////////////////////////////////////////////////////////////////////// // LibFile: sliders.scad // Simple V-groove based sliders and rails. // To use, add these lines to the beginning of your file: // ``` // include // use // ``` ////////////////////////////////////////////////////////////////////// /* BSD 2-Clause License Copyright (c) 2017, Revar Desmera All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use use include include // Section: Modules // Module: slider() // Description: // Creates a slider to match a V-groove rail. // Usage: // slider(l, w, h, [base], [wall], [ang], [slop], [orient], [align]) // Arguments: // l = Length (long axis) of slider. // w = Width of slider. // h = Height of slider. // base = Height of slider base. // wall = Width of wall behind each side of the slider. // ang = Overhang angle for slider, to facilitate supportless printig. // slop = Printer-specific slop value to make parts fit exactly. // orient = Orientation of the slider. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`. // align = Alignment of the slider. Use the `V_` constants from `constants.scad`. Default: `V_UP`. // Example: // slider(l=30, base=10, wall=4, slop=0.2, orient=ORIENT_Y); module slider(l=30, w=10, h=10, base=10, wall=5, ang=30, slop=PRINTER_SLOP, orient=ORIENT_Y, align=V_UP) { full_width = w + 2*wall; full_height = h + base; orient_and_align([full_width, l, h+2*base], orient, align, orig_orient=ORIENT_Y) { down(base+h/2) { // Base cuboid([full_width, l, base-slop], chamfer=2, edges=EDGE_TOP_FR+EDGE_TOP_BK+EDGES_Z_ALL, align=V_UP); // Wall xflip_copy(offset=w/2+slop) { cuboid([wall, l, full_height], chamfer=2, edges=EDGE_TOP_RT+EDGE_FR_RT+EDGE_BK_RT, align=V_UP+V_RIGHT); } // Sliders up(base+h/2) { xflip_copy(offset=w/2+slop+0.02) { bev_h = h/2*tan(ang); prismoid([l, h], [l-w, 0], h=bev_h+0.01, orient=ORIENT_XNEG, align=V_LEFT); } } } } } // Module: rail() // Description: // Creates a V-groove rail. // Usage: // rail(l, w, h, [chamfer], [ang], [orient], [align]) // Arguments: // l = Length (long axis) of slider. // w = Width of slider. // h = Height of slider. // chamfer = Size of chamfer at end of rail. // ang = Overhang angle for slider, to facilitate supportless printig. // orient = Orientation of the rail. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`. // align = Alignment of the rail. Use the `V_` constants from `constants.scad`. Default: `V_UP`. // Example: // rail(l=100, w=10, h=10); module rail(l=30, w=10, h=10, chamfer=1.0, ang=30, orient=ORIENT_Y, align=V_UP) { attack_ang = 30; attack_len = 2; fudge = 1.177; chamf = sqrt(2) * chamfer; cosa = cos(ang*fudge); sina = sin(ang*fudge); z1 = h/2; z2 = z1 - chamf * cosa; z3 = z1 - attack_len * sin(attack_ang); z4 = 0; x1 = w/2; x2 = x1 - chamf * sina; x3 = x1 - chamf; x4 = x1 - attack_len * sin(attack_ang); x5 = x2 - attack_len * sin(attack_ang); x6 = x1 - z1 * sina; x7 = x4 - z1 * sina; y1 = l/2; y2 = y1 - attack_len * cos(attack_ang); orient_and_align([w, l, h], orient, align, orig_orient=ORIENT_Y) { polyhedron( convexity=4, points=[ [-x5, -y1, z3], [ x5, -y1, z3], [ x7, -y1, z4], [ x4, -y1, -z1-0.05], [-x4, -y1, -z1-0.05], [-x7, -y1, z4], [-x3, -y2, z1], [ x3, -y2, z1], [ x2, -y2, z2], [ x6, -y2, z4], [ x1, -y2, -z1-0.05], [-x1, -y2, -z1-0.05], [-x6, -y2, z4], [-x2, -y2, z2], [ x5, y1, z3], [-x5, y1, z3], [-x7, y1, z4], [-x4, y1, -z1-0.05], [ x4, y1, -z1-0.05], [ x7, y1, z4], [ x3, y2, z1], [-x3, y2, z1], [-x2, y2, z2], [-x6, y2, z4], [-x1, y2, -z1-0.05], [ x1, y2, -z1-0.05], [ x6, y2, z4], [ x2, y2, z2], ], faces=[ [0, 1, 2], [0, 2, 5], [2, 3, 4], [2, 4, 5], [0, 13, 6], [0, 6, 7], [0, 7, 1], [1, 7, 8], [1, 8, 9], [1, 9, 2], [2, 9, 10], [2, 10, 3], [3, 10, 11], [3, 11, 4], [4, 11, 12], [4, 12, 5], [5, 12, 13], [5, 13, 0], [14, 15, 16], [14, 16, 19], [16, 17, 18], [16, 18, 19], [14, 27, 20], [14, 20, 21], [14, 21, 15], [15, 21, 22], [15, 22, 23], [15, 23, 16], [16, 23, 24], [16, 24, 17], [17, 24, 25], [17, 25, 18], [18, 25, 26], [18, 26, 19], [19, 26, 27], [19, 27, 14], [6, 21, 20], [6, 20, 7], [7, 20, 27], [7, 27, 8], [8, 27, 26], [8, 26, 9], [9, 26, 25], [9, 25, 10], [10, 25, 24], [10, 24, 11], [11, 24, 23], [11, 23, 12], [12, 23, 22], [12, 22, 13], [13, 22, 21], [13, 21, 6], ] ); } } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap