include module test(got,expect,extra_info) { if ( is_undef(expect) != is_undef(got) || expect*0 != got*0 || (is_vnf(expect) && !all([for (i=idx(expect[0])) approx(got[0][i],expect[0][i])]) && got[1]!=expect[1]) || (is_matrix(expect) && !all([for (i=idx(expect)) approx(got[i],expect[i])])) || (got!=expect && !approx(got, expect)) ) { fmt = is_int(expect)? "{:.14i}" : is_num(expect)? "{:.14g}" : is_vector(expect)? "{:.14g}" : "{}"; echofmt(str("Expected: ",fmt),[expect]); echofmt(str("But Got : ",fmt),[got]); if (expect*0 == got*0) { echofmt(str("Delta is: ",fmt),[expect-got]); } if (!is_undef(extra_info)) { echo(str("Extra Info: ",extra_info)); } assert(false, "TEST FAILED!"); } } module test_rot() { pts2d = 50 * [for (x=[-1,0,1],y=[-1,0,1]) [x,y]]; pts3d = 50 * [for (x=[-1,0,1],y=[-1,0,1],z=[-1,0,1]) [x,y,z]]; vecs2d = [ for (x=[-1,0,1], y=[-1,0,1]) if(x!=0||y!=0) [x,y], polar_to_xy(1, -75), polar_to_xy(1, 75) ]; vecs3d = [ LEFT, RIGHT, FRONT, BACK, DOWN, UP, spherical_to_xyz(1, -30, 45), spherical_to_xyz(1, 0, 45), spherical_to_xyz(1, 30, 45), spherical_to_xyz(2, 30, 45), spherical_to_xyz(1, -30, 135), spherical_to_xyz(2, -30, 135), spherical_to_xyz(1, 0, 135), spherical_to_xyz(1, 30, 135), spherical_to_xyz(1, -30, 75), spherical_to_xyz(1, 45, 45), ]; angs = [-180, -90, -45, 0, 30, 45, 90]; for (a = [-360*3:360:360*3]) { test(rot(a), affine3d_identity(), extra_info=str("rot(",a,") != identity")); test(rot(a,p=pts2d), pts2d, extra_info=str("rot(",a,",p=...), 2D")); test(rot(a,p=pts3d), pts3d, extra_info=str("rot(",a,",p=...), 3D")); } test(rot(90), [[0,-1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]) for (a=angs) { test(rot(a), affine3d_zrot(a), extra_info=str("Z angle (only) = ",a)); test(rot([a,0,0]), affine3d_xrot(a), extra_info=str("X angle = ",a)); test(rot([0,a,0]), affine3d_yrot(a), extra_info=str("Y angle = ",a)); test(rot([0,0,a]), affine3d_zrot(a), extra_info=str("Z angle = ",a)); test(rot(a,p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle (only) = ",a, ", p=..., 2D")); test(rot([0,0,a],p=pts2d), apply(affine3d_zrot(a),pts2d), extra_info=str("Z angle = ",a, ", p=..., 2D")); test(rot(a,p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle (only) = ",a, ", p=..., 3D")); test(rot([a,0,0],p=pts3d), apply(affine3d_xrot(a),pts3d), extra_info=str("X angle = ",a, ", p=..., 3D")); test(rot([0,a,0],p=pts3d), apply(affine3d_yrot(a),pts3d), extra_info=str("Y angle = ",a, ", p=..., 3D")); test(rot([0,0,a],p=pts3d), apply(affine3d_zrot(a),pts3d), extra_info=str("Z angle = ",a, ", p=..., 3D")); } for (xa=angs, ya=angs, za=angs) { test( rot([xa,ya,za]), affine3d_chain([ affine3d_xrot(xa), affine3d_yrot(ya), affine3d_zrot(za) ]), extra_info=str("[X,Y,Z] = ",[xa,ya,za]) ); test( rot([xa,ya,za],p=pts3d), apply( affine3d_chain([ affine3d_xrot(xa), affine3d_yrot(ya), affine3d_zrot(za) ]), pts3d ), extra_info=str("[X,Y,Z] = ",[xa,ya,za], ", p=...") ); } for (vec1 = vecs3d) { for (ang = angs) { test( rot(a=ang, v=vec1), affine3d_rot_by_axis(vec1,ang), extra_info=str("a = ",ang,", v = ", vec1) ); test( rot(a=ang, v=vec1, p=pts3d), apply(affine3d_rot_by_axis(vec1,ang), pts3d), extra_info=str("a = ",ang,", v = ", vec1, ", p=...") ); } } for (vec1 = vecs2d) { for (vec2 = vecs2d) { test( rot(from=vec1, to=vec2, p=pts2d, planar=true), apply(affine2d_zrot(vang(vec2)-vang(vec1)), pts2d), extra_info=str( "from = ", vec1, ", ", "to = ", vec2, ", ", "planar = ", true, ", ", "p=..., 2D" ) ); } } for (vec1 = vecs3d) { for (vec2 = vecs3d) { for (a = angs) { test( rot(from=vec1, to=vec2, a=a), affine3d_chain([ affine3d_zrot(a), affine3d_rot_from_to(vec1,vec2) ]), extra_info=str( "from = ", vec1, ", ", "to = ", vec2, ", ", "a = ", a ) ); test( rot(from=vec1, to=vec2, a=a, p=pts3d), apply( affine3d_chain([ affine3d_zrot(a), affine3d_rot_from_to(vec1,vec2) ]), pts3d ), extra_info=str( "from = ", vec1, ", ", "to = ", vec2, ", ", "a = ", a, ", ", "p=..., 3D" ) ); } } } } test_rot(); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap