D operation. // // Examples(FlatSpin,VPD=175): // right_half() sphere(r=20); // right_half(x=-5) sphere(r=20); // Example(2D): // right_half(planar=true) circle(r=20); module right_half(s=100, x=0, planar=false) { dir = RIGHT; difference() { children(); translate([x,0,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]); // Function&Module: front_half() // // Usage: // front_half([s], [y]) ... // front_half(planar=true, [s], [y]) ... // Usage: as function // result = front_half(p, [y]); // // Description: // Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // y = The Y coordinate of the cut-plane. Default: 0 // planar = If true perform a 2D operation. // // Examples(FlatSpin,VPD=175): // front_half() sphere(r=20); // front_half(y=5) sphere(r=20); // Example(2D): // front_half(planar=true) circle(r=20); module front_half(s=100, y=0, planar=false) { dir = FWD; difference() { children(); translate([0,y,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]); // Function&Module: back_half() // // Usage: // back_half([s], [y]) ... // back_half(planar=true, [s], [y]) ... // Usage: as function // result = back_half(p, [y]); // // Description: // Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // y = The Y coordinate of the cut-plane. Default: 0 // planar = If true perform a 2D operation. // // Examples: // back_half() sphere(r=20); // back_half(y=8) sphere(r=20); // Example(2D): // back_half(planar=true) circle(r=20); module back_half(s=100, y=0, planar=false) { dir = BACK; difference() { children(); translate([0,y,0]-dir*s/2) { if (planar) { square(s, center=true); } else { cube(s, center=true); } } } } function back_half(p,y=0) = half_of(p, BACK, [0,y,0]); // Function&Module: bottom_half() // // Usage: // bottom_half([s], [z]) ... // Usage: as function // result = bottom_half(p, [z]); // // Description: // Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // z = The Z coordinate of the cut-plane. Default: 0 // // Examples: // bottom_half() sphere(r=20); // bottom_half(z=-10) sphere(r=20); module bottom_half(s=100, z=0) { dir = DOWN; difference() { children(); translate([0,0,z]-dir*s/2) { cube(s, center=true); } } } function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]); // Function&Module: top_half() // // Usage: // top_half([s], [z]) ... // result = top_half(p, [z]); // // Description: // Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it. // // Arguments: // p = VNF, region or path to slice (function version) // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 100 // z = The Z coordinate of the cut-plane. Default: 0 // // Examples(Spin,VPD=175): // top_half() sphere(r=20); // top_half(z=5) sphere(r=20); module top_half(s=100, z=0) { dir = UP; difference() { children(); translate([0,0,z]-dir*s/2) { cube(s, center=true); } } } function top_half(p,z=0) = half_of(p,UP,[0,0,z]); ////////////////////////////////////////////////////////////////////// // Section: Warp Mutators ////////////////////////////////////////////////////////////////////// // Module: chain_hull() // // Usage: // chain_hull() ... // // Description: // Performs hull operations between consecutive pairs of children, // then unions all of the hull results. This can be a very slow // operation, but it can provide results that are hard to get // otherwise. // // Side Effects: // `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually. // `$primary` is set to true when the child is the first in a chain pair. // // Example: // chain_hull() { // cube(5, center=true); // translate([30, 0, 0]) sphere(d=15); // translate([60, 30, 0]) cylinder(d=10, h=20); // translate([60, 60, 0]) cube([10,1,20], center=false); // } // Example: Using `$idx` and `$primary` // chain_hull() { // zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx); // } module chain_hull() { union() { if ($children == 1) { children(); } else if ($children > 1) { for (i =[1:1:$children-1]) { $idx = i; hull() { let($primary=true) children(i-1); let($primary=false) children(i); } } } } } // Module: path_extrude2d() // Usage: // path_extrude2d(path, [caps], [closed]) {...} // Description: // Extrudes 2D children along the given 2D path, with optional rounded endcaps. // It works by constructing straight sections corresponding to each segment of the path and inserting rounded joints at each corner. // If the children are symmetric across the Y axis line then you can set caps=true to produce rounded caps on the ends of the profile. // If you set caps to true for asymmetric children then incorrect caps will be generated. // Arguments: // path = The 2D path to extrude the geometry along. // caps = If true, caps each end of the path with a rounded copy of the children. Children must by symmetric across the Y axis, or results are wrong. Default: false // closed = If true, connect the starting point of the path to the ending point. Default: false // convexity = The max number of times a line could pass though a wall. Default: 10 // s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: The length of the diagonal of the path's bounding box. // Example: // path = [ // each right(50, p=arc(d=100,angle=[90,180])), // each left(50, p=arc(d=100,angle=[0,-90])), // ]; // path_extrude2d(path,caps=false) { // fwd(2.5) square([5,6],center=true); // fwd(6) square([10,5],center=true); // } // Example: // path_extrude2d(arc(d=100,angle=[180,270]),caps=true) // trapezoid(w1=10, w2=5, h=10, anchor=BACK); // Example: // include // path = bezier_path([ // [-50,0], [-25,50], [0,0], [50,0] // ]); // path_extrude2d(path, caps=false) // trapezoid(w1=10, w2=3, h=5, anchor=BACK); // Example: Un-Closed Path // $fn=16; // spath = star(id=15,od=35,n=5); // path_extrude2d(spath, caps=false, closed=false) // move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]]) // circle(r=1.5); // Example: Complex Endcaps // $fn=16; // spath = star(id=15,od=35,n=5); // path_extrude2d(spath, caps=true, closed=false) // move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]]) // circle(r=1.5); module path_extrude2d(path, caps=false, closed=false, s, convexity=10) { extra_ang = 0.1; // Extra angle for overlap of joints assert(caps==false || closed==false, "Cannot have caps on a closed extrusion"); assert(is_path(path,2)); path = deduplicate(path); s = s!=undef? s : let(b = pointlist_bounds(path)) norm(b[1]-b[0]); assert(is_finite(s)); L = len(path); for (i = [0:1:L-(closed?1:2)]) { seg = select(path, i, i+1); segv = seg[1] - seg[0]; seglen = norm(segv); translate((seg[0]+seg[1])/2) { rot(from=BACK, to=segv) { difference() { xrot(90) { linear_extrude(height=seglen, center=true, convexity=convexity) { children(); } } if (closed || i>0) { pt = select(path, i-1); pang = v_theta(rot(from=-segv, to=RIGHT, p=pt - seg[0])); fwd(seglen/2+0.01) zrot(pang/2) cube(s, anchor=BACK); } if (closed || i 0) { linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) { children(); } } } } } // Module: spiral_sweep() // Description: // Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path // of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius. // If twist is positive the path will be right-handed; if twist is negative the path will be left-handed. // . // Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance // over which to taper. // Arguments: // poly = Array of points of a polygon path, to be extruded. // h = height of the spiral to extrude along. // r = Radius of the spiral to extrude along. Default: 50 // twist = number of degrees of rotation to spiral up along height. // --- // d = Diameter of the spiral to extrude along. // higbee = Length to taper thread ends over. // higbee1 = Taper length at start // higbee2 = Taper length at end // internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`. // Example: // poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]]; // spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36); module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor, spin=0, orient=UP) { higsample = 10; // Oversample factor for higbee tapering dummy1=assert(is_num(twist) && twist != 0); bounds = pointlist_bounds(poly); yctr = (bounds[0].y+bounds[1].y)/2; xmin = bounds[0].x; xmax = bounds[1].x; poly = path3d(clockwise_polygon(poly)); anchor = get_anchor(anchor,center,BOT,BOT); r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50); r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50); sides = segs(max(r1,r2)); dir = sign(twist); ang_step = 360/sides*dir; anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang, twist]; higbee1 = first_defined([higbee1, higbee, 0]); higbee2 = first_defined([higbee2, higbee, 0]); higang1 = 360 * higbee1 / (2 * r1 * PI); higang2 = 360 * higbee2 / (2 * r2 * PI); dummy2=assert(higbee1>=0 && higbee2>=0) assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads") assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads"); function polygon_r(N,theta) = let( alpha = 360/N ) cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2)); higofs = pow(0.05,2); // Smallest hig scale is the square root of this value function taperfunc(x) = sqrt((1-higofs)*x+higofs); interp_ang = [ for(i=idx(anglist,e=-2)) each lerpn(anglist[i],anglist[i+1], (higang1>0 && higang1>dir*anglist[i+1] || (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample) : 1, endpoint=false), last(anglist) ]; skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h)); points = [ for (a = interp_ang) let ( hsc = dir*a0?true:false, style=higbee1>0 || higbee2>0 ? "quincunx" : "alt" ); attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) { vnf_polyhedron(vnf, convexity=ceil(2*dir*twist/360)); children(); } } // Module: path_extrude() // Description: // Extrudes 2D children along a 3D path. This may be slow. // Arguments: // path = Array of points for the bezier path to extrude along. // convexity = Maximum number of walls a ray can pass through. // clipsize = Increase if artifacts are left. Default: 100 // Example(FlatSpin,VPD=600,VPT=[75,16,20]): // path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ]; // path_extrude(path) circle(r=10, $fn=6); module path_extrude(path, convexity=10, clipsize=100) { function polyquats(path, q=q_ident(), v=[0,0,1], i=0) = let( v2 = path[i+1] - path[i], ang = vector_angle(v,v2), axis = ang>0.001? unit(cross(v,v2)) : [0,0,1], newq = q_mul(quat(axis, ang), q), dist = norm(v2) ) i < (len(path)-2)? concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) : [[dist, newq, ang]]; epsilon = 0.0001; // Make segments ever so slightly too long so they overlap. ptcount = len(path); pquats = polyquats(path); for (i = [0:1:ptcount-2]) { pt1 = path[i]; pt2 = path[i+1]; dist = pquats[i][0]; q = pquats[i][1]; difference() { translate(pt1) { q_rot(q) { down(clipsize/2/2) { if ((dist+clipsize/2) > 0) { linear_extrude(height=dist+clipsize/2, convexity=convexity) { children(); } } } } } translate(pt1) { hq = (i > 0)? q_slerp(q, pquats[i-1][1], 0.5) : q; q_rot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true); } translate(pt2) { hq = (i < ptcount-2)? q_slerp(q, pquats[i+1][1], 0.5) : q; q_rot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true); } } } } ////////////////////////////////////////////////////////////////////// // Section: Offset Mutators ////////////////////////////////////////////////////////////////////// // Module: minkowski_difference() // Usage: // minkowski_difference() { base_shape(); diff_shape(); ... } // Description: // Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the // surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the // surface of its base shape. // Arguments: // planar = If true, performs minkowski difference in 2D. Default: false (3D) // Example: // minkowski_difference() { // union() { // cube([120,70,70], center=true); // cube([70,120,70], center=true); // cube([70,70,120], center=true); // } // sphere(r=10); // } module minkowski_difference(planar=false) { difference() { bounding_box(excess=0, planar=planar) children(0); render(convexity=20) { minkowski() { difference() { bounding_box(excess=1, planar=planar) children(0); children(0); } for (i=[1:1:$children-1]) children(i); } } } } // Module: round2d() // Usage: // round2d(r) ... // round2d(or) ... // round2d(ir) ... // round2d(or, ir) ... // Description: // Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir` // rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or` // can let you round to different radii for concave and convex corners. The 2D object must not have // any parts narrower than twice the `or` radius. Such parts will disappear. // Arguments: // r = Radius to round all concave and convex corners to. // or = Radius to round only outside (convex) corners to. Use instead of `r`. // ir = Radius to round only inside (concave) corners to. Use instead of `r`. // Examples(2D): // round2d(r=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);} // round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);} module round2d(r, or, ir) { or = get_radius(r1=or, r=r, dflt=0); ir = get_radius(r1=ir, r=r, dflt=0); offset(or) offset(-ir-or) offset(delta=ir,chamfer=true) children(); } // Module: shell2d() // Usage: // shell2d(thickness, [or], [ir], [fill], [round]) // Description: // Creates a hollow shell from 2D children, with optional rounding. // Arguments: // thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both. // or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding) // ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding) // Examples(2D): // shell2d(10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(-10) {square([40,100], center=true); square([100,40], center=true);} // shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=[10,0]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,or=[0,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=[10,0]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(10,ir=[0,10]) {square([40,100], center=true); square([100,40], center=true);} // shell2d(8,or=[16,8],ir=[16,8]) {square([40,100], center=true); square([100,40], center=true);} module shell2d(thickness, or=0, ir=0) { thickness = is_num(thickness)? ( thickness<0? [thickness,0] : [0,thickness] ) : (thickness[0]>thickness[1])? ( [thickness[1],thickness[0]] ) : thickness; orad = is_finite(or)? [or,or] : or; irad = is_finite(ir)? [ir,ir] : ir; difference() { round2d(or=orad[0],ir=orad[1]) offset(delta=thickness[1]) children(); round2d(or=irad[1],ir=irad[0]) offset(delta=thickness[0]) children(); } } // Module: offset3d() // Usage: // offset3d(r, [size], [convexity]); // Description: // Expands or contracts the surface of a 3D object by a given amount. This is very, very slow. // No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort. // This is so slow that no example images will be rendered. // Arguments: // r = Radius to expand object by. Negative numbers contract the object. // size = Maximum size of object to be contracted, given as a scalar. Default: 100 // convexity = Max number of times a line could intersect the walls of the object. Default: 10 module offset3d(r=1, size=100, convexity=10) { n = quant(max(8,segs(abs(r))),4); if (r==0) { children(); } else if (r>0) { render(convexity=convexity) minkowski() { children(); sphere(r, $fn=n); } } else { size2 = size * [1,1,1]; size1 = size2 * 1.02; render(convexity=convexity) difference() { cube(size2, center=true); minkowski() { difference() { cube(size1, center=true); children(); } sphere(-r, $fn=n); } } } } // Module: round3d() // Usage: // round3d(r) ... // round3d(or) ... // round3d(ir) ... // round3d(or, ir) ... // Description: // Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir` // rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or` // can let you round to different radii for concave and convex corners. The 3D object must not have // any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely* // slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times. // Use this as a last resort. This is so slow that no example images will be rendered. // Arguments: // r = Radius to round all concave and convex corners to. // or = Radius to round only outside (convex) corners to. Use instead of `r`. // ir = Radius to round only inside (concave) corners to. Use instead of `r`. module round3d(r, or, ir, size=100) { or = get_radius(r1=or, r=r, dflt=0); ir = get_radius(r1=ir, r=r, dflt=0); offset3d(or, size=size) offset3d(-ir-or, size=size) offset3d(ir, size=size) children(); } ////////////////////////////////////////////////////////////////////// // Section: Colors ////////////////////////////////////////////////////////////////////// // Function&Module: HSL() // Usage: // HSL(h,[s],[l],[a]) ... // rgb = HSL(h,[s],[l]); // Description: // When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace. // When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace. // Arguments: // h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta. // s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1 // l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5 // a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1 // Example: // HSL(h=120,s=1,l=0.5) sphere(d=60); // Example: // rgb = HSL(h=270,s=0.75,l=0.6); // color(rgb) cube(60, center=true); function HSL(h,s=1,l=0.5) = let( h=posmod(h,360) ) [ for (n=[0,8,4]) let( k=(n+h/30)%12 ) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1) ]; module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children(); // Function&Module: HSV() // Usage: // HSV(h,[s],[v],[a]) ... // rgb = HSV(h,[s],[v]); // Description: // When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace. // When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace. // Arguments: // h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta. // s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1 // v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1 // a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1 // Example: // HSV(h=120,s=1,v=1) sphere(d=60); // Example: // rgb = HSV(h=270,s=0.75,v=0.9); // color(rgb) cube(60, center=true); function HSV(h,s=1,v=1) = assert(s>=0 && s<=1) assert(v>=0 && v<=1) let( h = posmod(h,360), c = v * s, hprime = h/60, x = c * (1- abs(hprime % 2 - 1)), rgbprime = hprime <=1 ? [c,x,0] : hprime <=2 ? [x,c,0] : hprime <=3 ? [0,c,x] : hprime <=4 ? [0,x,c] : hprime <=5 ? [x,0,c] : hprime <=6 ? [c,0,x] : [0,0,0], m=v-c ) rgbprime+[m,m,m]; module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children(); // Module: rainbow() // Usage: // rainbow(list) ... // Description: // Iterates the list, displaying children in different colors for each list item. // This is useful for debugging lists of paths and such. // Arguments: // list = The list of items to iterate through. // stride = Consecutive colors stride around the color wheel divided into this many parts. // maxhues = max number of hues to use (to prevent lots of indistinguishable hues) // shuffle = if true then shuffle the hues in a random order. Default: false // seed = seed to use for shuffle // Side Effects: // Sets the color to progressive values along the ROYGBIV spectrum for each item. // Sets `$idx` to the index of the current item in `list` that we want to show. // Sets `$item` to the current item in `list` that we want to show. // Example(2D): // rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center"); // Example(2D): // rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)]; // rainbow(rgn) stroke($item, closed=true); module rainbow(list, stride=1, maxhues, shuffle=false, seed) { ll = len(list); maxhues = first_defined([maxhues,ll]); huestep = 360 / maxhues; huelist = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)]; hues = shuffle ? shuffle(huelist, seed=seed) : huelist; for($idx=idx(list)) { $item = list[$idx]; HSV(h=hues[$idx]) children(); } } // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap