////////////////////////////////////////////////////////////////////// // LibFile: vectors.scad // Vector math functions. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // Section: Vector Manipulation // Function: is_vector() // Usage: // is_vector(v) // Description: // Returns true if the given value is a list, and at least the first item is a number. // Example: // is_vector([1,2,3]); // Returns: true // is_vector([[1,2,3]]); // Returns: false // is_vector(["foo"]); // Returns: false // is_vector([]); // Returns: false // is_vector(1); // Returns: false // is_vector("foo"); // Returns: false // is_vector(true); // Returns: false function is_vector(v) = is_list(v) && is_num(v[0]); // Function: add_scalar() // Usage: // add_scalar(v,s); // Description: // Given a vector and a scalar, returns the vector with the scalar added to each item in it. // If given a list of vectors, recursively adds the scalar to the each vector. // Arguments: // v = The initial list of values. // s = A scalar value to add to every item in the vector. // Example: // add_scalar([1,2,3],3); // Returns: [4,5,6] // add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]] function add_scalar(v,s) = [for (x=v) is_list(x)? add_scalar(x,s) : x+s]; // Function: vmul() // Description: // Element-wise vector multiplication. Multiplies each element of vector `v1` by // the corresponding element of vector `v2`. Returns a vector of the products. // Arguments: // v1 = The first vector. // v2 = The second vector. // Example: // vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30] function vmul(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]*v2[i]]; // Function: vdiv() // Description: // Element-wise vector division. Divides each element of vector `v1` by // the corresponding element of vector `v2`. Returns a vector of the quotients. // Arguments: // v1 = The first vector. // v2 = The second vector. // Example: // vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5] function vdiv(v1, v2) = [for (i = [0:1:len(v1)-1]) v1[i]/v2[i]]; // Function: vabs() // Description: Returns a vector of the absolute value of each element of vector `v`. // Arguments: // v = The vector to get the absolute values of. // Example: // vabs([-1,3,-9]); // Returns: [1,3,9] function vabs(v) = [for (x=v) abs(x)]; // Function: normalize() // Description: // Returns unit length normalized version of vector v. // If passed a zero-length vector, returns the unchanged vector. // Arguments: // v = The vector to normalize. // Examples: // normalize([10,0,0]); // Returns: [1,0,0] // normalize([0,10,0]); // Returns: [0,1,0] // normalize([0,0,10]); // Returns: [0,0,1] // normalize([0,-10,0]); // Returns: [0,-1,0] // normalize([0,0,0]); // Returns: [0,0,0] function normalize(v) = norm(v)<=EPSILON? v : v/norm(v); // Function: vquant() // Usage: // vquant(v,m) // Description: // Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding to the nearest multiple. // Arguments: // v = The vector to quantize. // m = The multiple to quantize to. // Examples: // vquant(12,4); // Returns: 12 // vquant(13,4); // Returns: 12 // vquant(14,4); // Returns: 16 // vquant(15,4); // Returns: 16 // vquant(16,4); // Returns: 16 // vquant(9,3); // Returns: 9 // vquant(10,3); // Returns: 9 // vquant(11,3); // Returns: 12 // vquant(12,3); // Returns: 12 function vquant(v,m) = [for (x=v) quant(x,m)]; // Function: vquantdn() // Usage: // vquantdn(v,m) // Description: // Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding down to the nearest multiple. // Arguments: // v = The vector to quantize. // m = The multiple to quantize to. // Examples: // vquant(12,4); // Returns: 12 // vquant(13,4); // Returns: 12 // vquant(14,4); // Returns: 12 // vquant(15,4); // Returns: 12 // vquant(16,4); // Returns: 16 // vquant(9,3); // Returns: 9 // vquant(10,3); // Returns: 9 // vquant(11,3); // Returns: 9 // vquant(12,3); // Returns: 12 function vquantdn(v,m) = [for (x=v) quantdn(x,m)]; // Function: vquantup() // Usage: // vquantup(v,m) // Description: // Quantizes each scalar in the vector `v` to an integer multiple of `m`, rounding up to the nearest multiple. // Arguments: // v = The vector to quantize. // m = The multiple to quantize to. // Examples: // vquant(12,4); // Returns: 12 // vquant(13,4); // Returns: 16 // vquant(14,4); // Returns: 16 // vquant(15,4); // Returns: 16 // vquant(16,4); // Returns: 16 // vquant(9,3); // Returns: 9 // vquant(10,3); // Returns: 12 // vquant(11,3); // Returns: 12 // vquant(12,3); // Returns: 12 function vquantup(v,m) = [for (x=v) quantup(x,m)]; // Function: vector_angle() // Usage: // vector_angle(v1,v2); // vector_angle(PT1,PT2,PT3); // vector_angle([PT1,PT2,PT3]); // Description: // If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2. // If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC. // If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2. // If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC. // Arguments: // v1 = First vector or point. // v2 = Second vector or point. // v3 = Third point in three point mode. // Examples: // vector_angle(UP,LEFT); // Returns: 90 // vector_angle(RIGHT,LEFT); // Returns: 180 // vector_angle(UP+RIGHT,RIGHT); // Returns: 45 // vector_angle([10,10], [0,0], [10,-10]); // Returns: 90 // vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120 // vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120 function vector_angle(v1,v2=undef,v3=undef) = (is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? ( assert(is_vector(v1.x)) assert(is_vector(v1.y)) len(v1)==3? assert(is_vector(v1.z)) vector_angle(v1.x, v1.y, v1.z) : len(v1)==2? vector_angle(v1.x, v1.y) : assert(false, "Bad arguments.") ) : (is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_angle(v1-v2, v3-v2) : // NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain. (is_vector(v1) && is_vector(v2) && is_undef(v3))? acos(constrain((v1*v2)/(norm(v1)*norm(v2)), -1, 1)) : assert(false, "Bad arguments."); // Function: vector_axis() // Usage: // vector_axis(v1,v2); // vector_axis(PT1,PT2,PT3); // vector_axis([PT1,PT2,PT3]); // Description: // If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2. // If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular the line segments AB and BC. // If given two vectors, like `vector_axis(V1,V1)`, returns the vector perpendicular the two vectors V1 and V2. // If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular the line segments AB and BC. // Arguments: // v1 = First vector or point. // v2 = Second vector or point. // v3 = Third point in three point mode. // Examples: // vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD) // vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD) // vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK) // vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN) // vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735] // vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735] function vector_axis(v1,v2=undef,v3=undef) = (is_list(v1) && is_list(v1[0]) && is_undef(v2) && is_undef(v3))? ( assert(is_vector(v1.x)) assert(is_vector(v1.y)) len(v1)==3? assert(is_vector(v1.z)) vector_axis(v1.x, v1.y, v1.z) : len(v1)==2? vector_axis(v1.x, v1.y) : assert(false, "Bad arguments.") ) : (is_vector(v1) && is_vector(v2) && is_vector(v3))? vector_axis(v1-v2, v3-v2) : (is_vector(v1) && is_vector(v2) && is_undef(v3))? let( eps = 1e-6, v1 = point3d(v1/norm(v1)), v2 = point3d(v2/norm(v2)), v3 = (norm(v1-v2) > eps && norm(v1+v2) > eps)? v2 : (norm(vabs(v2)-UP) > eps)? UP : RIGHT ) normalize(cross(v1,v3)) : assert(false, "Bad arguments."); // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap