////////////////////////////////////////////////////////////////////// // LibFile: arrays.scad // List and Array manipulation functions. // Includes: // include ////////////////////////////////////////////////////////////////////// // Terminology: // **List** = An ordered collection of zero or more items. ie: `["a", "b", "c"]` // **Vector** = A list of numbers. ie: `[4, 5, 6]` // **Array** = A nested list of lists, or list of lists of lists, or deeper. ie: `[[2,3], [4,5], [6,7]]` // **Dimension** = The depth of nesting of lists in an array. A List is 1D. A list of lists is 2D. etc. // **Set** = A list of unique items. // Section: List Query Operations // Function: is_homogeneous() // Alias: is_homogenous() // Usage: // bool = is_homogeneous(list,depth); // Topics: List Handling, Type Checking // See Also: is_vector(), is_matrix() // Description: // Returns true when the list has elements of same type up to the depth `depth`. // Booleans and numbers are not distinguinshed as of distinct types. // Arguments: // l = the list to check // depth = the lowest level the check is done // Example: // a = is_homogeneous([[1,["a"]], [2,["b"]]]); // Returns true // b = is_homogeneous([[1,["a"]], [2,[true]]]); // Returns false // c = is_homogeneous([[1,["a"]], [2,[true]]], 1); // Returns true // d = is_homogeneous([[1,["a"]], [2,[true]]], 2); // Returns false // e = is_homogeneous([[1,["a"]], [true,["b"]]]); // Returns true function is_homogeneous(l, depth=10) = !is_list(l) || l==[] ? false : let( l0=l[0] ) [] == [for(i=[1:len(l)-1]) if( ! _same_type(l[i],l0, depth+1) ) 0 ]; function is_homogenous(l, depth=10) = is_homogeneous(l, depth); function _same_type(a,b, depth) = (depth==0) || (is_undef(a) && is_undef(b)) || (is_bool(a) && is_bool(b)) || (is_num(a) && is_num(b)) || (is_string(a) && is_string(b)) || (is_list(a) && is_list(b) && len(a)==len(b) && []==[for(i=idx(a)) if( ! _same_type(a[i],b[i],depth-1) ) 0] ); // Function: select() // Description: // Returns a portion of a list, wrapping around past the beginning, if ends) list[i]]; // Function: last() // Usage: // item = last(list); // Topics: List Handling // See Also: select(), slice(), subindex() // Description: // Returns the last element of a list, or undef if empty. // Arguments: // list = The list to get the last element of. // Example: // l = [3,4,5,6,7,8,9]; // x = last(l); // Returns 9. function last(list) = list[len(list)-1]; // Function: delete_last() // Usage: // list = delete_last(list); // Topics: List Handling // See Also: select(), slice(), subindex(), last() // Description: // Returns a list with all but the last entry from the input list. If input is empty, returns empty list. // Example: // nlist = delete_last(["foo", "bar", "baz"]); // Returns: ["foo", "bar"] function delete_last(list) = assert(is_list(list)) list==[] ? [] : slice(list,0,-2); // Function: force_list() // Usage: // list = force_list(value, , ); // Topics: List Handling // See Also: scalar_vec3() // Description: // Coerces non-list values into a list. Makes it easy to treat a scalar input // consistently as a singleton list, as well as list inputs. // - If `value` is a list, then that list is returned verbatim. // - If `value` is not a list, and `fill` is not given, then a list of `n` copies of `value` will be returned. // - If `value` is not a list, and `fill` is given, then a list `n` items long will be returned where `value` will be the first item, and the rest will contain the value of `fill`. // Arguments: // value = The value or list to coerce into a list. // n = The number of items in the coerced list. Default: 1 // fill = The value to pad the coerced list with, after the firt value. Default: undef (pad with copies of `value`) // Examples: // x = force_list([3,4,5]); // Returns: [3,4,5] // y = force_list(5); // Returns: [5] // z = force_list(7, n=3); // Returns: [7,7,7] // w = force_list(4, n=3, fill=1); // Returns: [4,1,1] function force_list(value, n=1, fill) = is_list(value) ? value : is_undef(fill)? [for (i=[1:1:n]) value] : [value, for (i=[2:1:n]) fill]; // Function: add_scalar() // Usage: // v = add_scalar(v,s); // Topics: List Handling // Description: // Given a list and a scalar, returns the list with the scalar added to each item in it. // If given a list of arrays, recursively adds the scalar to the each array. // Arguments: // v = The initial array. // s = A scalar value to add to every item in the array. // Example: // a = add_scalar([1,2,3],3); // Returns: [4,5,6] // b = add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]] function add_scalar(v,s) = is_finite(s) ? [for (x=v) is_list(x)? add_scalar(x,s) : is_finite(x) ? x+s: x] : v; // Function: in_list() // Usage: // bool = in_list(val,list, ); // Topics: List Handling // Description: // Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list. // Arguments: // val = The simple value to search for. // list = The list to search. // idx = If given, searches the given subindex for matches for `val`. // Example: // a = in_list("bar", ["foo", "bar", "baz"]); // Returns true. // b = in_list("bee", ["foo", "bar", "baz"]); // Returns false. // c = in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true. function in_list(val,list,idx) = assert( is_list(list) && (is_undef(idx) || is_finite(idx)), "Invalid input." ) let( s = search([val], list, num_returns_per_match=1, index_col_num=idx)[0] ) s==[] || s==[[]] ? false : is_undef(idx) ? val==list[s] : val==list[s][idx]; // Function: find_first_match() // Topics: List Handling // See Also: in_list() // Usage: // idx = find_first_match(val, list, , ); // indices = find_first_match(val, list, all=true, , ); // Description: // Finds the first item in `list` that matches `val`, returning the index. // Arguments: // val = The value to search for. // list = The list to search through. // --- // start = The index to start searching from. // all = If true, returns a list of all matching item indices. // eps = The maximum allowed floating point rounding error for numeric comparisons. function find_first_match(val, list, start=0, all=false, eps=EPSILON) = all? [for (i=[start:1:len(list)-1]) if(val==list[i] || approx(val, list[i], eps=eps)) i] : __find_first_match(val, list, eps=eps, i=start); function __find_first_match(val, list, eps, i=0) = i >= len(list)? undef : approx(val, list[i], eps=eps)? i : __find_first_match(val, list, eps=eps, i=i+1); // Function: min_index() // Usage: // idx = min_index(vals); // idxlist = min_index(vals,all=true); // Topics: List Handling // See Also: max_index(), list_increasing(), list_decreasing() // Description: // Returns the index of the first occurrence of the minimum value in the given list. // If `all` is true then returns a list of all indices where the minimum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the minimum. Default: false // Example: // a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8 // b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7] function min_index(vals, all=false) = assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.") all ? search(min(vals),vals,0) : search(min(vals), vals)[0]; // Function: max_index() // Usage: // idx = max_index(vals); // idxlist = max_index(vals,all=true); // Topics: List Handling // See Also: min_index(), list_increasing(), list_decreasing() // Description: // Returns the index of the first occurrence of the maximum value in the given list. // If `all` is true then returns a list of all indices where the maximum value occurs. // Arguments: // vals = vector of values // all = set to true to return indices of all occurences of the maximum. Default: false // Example: // max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2 // max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7] function max_index(vals, all=false) = assert( is_vector(vals) && len(vals)>0 , "Invalid or empty list of numbers.") all ? search(max(vals),vals,0) : search(max(vals), vals)[0]; // Function: list_increasing() // Usage: // bool = list_increasing(list); // Topics: List Handling // See Also: max_index(), min_index(), list_decreasing() // Description: // Returns true if the list is (non-strictly) increasing // Example: // a = list_increasing([1,2,3,4]); // Returns: true // b = list_increasing([1,3,2,4]); // Returns: false // c = list_increasing([4,3,2,1]); // Returns: false function list_increasing(list) = assert(is_list(list)||is_string(list)) len([for (p=pair(list)) if(p.x>p.y) true])==0; // Function: list_decreasing() // Usage: // bool = list_decreasing(list); // Topics: List Handling // See Also: max_index(), min_index(), list_increasing() // Description: // Returns true if the list is (non-strictly) decreasing // Example: // a = list_decreasing([1,2,3,4]); // Returns: false // b = list_decreasing([4,2,3,1]); // Returns: false // c = list_decreasing([4,3,2,1]); // Returns: true function list_decreasing(list) = assert(is_list(list)||is_string(list)) len([for (p=pair(list)) if(p.x=len(n))? val : [for (j=[1:1:n[i]]) repeat(val, n, i+1)]; // Function: list_range() // Usage: // list = list_range(n=, , ); // list = list_range(n=, , ); // list = list_range(e=, ); // list = list_range(s=, e=, ); // Topics: List Handling // See Also: repeat() // Description: // Returns a list, counting up from starting value `s`, by `step` increments, // until either `n` values are in the list, or it reaches the end value `e`. // If both `n` and `e` are given, returns `n` values evenly spread from `s` // to `e`, and `step` is ignored. // Arguments: // --- // n = Desired number of values in returned list, if given. // s = Starting value. Default: 0 // e = Ending value to stop at, if given. // step = Amount to increment each value. Default: 1 // Example: // a = list_range(4); // Returns [0,1,2,3] // b = list_range(n=4, step=2); // Returns [0,2,4,6] // c = list_range(n=4, s=3, step=3); // Returns [3,6,9,12] // d = list_range(n=5, s=0, e=10); // Returns [0, 2.5, 5, 7.5, 10] // e = list_range(e=3); // Returns [0,1,2,3] // f = list_range(e=7, step=2); // Returns [0,2,4,6] // g = list_range(s=3, e=5); // Returns [3,4,5] // h = list_range(s=3, e=8, step=2); // Returns [3,5,7] // i = list_range(s=4, e=8.3, step=2); // Returns [4,6,8] // j = list_range(n=4, s=[3,4], step=[2,3]); // Returns [[3,4], [5,7], [7,10], [9,13]] function list_range(n, s=0, e, step) = assert( is_undef(n) || is_finite(n), "Parameter `n` must be a number.") assert( is_undef(n) || is_undef(e) || is_undef(step), "At most 2 of n, e, and step can be given.") let( step = (n!=undef && e!=undef)? (e-s)/(n-1) : default(step,1) ) is_undef(e) ? assert( is_consistent([s, step]), "Incompatible data.") [for (i=[0:1:n-1]) s+step*i ] : assert( is_vector([s,step,e]), "Start `s`, step `step` and end `e` must be numbers.") [for (v=[s:step:e]) v] ; // Section: List Manipulation // Function: reverse() // Usage: // rlist = reverse(list); // Topics: List Handling // See Also: select(), list_rotate() // Description: // Reverses a list/array or string. // Arguments: // x = The list or string to reverse. // Example: // reverse([3,4,5,6]); // Returns [6,5,4,3] function reverse(x) = assert(is_list(x)||is_string(x), str("Input to reverse must be a list or string. Got: ",x)) let (elems = [ for (i = [len(x)-1 : -1 : 0]) x[i] ]) is_string(x)? str_join(elems) : elems; // Function: list_rotate() // Usage: // rlist = list_rotate(list,); // Topics: List Handling // See Also: select(), reverse() // Description: // Rotates the contents of a list by `n` positions left. // If `n` is negative, then the rotation is `abs(n)` positions to the right. // If `list` is a string, then a string is returned with the characters rotates within the string. // Arguments: // list = The list to rotate. // n = The number of positions to rotate by. If negative, rotated to the right. Positive rotates to the left. Default: 1 // Example: // l1 = list_rotate([1,2,3,4,5],-2); // Returns: [4,5,1,2,3] // l2 = list_rotate([1,2,3,4,5],-1); // Returns: [5,1,2,3,4] // l3 = list_rotate([1,2,3,4,5],0); // Returns: [1,2,3,4,5] // l4 = list_rotate([1,2,3,4,5],1); // Returns: [2,3,4,5,1] // l5 = list_rotate([1,2,3,4,5],2); // Returns: [3,4,5,1,2] // l6 = list_rotate([1,2,3,4,5],3); // Returns: [4,5,1,2,3] // l7 = list_rotate([1,2,3,4,5],4); // Returns: [5,1,2,3,4] // l8 = list_rotate([1,2,3,4,5],5); // Returns: [1,2,3,4,5] // l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1] function list_rotate(list,n=1) = assert(is_list(list)||is_string(list), "Invalid list or string.") assert(is_finite(n), "Invalid number") let (elems = select(list,n,n+len(list)-1)) is_string(list)? str_join(elems) : elems; // Function: deduplicate() // Usage: // list = deduplicate(list,,); // Topics: List Handling // See Also: deduplicate_indexed() // Description: // Removes consecutive duplicate items in a list. // When `eps` is zero, the comparison between consecutive items is exact. // Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`. // This is different from `unique()` in that the list is *not* sorted. // Arguments: // list = The list to deduplicate. // closed = If true, drops trailing items if they match the first list item. // eps = The maximum tolerance between items. // Examples: // a = deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8] // b = deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3] // c = deduplicate("Hello"); // Returns: "Helo" // d = deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]] // e = deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]] function deduplicate(list, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list)) let( l = len(list), end = l-(closed?0:1) ) is_string(list) ? str_join([for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]]) : eps==0 ? [for (i=[0:1:l-1]) if (i==end || list[i] != list[(i+1)%l]) list[i]] : [for (i=[0:1:l-1]) if (i==end || !approx(list[i], list[(i+1)%l], eps)) list[i]]; // Function: deduplicate_indexed() // Usage: // new_idxs = deduplicate_indexed(list, indices, , ); // Topics: List Handling // See Also: deduplicate() // Description: // Given a list, and indices into it, removes consecutive indices that // index to the same values in the list. // Arguments: // list = The list that the indices index into. // indices = The list of indices to deduplicate. // closed = If true, drops trailing indices if what they index matches what the first index indexes. // eps = The maximum difference to allow between numbers or vectors. // Examples: // a = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1] // b = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0] // c = deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4] function deduplicate_indexed(list, indices, closed=false, eps=EPSILON) = assert(is_list(list)||is_string(list), "Improper list or string.") indices==[]? [] : assert(is_vector(indices), "Indices must be a list of numbers.") let( ll = len(list), l = len(indices), end = l-(closed?0:1) ) [ for (i = [0:1:l-1]) let( idx1 = indices[i], idx2 = indices[(i+1)%l], a = assert(idx1>=0,"Bad index.") assert(idx1=0,"Bad index.") assert(idx2); // Topics: List Handling // See Also: repeat() // Description: // Takes a list as input and duplicates some of its entries to produce a list // with length `N`. If the requested `N` is not a multiple of the list length then // the entries will be duplicated as uniformly as possible. You can also set `N` to a vector, // in which case len(N) must equal len(list) and the output repeats the ith entry N[i] times. // In either case, the result will be a list of length `N`. The `exact` option requires // that the final length is exactly as requested. If you set it to `false` then the // algorithm will favor uniformity and the output list may have a different number of // entries due to rounding. // . // When applied to a path the output path is the same geometrical shape but has some vertices // repeated. This can be useful when you need to align paths with a different number of points. // (See also subdivide_path for a different way to do that.) // Arguments: // list = list whose entries will be repeated // N = scalar total number of points desired or vector requesting N[i] copies of vertex i. // exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform points that may not match the number of points requested. Default: True // Examples: // list = [0,1,2,3]; // a = repeat_entries(list, 6); // Returns: [0,0,1,2,2,3] // b = repeat_entries(list, 6, exact=false); // Returns: [0,0,1,1,2,2,3,3] // c = repeat_entries(list, [1,1,2,1], exact=false); // Returns: [0,1,2,2,3] function repeat_entries(list, N, exact=true) = assert(is_list(list) && len(list)>0, "The list cannot be void.") assert((is_finite(N) && N>0) || is_vector(N,len(list)), "Parameter N must be a number greater than zero or vector with the same length of `list`") let( length = len(list), reps_guess = is_list(N)? N : repeat(N/length,length), reps = exact ? _sum_preserving_round(reps_guess) : [for (val=reps_guess) round(val)] ) [for(i=[0:length-1]) each repeat(list[i],reps[i])]; // Function: list_set() // Usage: // list = list_set(list, indices, values, , ); // Topics: List Handling // See Also: list_insert(), list_remove(), list_remove_values() // Description: // Takes the input list and returns a new list such that `list[indices[i]] = values[i]` for all of // the (index,value) pairs supplied and unchanged for other indices. If you supply `indices` that are // beyond the length of the list then the list is extended and filled in with the `dflt` value. // If you set `minlen` then the list is lengthed, if necessary, by padding with `dflt` to that length. // Repetitions in `indices` are not allowed. The lists `indices` and `values` must have the same length. // If `indices` is given as a scalar, then that index of the given `list` will be set to the scalar value of `values`. // Arguments: // list = List to set items in. Default: [] // indices = List of indices into `list` to set. // values = List of values to set. // dflt = Default value to store in sparse skipped indices. // minlen = Minimum length to expand list to. // Examples: // a = list_set([2,3,4,5], 2, 21); // Returns: [2,3,21,5] // b = list_set([2,3,4,5], [1,3], [81,47]); // Returns: [2,81,4,47] function list_set(list=[],indices,values,dflt=0,minlen=0) = assert(is_list(list)) !is_list(indices)? ( (is_finite(indices) && indices=len(array) , "Improper index list." ) is_string(array)? str_join(bselect( [for (x=array) x], index)) : [for(i=[0:len(array)-1]) if (index[i]) array[i]]; // Function: list_bset() // Usage: // arr = list_bset(indexset, valuelist, ); // Topics: List Handling // See Also: bselect() // Description: // Opposite of `bselect()`. Returns a list the same length as `indexlist`, where each item will // either be 0 if the corresponding item in `indexset` is false, or the next sequential value // from `valuelist` if the item is true. The number of `true` values in `indexset` must be equal // to the length of `valuelist`. // Arguments: // indexset = A list of boolean values. // valuelist = The list of values to set into the returned list. // dflt = Default value to store when the indexset item is false. // Example: // a = list_bset([false,true,false,true,false], [3,4]); // Returns: [0,3,0,4,0] // b = list_bset([false,true,false,true,false], [3,4], dflt=1); // Returns: [1,3,1,4,1] function list_bset(indexset, valuelist, dflt=0) = assert(is_list(indexset), "The index set is not a list." ) assert(is_list(valuelist), "The `valuelist` is not a list." ) let( trueind = search([true], indexset,0)[0] ) assert( !(len(trueind)>len(valuelist)), str("List `valuelist` too short; its length should be ",len(trueind)) ) assert( !(len(trueind)); // Topics: List Handling // See Also: list_trim(), list_fit() // Description: // If the list `array` is shorter than `minlen` length, pad it to length with the value given in `fill`. // Arguments: // array = A list. // minlen = The minimum length to pad the list to. // fill = The value to pad the list with. Default: `undef` // Example: // list = [3,4,5]; // nlist = list_pad(list,5,23); // Returns: [3,4,5,23,23] function list_pad(array, minlen, fill) = assert(is_list(array), "Invalid input." ) concat(array,repeat(fill,minlen-len(array))); // Function: list_trim() // Usage: // arr = list_trim(array, maxlen); // Topics: List Handling // See Also: list_pad(), list_fit() // Description: // If the list `array` is longer than `maxlen` length, truncates it to be `maxlen` items long. // Arguments: // array = A list. // minlen = The minimum length to pad the list to. // Example: // list = [3,4,5,6,7,8]; // nlist = list_trim(list,4); // Returns: [3,4,5,6] function list_trim(array, maxlen) = assert(is_list(array), "Invalid input." ) [for (i=[0:1:min(len(array),maxlen)-1]) array[i]]; // Function: list_fit() // Usage: // arr = list_fit(array, length, fill); // Topics: List Handling // See Also: list_pad(), list_trim() // Description: // If the list `array` is longer than `length` items long, truncates it to be exactly `length` items long. // If the list `array` is shorter than `length` items long, pad it to length with the value given in `fill`. // Arguments: // array = A list. // minlen = The minimum length to pad the list to. // fill = The value to pad the list with. Default: `undef` // Example: // list = [3,4,5,6]; // nlist = list_fit(list,3); // Returns: [3,4,5] // Example: // list = [3,4,5,6]; // nlist = list_fit(list,6,23); // Returns: [3,4,5,6,23,23] function list_fit(array, length, fill) = assert(is_list(array), "Invalid input." ) let(l=len(array)) l==length ? array : l> length ? list_trim(array,length) : list_pad(array,length,fill); // Section: List Shuffling and Sorting // returns true for valid index specifications idx in the interval [imin, imax) // note that idx can't have any value greater or EQUAL to imax // this allows imax=INF as a bound to numerical lists function _valid_idx(idx,imin,imax) = is_undef(idx) || ( is_finite(idx) && ( is_undef(imin) || idx>=imin ) && ( is_undef(imax) || idx< imax ) ) || ( is_list(idx) && ( is_undef(imin) || min(idx)>=imin ) && ( is_undef(imax) || max(idx)< imax ) ) || ( is_range(idx) && ( is_undef(imin) || (idx[1]>0 && idx[0]>=imin ) || (idx[1]<0 && idx[0]<=imax ) ) && ( is_undef(imax) || (idx[1]>0 && idx[2]<=imax ) || (idx[1]<0 && idx[2]>=imin ) ) ); // Function: shuffle() // Usage: // shuffled = shuffle(list,); // Topics: List Handling // See Also: sort(), sortidx(), unique(), unique_count() // Description: // Shuffles the input list into random order. // If given a string, shuffles the characters within the string. // If you give a numeric seed value then the permutation // will be repeatable. // Arguments: // list = The list to shuffle. // seed = Optional random number seed for the shuffling. // Example: // // Spades Hearts Diamonds Clubs // suits = ["\u2660", "\u2661", "\u2662", "\u2663"]; // ranks = [2,3,4,5,6,7,8,9,10,"J","Q","K","A"]; // cards = [for (suit=suits, rank=ranks) str(rank,suit)]; // deck = shuffle(cards); function shuffle(list,seed) = assert(is_list(list)||is_string(list), "Invalid input." ) is_string(list)? str_join(shuffle([for (x = list) x],seed=seed)) : len(list)<=1 ? list : let( rval = is_num(seed) ? rands(0,1,len(list),seed_value=seed) : rands(0,1,len(list)), left = [for (i=[0:len(list)-1]) if (rval[i]< 0.5) list[i]], right = [for (i=[0:len(list)-1]) if (rval[i]>=0.5) list[i]] ) concat(shuffle(left), shuffle(right)); // Sort a vector of scalar values with the native comparison operator // all elements should have the same type. function _sort_scalars(arr) = len(arr)<=1 ? arr : let( pivot = arr[floor(len(arr)/2)], lesser = [ for (y = arr) if (y < pivot) y ], equal = [ for (y = arr) if (y == pivot) y ], greater = [ for (y = arr) if (y > pivot) y ] ) concat( _sort_scalars(lesser), equal, _sort_scalars(greater) ); // lexical sort of a homogeneous list of vectors // uses native comparison operator function _sort_vectors(arr, _i=0) = len(arr)<=1 || _i>=len(arr[0]) ? arr : let( pivot = arr[floor(len(arr)/2)][_i], lesser = [ for (entry=arr) if (entry[_i] < pivot ) entry ], equal = [ for (entry=arr) if (entry[_i] == pivot ) entry ], greater = [ for (entry=arr) if (entry[_i] > pivot ) entry ] ) concat( _sort_vectors(lesser, _i ), _sort_vectors(equal, _i+1 ), _sort_vectors(greater, _i ) ); // lexical sort of a homogeneous list of vectors by the vector components with indices in idxlist // all idxlist indices should be in the range of the vector dimensions // idxlist must be undef or a simple list of numbers // uses native comparison operator function _sort_vectors(arr, idxlist, _i=0) = len(arr)<=1 || ( is_list(idxlist) && _i>=len(idxlist) ) || _i>=len(arr[0]) ? arr : let( k = is_list(idxlist) ? idxlist[_i] : _i, pivot = arr[floor(len(arr)/2)][k], lesser = [ for (entry=arr) if (entry[k] < pivot ) entry ], equal = [ for (entry=arr) if (entry[k] == pivot ) entry ], greater = [ for (entry=arr) if (entry[k] > pivot ) entry ] ) concat( _sort_vectors(lesser, idxlist, _i ), _sort_vectors(equal, idxlist, _i+1), _sort_vectors(greater, idxlist, _i ) ); // sorting using compare_vals(); returns indexed list when `indexed==true` function _sort_general(arr, idx=undef, indexed=false) = (len(arr)<=1) ? arr : ! indexed && is_undef(idx) ? _lexical_sort(arr) : let( arrind = _indexed_sort(enumerate(arr,idx)) ) indexed ? arrind : [for(i=arrind) arr[i]]; // lexical sort using compare_vals() function _lexical_sort(arr) = arr==[] ? [] : len(arr)==1? arr : let( pivot = arr[floor(len(arr)/2)] ) let( lesser = [ for (entry=arr) if (compare_vals(entry, pivot) <0 ) entry ], equal = [ for (entry=arr) if (compare_vals(entry, pivot)==0 ) entry ], greater = [ for (entry=arr) if (compare_vals(entry, pivot) >0 ) entry ] ) concat(_lexical_sort(lesser), equal, _lexical_sort(greater)); // given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair // the sorting is done using compare_vals() function _indexed_sort(arrind) = arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] : let( pivot = arrind[floor(len(arrind)/2)][1] ) let( lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ], equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ], greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ] ) concat(_indexed_sort(lesser), equal, _indexed_sort(greater)); // Function: sort() // Usage: // slist = sort(list, ); // Topics: List Handling // See Also: shuffle(), sortidx(), unique(), unique_count() // Description: // Sorts the given list in lexicographic order. If the input is a homogeneous simple list or a homogeneous // list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster. // When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to // `undef < boolean < number < string < list`. Comparison of lists is recursive. // When comparing vectors, homogeneous or not, the parameter `idx` may be used to select the components to compare. // Note that homogeneous lists of vectors may contain mixed types provided that for any two list elements // list[i] and list[j] satisfies type(list[i][k])==type(list[j][k]) for all k. // Strings are allowed as any list element and are compared with the native operators although no substring // comparison is possible. // Arguments: // list = The list to sort. // idx = If given, do the comparison based just on the specified index, range or list of indices. // Example: // // Homogeneous lists // l1 = [45,2,16,37,8,3,9,23,89,12,34]; // sorted1 = sort(l1); // Returns [2,3,8,9,12,16,23,34,37,45,89] // l2 = [["oat",0], ["cat",1], ["bat",3], ["bat",2], ["fat",3]]; // sorted2 = sort(l2); // Returns: [["bat",2],["bat",3],["cat",1],["fat",3],["oat",0]] // // Non-homegenous list // l3 = [[4,0],[7],[3,9],20,[4],[3,1],[8]]; // sorted3 = sort(l3); // Returns: [20,[3,1],[3,9],[4],[4,0],[7],[8]] function sort(list, idx=undef) = assert(is_list(list)||is_string(list), "Invalid input." ) is_string(list)? str_join(sort([for (x = list) x],idx)) : !is_list(list) || len(list)<=1 ? list : is_homogeneous(list,1) ? let(size = array_dim(list[0])) size==0 ? _sort_scalars(list) : len(size)!=1 ? _sort_general(list,idx) : is_undef(idx) ? _sort_vectors(list) : assert( _valid_idx(idx) , "Invalid indices.") _sort_vectors(list,[for(i=idx) i]) : _sort_general(list,idx); // Function: sortidx() // Usage: // idxlist = sortidx(list, ); // Topics: List Handling // See Also: shuffle(), sort(), unique(), unique_count() // Description: // Given a list, sort it as function `sort()`, and returns // a list of indexes into the original list in that sorted order. // If you iterate the returned list in order, and use the list items // to index into the original list, you will be iterating the original // values in sorted order. // Arguments: // list = The list to sort. // idx = If given, do the comparison based just on the specified index, range or list of indices. // Example: // lst = ["d","b","e","c"]; // idxs = sortidx(lst); // Returns: [1,3,0,2] // ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"] // Example: // lst = [ // ["foo", 88, [0,0,1], false], // ["bar", 90, [0,1,0], true], // ["baz", 89, [1,0,0], false], // ["qux", 23, [1,1,1], true] // ]; // idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1] // idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3] // idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1] function sortidx(list, idx=undef) = assert(is_list(list)||is_string(list), "Invalid input." ) !is_list(list) || len(list)<=1 ? list : is_homogeneous(list,1) ? let( size = array_dim(list[0]), aug = ! (size==0 || len(size)==1) ? 0 // for general sorting : [for(i=[0:len(list)-1]) concat(i,list[i])], // for scalar or vector sorting lidx = size==0? [1] : // scalar sorting len(size)==1 ? is_undef(idx) ? [for(i=[0:len(list[0])-1]) i+1] // vector sorting : [for(i=idx) i+1] // vector sorting : 0 // just to signal ) assert( ! ( size==0 && is_def(idx) ), "The specification of `idx` is incompatible with scalar sorting." ) assert( _valid_idx(idx) , "Invalid indices." ) lidx!=0 ? let( lsort = _sort_vectors(aug,lidx) ) [for(li=lsort) li[0] ] : _sort_general(list,idx,indexed=true) : _sort_general(list,idx,indexed=true); // Function: unique() // Usage: // ulist = unique(list); // Topics: List Handling // See Also: shuffle(), sort(), sortidx(), unique_count() // Description: // Returns a sorted list with all repeated items removed. // Arguments: // list = The list to uniquify. // Example: // sorted = unique([5,2,8,3,1,3,8,7,5]); // Returns: [1,2,3,5,7,8] function unique(list) = assert(is_list(list)||is_string(list), "Invalid input." ) is_string(list)? str_join(unique([for (x = list) x])) : len(list)<=1? list : let( sorted = sort(list)) [ for (i=[0:1:len(sorted)-1]) if (i==0 || (sorted[i] != sorted[i-1])) sorted[i] ]; // Function: unique_count() // Usage: // counts = unique_count(list); // Topics: List Handling // See Also: shuffle(), sort(), sortidx(), unique() // Description: // Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `list` and `counts` is a list such // that `count[i]` gives the number of times that `sorted[i]` appears in `list`. // Arguments: // list = The list to analyze. // Example: // sorted = unique([5,2,8,3,1,3,8,3,5]); // Returns: [ [1,2,3,5,8], [1,1,3,2,2] ] function unique_count(list) = assert(is_list(list) || is_string(list), "Invalid input." ) list == [] ? [[],[]] : let( list=sort(list) ) let( ind = [0, for(i=[1:1:len(list)-1]) if (list[i]!=list[i-1]) i] ) [ select(list,ind), deltas( concat(ind,[len(list)]) ) ]; // Section: List Iteration Helpers // Function: idx() // Usage: // rng = idx(list, , , ); // for(i=idx(list, , , )) ... // Topics: List Handling, Iteration // See Also: enumerate(), pair(), triplet(), combinations(), permutations() // Description: // Returns the range of indexes for the given list. // Arguments: // list = The list to returns the index range of. // s = The starting index. Default: 0 // e = The delta from the end of the list. Default: -1 (end of list) // step = The step size to stride through the list. Default: 1 // Example(2D): // colors = ["red", "green", "blue"]; // for (i=idx(colors)) right(20*i) color(colors[i]) circle(d=10); function idx(list, s=0, e=-1, step=1) = assert(is_list(list)||is_string(list), "Invalid input." ) let( ll = len(list) ) ll == 0 ? [0:1:ll-1] : let( _s = posmod(s,ll), _e = posmod(e,ll) ) [_s : step : _e]; // Function: enumerate() // Usage: // arr = enumerate(l, ); // for (x = enumerate(l, )) ... // x[0] is the index number, x[1] is the item. // Topics: List Handling, Iteration // See Also: idx(), pair(), triplet(), combinations(), permutations() // Description: // Returns a list, with each item of the given list `l` numbered in a sublist. // Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]` // Arguments: // l = List to enumerate. // idx = If given, enumerates just the given subindex items of `l`. // Example: // enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]] // enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]] // enumerate([["cat","a",12],["dog","b",10],["log","c",14]], idx=[1:2]); // Returns: [[0,"a",12], [1,"b",10], [2,"c",14]] // Example(2D): // colors = ["red", "green", "blue"]; // for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10); function enumerate(l,idx=undef) = assert(is_list(l)||is_string(list), "Invalid input." ) assert( _valid_idx(idx,0,len(l)), "Invalid index/indices." ) (idx==undef) ? [for (i=[0:1:len(l)-1]) [i,l[i]]] : [for (i=[0:1:len(l)-1]) [ i, for (j=idx) l[i][j]] ]; // Function: pair() // Usage: // p = pair(list, ); // for (p = pair(list, )) ... // On each iteration, p contains a list of two adjacent items. // Topics: List Handling, Iteration // See Also: idx(), enumerate(), triplet(), combinations(), permutations() // Description: // Takes a list, and returns a list of adjacent pairs from it, optionally wrapping back to the front. // Arguments: // list = The list to iterate. // wrap = If true, wrap back to the start from the end. ie: return the last and first items as the last pair. Default: false // Example(2D): Does NOT wrap from end to start, // for (p = pair(circle(d=40, $fn=12))) // stroke(p, endcap2="arrow2"); // Example(2D): Wraps around from end to start. // for (p = pair(circle(d=40, $fn=12), wrap=true)) // stroke(p, endcap2="arrow2"); // Example: // l = ["A","B","C","D"]; // echo([for (p=pair(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC"] function pair(list, wrap=false) = assert(is_list(list)||is_string(list), "Invalid input." ) assert(is_bool(wrap)) let( ll = len(list) ) wrap ? [for (i=[0:1:ll-1]) [list[i], list[(i+1) % ll]]] : [for (i=[0:1:ll-2]) [list[i], list[i+1]]]; // Function: triplet() // Usage: // list = triplet(list, ); // for (t = triplet(list, )) ... // Topics: List Handling, Iteration // See Also: idx(), enumerate(), pair(), combinations(), permutations() // Description: // Takes a list, and returns a list of adjacent triplets from it, optionally wrapping back to the front. // Example: // l = ["A","B","C","D","E"]; // echo([for (p=triplet(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "EDC"] // Example(2D): // path = [for (i=[0:24]) polar_to_xy(i*2, i*360/12)]; // for (t = triplet(path)) { // a = t[0]; b = t[1]; c = t[2]; // v = unit(unit(a-b) + unit(c-b)); // translate(b) rot(from=FWD,to=v) anchor_arrow2d(); // } // stroke(path); function triplet(list, wrap=false) = assert(is_list(list)||is_string(list), "Invalid input." ) assert(is_bool(wrap)) let( ll = len(list) ) wrap ? [for (i=[0:1:ll-1]) [ list[i], list[(i+1)%ll], list[(i+2)%ll] ]] : [for (i=[0:1:ll-3]) [ list[i], list[i+1], list[i+2] ]]; // Function: combinations() // Usage: // list = combinations(l, ); // for (p = combinations(l, )) ... // Topics: List Handling, Iteration // See Also: idx(), enumerate(), pair(), triplet(), permutations() // Description: // Returns an ordered list of every unique permutation of `n` items out of the given list `l`. // For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`. // For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`. // Arguments: // l = The list to provide permutations for. // n = The number of items in each permutation. Default: 2 // Example: // pairs = combinations([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]] // triplets = combinations([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]] // Example(2D): // for (p=combinations(regular_ngon(n=7,d=100))) stroke(p); function combinations(l,n=2,_s=0) = assert(is_list(l), "Invalid list." ) assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." ) n==1 ? [for (i=[_s:1:len(l)-1]) [l[i]]] : [for (i=[_s:1:len(l)-n], p=combinations(l,n=n-1,_s=i+1)) concat([l[i]], p)]; // Function: permutations() // Usage: // list = permutations(l, ); // for (p = permutations(l, )) ... // Topics: List Handling, Iteration // See Also: idx(), enumerate(), pair(), triplet(), combinations() // Description: // Returns an ordered list of every unique permutation of `n` items out of the given list `l`. // For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`. // For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`. // Arguments: // l = The list to provide permutations for. // n = The number of items in each permutation. Default: 2 // Example: // pairs = permutations([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]] // triplets = permutations([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]] // Example(2D): // for (p=permutations(regular_ngon(n=7,d=100))) stroke(p); function permutations(l,n=2) = assert(is_list(l), "Invalid list." ) assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." ) n==1 ? [for (i=[0:1:len(l)-1]) [l[i]]] : [for (i=idx(l), p=permutations([for (j=idx(l)) if (i!=j) l[j]], n=n-1)) concat([l[i]], p)]; // Function: zip() // Usage: // pairs = zip(a,b); // triples = zip(a,b,c); // quads = zip([LIST1,LIST2,LIST3,LIST4]); // Description: // Zips together two or more lists into a single list. For example, if you have two // lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]]. // The list returned will be as long as the shortest list passed to zip(). // Arguments: // a = The first list, or a list of lists if b and c are not given. // b = The second list, if given. // c = The third list, if given. // Example: // a = [9,8,7,6]; b = [1,2,3]; // for (p=zip(a,b)) echo(p); // // ECHO: [9,1] // // ECHO: [8,2] // // ECHO: [7,3] function zip(a,b,c) = b!=undef? zip([a,b,if (c!=undef) c]) : let(n = list_shortest(a)) [for (i=[0:1:n-1]) [for (x=a) x[i]]]; // Function: zip_long() // Usage: // pairs = zip_long(a,b); // triples = zip_long(a,b,c); // quads = zip_long([LIST1,LIST2,LIST3,LIST4]); // Description: // Zips together two or more lists into a single list. For example, if you have two // lists [3,4,5], and [8,7,6], and zip them together, you get [[3,8],[4,7],[5,6]]. // The list returned will be as long as the longest list passed to zip_long(), with // shorter lists padded by the value in `fill`. // Arguments: // a = The first list, or a list of lists if b and c are not given. // b = The second list, if given. // c = The third list, if given. // fill = The value to pad shorter lists with. Default: undef // Example: // a = [9,8,7,6]; b = [1,2,3]; // for (p=zip_long(a,b,fill=88)) echo(p); // // ECHO: [9,1] // // ECHO: [8,2] // // ECHO: [7,3] // // ECHO: [6,88]] function zip_long(a,b,c,fill) = b!=undef? zip_long([a,b,if (c!=undef) c],fill=fill) : let(n = list_longest(a)) [for (i=[0:1:n-1]) [for (x=a) i); // Topics: Set Handling, List Handling // See Also: set_difference(), set_intersection() // Description: // Given two sets (lists with unique items), returns the set of unique items that are in either `a` or `b`. // If `get_indices` is true, a list of indices into the new union set are returned for each item in `b`, // in addition to returning the new union set. In this case, a 2-item list is returned, `[INDICES, NEWSET]`, // where INDICES is the list of indices for items in `b`, and NEWSET is the new union set. // Arguments: // a = One of the two sets to merge. // b = The other of the two sets to merge. // get_indices = If true, indices into the new union set are also returned for each item in `b`. Returns `[INDICES, NEWSET]`. Default: false // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_u = set_union(set_a, set_b); // // set_u now equals [2,3,5,7,11,1,8] // set_v = set_union(set_a, set_b, get_indices=true); // // set_v now equals [[5,0,1,2,6], [2,3,5,7,11,1,8]] function set_union(a, b, get_indices=false) = assert( is_list(a) && is_list(b), "Invalid sets." ) let( found1 = search(b, a), found2 = search(b, b), c = [ for (i=idx(b)) if (found1[i] == [] && found2[i] == i) b[i] ], nset = concat(a, c) ) ! get_indices ? nset : let( la = len(a), found3 = search(b, c), idxs = [ for (i=idx(b)) (found1[i] != [])? found1[i] : la + found3[i] ] ) [idxs, nset]; // Function: set_difference() // Usage: // s = set_difference(a, b); // Topics: Set Handling, List Handling // See Also: set_union(), set_intersection() // Description: // Given two sets (lists with unique items), returns the set of items that are in `a`, but not `b`. // Arguments: // a = The starting set. // b = The set of items to remove from set `a`. // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_d = set_difference(set_a, set_b); // // set_d now equals [7,11] function set_difference(a, b) = assert( is_list(a) && is_list(b), "Invalid sets." ) let( found = search(a, b, num_returns_per_match=1) ) [ for (i=idx(a)) if(found[i]==[]) a[i] ]; // Function: set_intersection() // Usage: // s = set_intersection(a, b); // Topics: Set Handling, List Handling // See Also: set_union(), set_difference() // Description: // Given two sets (lists with unique items), returns the set of items that are in both sets. // Arguments: // a = The starting set. // b = The set of items to intersect with set `a`. // Example: // set_a = [2,3,5,7,11]; // set_b = [1,2,3,5,8]; // set_i = set_intersection(set_a, set_b); // // set_i now equals [2,3,5] function set_intersection(a, b) = assert( is_list(a) && is_list(b), "Invalid sets." ) let( found = search(a, b, num_returns_per_match=1) ) [ for (i=idx(a)) if(found[i]!=[]) a[i] ]; // Section: Array Manipulation // Function: subindex() // Usage: // list = subindex(M, idx); // Topics: Array Handling, List Handling // See Also: select(), slice() // Description: // Extracts the entries listed in idx from each entry in M. For a matrix this means // selecting a specified set of columns. If idx is a number the return is a vector, // otherwise it is a list of lists (the submatrix). // This function will return `undef` at all entry positions indexed by idx not found in the input list M. // Arguments: // M = The given list of lists. // idx = The index, list of indices, or range of indices to fetch. // Example: // M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]; // a = subindex(M,2); // Returns [3, 7, 11, 15] // b = subindex(M,[2]); // Returns [[3], [7], [11], [15]] // c = subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]] // d = subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]] // N = [ [1,2], [3], [4,5], [6,7,8] ]; // e = subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ] function subindex(M, idx) = assert( is_list(M), "The input is not a list." ) assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." ) is_finite(idx) ? [for(row=M) row[idx]] : [for(row=M) [for(i=idx) row[i]]]; // Function: submatrix() // Usage: // mat = submatrix(M, idx1, idx2); // Topics: Matrices, Array Handling // See Also: subindex(), block_matrix(), submatrix_set() // Description: // The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2. // Arguments: // M = Given list of lists // idx1 = rows index list or range // idx2 = column index list or range // Example: // M = [[ 1, 2, 3, 4, 5], // [ 6, 7, 8, 9,10], // [11,12,13,14,15], // [16,17,18,19,20], // [21,22,23,24,25]]; // submatrix(M,[1:2],[3:4]); // Returns [[9, 10], [14, 15]] // submatrix(M,[1], [3,4])); // Returns [[9,10]] // submatrix(M,1, [3,4])); // Returns [[9,10]] // submatrix(M,1,3)); // Returns [[9]] // submatrix(M, [3,4],1); // Returns [[17],[22]]); // submatrix(M, [1,3],[2,4]); // Returns [[8,10],[18,20]]); // A = [[true, 17, "test"], // [[4,2], 91, false], // [6, [3,4], undef]]; // submatrix(A,[0,2],[1,2]); // Returns [[17, "test"], [[3, 4], undef]] function submatrix(M,idx1,idx2) = [for(i=idx1) [for(j=idx2) M[i][j] ] ]; // Function: hstack() // Usage: // A = hstack(M1, M2) // A = hstack(M1, M2, M3) // A = hstack([M1, M2, M3, ...]) // Topics: Matrices, Array Handling // See Also: subindex(), submatrix(), block_matrix() // Description: // Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack. // This command is the inverse of subindex. Note: strings given in vectors are broken apart into lists of characters. Strings given // in matrices are preserved as strings. If you need to combine vectors of strings use array_group as shown below to convert the // vector into a column matrix. Also note that vertical stacking can be done directly with concat. // Arguments: // M1 = If given with other arguments, the first matrix (or vector) to stack. If given alone, a list of matrices/vectors to stack. // M2 = Second matrix/vector to stack // M3 = Third matrix/vector to stack. // Example: // M = ident(3); // v1 = [2,3,4]; // v2 = [5,6,7]; // v3 = [8,9,10]; // a = hstack(v1,v2); // Returns [[2, 5], [3, 6], [4, 7]] // b = hstack(v1,v2,v3); // Returns [[2, 5, 8], // // [3, 6, 9], // // [4, 7, 10]] // c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0], // // [0, 1, 0, 3, 0, 1, 0], // // [0, 0, 1, 4, 0, 0, 1]] // d = hstack(subindex(M,0), subindex(M,[1 2])); // Returns M // strvec = ["one","two"]; // strmat = [["three","four"], ["five","six"]]; // e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"], // // ["t", "w", "o", "t", "w", "o"]] // f = hstack(array_group(strvec,1), array_group(strvec,1)); // // Returns [["one", "one"], // // ["two", "two"]] // g = hstack(strmat,strmat); // Returns: [["three", "four", "three", "four"], // // [ "five", "six", "five", "six"]] function hstack(M1, M2, M3) = (M3!=undef)? hstack([M1,M2,M3]) : (M2!=undef)? hstack([M1,M2]) : assert(all([for(v=M1) is_list(v)]), "One of the inputs to hstack is not a list") let( minlen = list_shortest(M1), maxlen = list_longest(M1) ) assert(minlen==maxlen, "Input vectors to hstack must have the same length") [for(row=[0:1:minlen-1]) [for(matrix=M1) each matrix[row] ] ]; // Function: block_matrix() // Usage: // bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]); // Topics: Matrices, Array Handling // See Also: subindex(), submatrix() // Description: // Create a block matrix by supplying a matrix of matrices, which will // be combined into one unified matrix. Every matrix in one row // must have the same height, and the combined width of the matrices // in each row must be equal. Strings will stay strings. // Example: // A = [[1,2], // [3,4]]; // B = ident(2); // C = block_matrix([[A,B],[B,A],[A,B]]); // // Returns: // // [[1, 2, 1, 0], // // [3, 4, 0, 1], // // [1, 0, 1, 2], // // [0, 1, 3, 4], // // [1, 2, 1, 0], // // [3, 4, 0, 1]]); // D = block_matrix([[A,B], ident(4)]); // // Returns: // // [[1, 2, 1, 0], // // [3, 4, 0, 1], // // [1, 0, 0, 0], // // [0, 1, 0, 0], // // [0, 0, 1, 0], // // [0, 0, 0, 1]]); // E = [["one", "two"], [3,4]]; // F = block_matrix([[E,E]]); // // Returns: // // [["one", "two", "one", "two"], // // [ 3, 4, 3, 4]] function block_matrix(M) = let( bigM = [for(bigrow = M) each hstack(bigrow)], len0 = len(bigM[0]), badrows = [for(row=bigM) if (len(row)!=len0) 1] ) assert(badrows==[], "Inconsistent or invalid input") bigM; // Function: diagonal_matrix() // Usage: // mat = diagonal_matrix(diag, ); // Topics: Matrices, Array Handling // See Also: subindex(), submatrix() // Description: // Creates a square matrix with the items in the list `diag` on // its diagonal. The off diagonal entries are set to offdiag, // which is zero by default. // Arguments: // diag = A list of items to put in the diagnal cells of the matrix. // offdiag = Value to put in non-diagonal matrix cells. function diagonal_matrix(diag, offdiag=0) = assert(is_list(diag) && len(diag)>0) [for(i=[0:1:len(diag)-1]) [for(j=[0:len(diag)-1]) i==j?diag[i] : offdiag]]; // Function: submatrix_set() // Usage: // mat = submatrix_set(M,A,,); // Topics: Matrices, Array Handling // See Also: subindex(), submatrix() // Description: // Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but // you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds // of M then the extra entries are ignored. You can pass in A=[[]], a null matrix, and M will be // returned unchanged. Note that the input M need not be rectangular in shape. // Arguments: // M = Original matrix. // A = Sub-matrix of parts to set. // m = Row number of upper-left corner to place A at. // n = Column number of upper-left corner to place A at. function submatrix_set(M,A,m=0,n=0) = assert(is_list(M)) assert(is_list(A)) assert(is_int(m)) assert(is_int(n)) let( badrows = [for(i=idx(A)) if (!is_list(A[i])) i]) assert(badrows==[], str("Input submatrix malformed rows: ",badrows)) [for(i=[0:1:len(M)-1]) assert(is_list(M[i]), str("Row ",i," of input matrix is not a list")) [for(j=[0:1:len(M[i])-1]) i>=m && i =n && j, ); // Description: // Takes a flat array of values, and groups items in sets of `cnt` length. // The opposite of this is `flatten()`. // Topics: Matrices, Array Handling // See Also: subindex(), submatrix(), hstack(), flatten(), full_flatten() // Arguments: // v = The list of items to group. // cnt = The number of items to put in each grouping. Default:2 // dflt = The default value to fill in with is the list is not a multiple of `cnt` items long. Default: 0 // Example: // v = [1,2,3,4,5,6]; // a = array_group(v,2) returns [[1,2], [3,4], [5,6]] // b = array_group(v,3) returns [[1,2,3], [4,5,6]] // c = array_group(v,4,0) returns [[1,2,3,4], [5,6,0,0]] function array_group(v, cnt=2, dflt=0) = [for (i = [0:cnt:len(v)-1]) [for (j = [0:1:cnt-1]) default(v[i+j], dflt)]]; // Function: flatten() // Usage: // list = flatten(l); // Topics: Matrices, Array Handling // See Also: subindex(), submatrix(), hstack(), full_flatten() // Description: // Takes a list of lists and flattens it by one level. // Arguments: // l = List to flatten. // Example: // l = flatten([[1,2,3], [4,5,[6,7,8]]]); // returns [1,2,3,4,5,[6,7,8]] function flatten(l) = !is_list(l)? l : [for (a=l) if (is_list(a)) (each a) else a]; // Function: full_flatten() // Usage: // list = full_flatten(l); // Topics: Matrices, Array Handling // See Also: subindex(), submatrix(), hstack(), flatten() // Description: // Collects in a list all elements recursively found in any level of the given list. // The output list is ordered in depth first order. // Arguments: // l = List to flatten. // Example: // l = full_flatten([[1,2,3], [4,5,[6,7,8]]]); // returns [1,2,3,4,5,6,7,8] function full_flatten(l) = !is_list(l)? l : [for (a=l) if (is_list(a)) (each full_flatten(a)) else a]; // Internal. Not exposed. function _array_dim_recurse(v) = !is_list(v[0]) ? len( [for(entry=v) if(!is_list(entry)) 0] ) == 0 ? [] : [undef] : let( firstlen = is_list(v[0]) ? len(v[0]): undef, first = len( [for(entry = v) if(! is_list(entry) || (len(entry) != firstlen)) 0 ] ) == 0 ? firstlen : undef, leveldown = flatten(v) ) is_list(leveldown[0]) ? concat([first],_array_dim_recurse(leveldown)) : [first]; function _array_dim_recurse(v) = let( alen = [for(vi=v) is_list(vi) ? len(vi): -1] ) v==[] || max(alen)==-1 ? [] : let( add = max(alen)!=min(alen) ? undef : alen[0] ) concat( add, _array_dim_recurse(flatten(v))); // Function: array_dim() // Usage: // dims = array_dim(v, ); // Topics: Matrices, Array Handling // Description: // Returns the size of a multi-dimensional array. Returns a list of dimension lengths. The length // of `v` is the dimension `0`. The length of the items in `v` is dimension `1`. The length of the // items in the items in `v` is dimension `2`, etc. For each dimension, if the length of items at // that depth is inconsistent, `undef` will be returned. If no items of that dimension depth exist, // `0` is returned. Otherwise, the consistent length of items in that dimensional depth is // returned. // Arguments: // v = Array to get dimensions of. // depth = Dimension to get size of. If not given, returns a list of dimension lengths. // Examples: // a = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3] // b = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2 // c = array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3 // d = array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3] function array_dim(v, depth=undef) = assert( is_undef(depth) || ( is_finite(depth) && depth>=0 ), "Invalid depth.") ! is_list(v) ? 0 : (depth == undef) ? concat([len(v)], _array_dim_recurse(v)) : (depth == 0) ? len(v) : let( dimlist = _array_dim_recurse(v)) (depth > len(dimlist))? 0 : dimlist[depth-1] ; // Function: transpose() // Usage: // arr = transpose(arr, ); // Topics: Matrices, Array Handling // See Also: submatrix(), block_matrix(), hstack(), flatten() // Description: // Returns the transpose of the given input array. The input should be a list of lists that are // all the same length. If you give a vector then transpose returns it unchanged. // When reverse=true, the transpose is done across to the secondary diagonal. (See example below.) // By default, reverse=false. // Example: // arr = [ // ["a", "b", "c"], // ["d", "e", "f"], // ["g", "h", "i"] // ]; // t = transpose(arr); // // Returns: // // [ // // ["a", "d", "g"], // // ["b", "e", "h"], // // ["c", "f", "i"], // // ] // Example: // arr = [ // ["a", "b", "c"], // ["d", "e", "f"] // ]; // t = transpose(arr); // // Returns: // // [ // // ["a", "d"], // // ["b", "e"], // // ["c", "f"], // // ] // Example: // arr = [ // ["a", "b", "c"], // ["d", "e", "f"], // ["g", "h", "i"] // ]; // t = transpose(arr, reverse=true); // // Returns: // // [ // // ["i", "f", "c"], // // ["h", "e", "b"], // // ["g", "d", "a"] // // ] // Example: Transpose on a list of numbers returns the list unchanged // transpose([3,4,5]); // Returns: [3,4,5] function transpose(arr, reverse=false) = assert( is_list(arr) && len(arr)>0, "Input to transpose must be a nonempty list.") is_list(arr[0]) ? let( len0 = len(arr[0]) ) assert([for(a=arr) if(!is_list(a) || len(a)!=len0) 1 ]==[], "Input to transpose has inconsistent row lengths." ) reverse ? [for (i=[0:1:len0-1]) [ for (j=[0:1:len(arr)-1]) arr[len(arr)-1-j][len0-1-i] ] ] : [for (i=[0:1:len0-1]) [ for (j=[0:1:len(arr)-1]) arr[j][i] ] ] : assert( is_vector(arr), "Input to transpose must be a vector or list of lists.") arr; // Function: is_matrix_symmetric() // Usage: // b = is_matrix_symmetric(A,) // Description: // Returns true if the input matrix is symmetric, meaning it equals its transpose. // Matrix should have numerical entries. // Arguments: // A = matrix to test // eps = epsilon for comparing equality. Default: 1e-12 function is_matrix_symmetric(A,eps=1e-12) = approx(A,transpose(A)); // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap