////////////////////////////////////////////////////////////////////// // LibFile: constants.scad // Useful Constants. // Includes: // include // DefineHeader(Label): Aliases ////////////////////////////////////////////////////////////////////// // Section: General Constants // Constant: $slop // Description: // A number of printers, particularly FDM/FFF printers, tend to be a bit sloppy in their printing. // This has made it so that some parts won't fit together without adding a bit of extra slop space. // That is what the `$slop` value is for. The value for this will vary from printer to printer. // By default, we use a value of 0.00 so that parts should fit exactly for resin and other precision // printers. This value is measured in millimeters. When making your own parts, you should add // `$slop` to both sides of a hole that another part is to fit snugly into. For a loose fit, add // `2*$slop` to each side. This should be done for both X and Y axes. The Z axis will require a // slop that depends on your layer height and bridging settings, and hole sizes. We leave that as // a more complicated exercise for the user. // DefineHeader(NumList): Calibration // Calibration: To calibrate the `$slop` value for your printer, follow this procedure: // Print the Slop Calibration part from the example below. // Take the long block and orient it so the numbers are upright, facing you. // Take the plug and orient it so that the arrow points down, facing you. // Starting with the hole with the largest number in front of it, insert the small end of the plug into the hole. // If you can insert and remove the small end of the plug from the hole without much force, then try again with the hole with the next smaller number. // Repeat step 5 until you have found the hole with the smallest number that the plug fits into without much force. // The correct hole should hold the plug when the long block is turned upside-down. // The number in front of that hole will indicate the `$slop` value that is ideal for your printer. // Remember to set that slop value in your scripts after you include the BOSL2 library: ie: `$slop = 0.15;` // Example(3D,Med): Slop Calibration Part. // min_slop = 0.00; // slop_step = 0.05; // holes = 8; // holesize = [15,15,15]; // height = 20; // gap = 5; // l = holes * (holesize.x + gap) + gap; // w = holesize.y + 2*gap; // h = holesize.z + 5; // diff("holes") // cuboid([l, w, h], anchor=BOT) { // for (i=[0:holes-1]) { // right((i-holes/2+0.5)*(holesize.x+gap)) { // s = min_slop + slop_step * i; // tags("holes") { // cuboid([holesize.x + 2*s, holesize.y + 2*s, h+0.2]); // fwd(w/2-1) xrot(90) linear_extrude(1.1) { // text( // text=fmt_fixed(s,2), // size=0.4*holesize.x, // halign="center", // valign="center" // ); // } // } // } // } // } // back(holesize.y*2.5) { // difference() { // union() { // cuboid([holesize.x+10, holesize.y+10, 15], anchor=BOT); // cuboid([holesize.x, holesize.y, 15+holesize.z], anchor=BOT); // } // up(3) fwd((holesize.y+10)/2) { // prismoid([holesize.x/2,1], [0,1], h=holesize.y-6); // } // } // } // Example(2D): Where to add `$slop` gaps. // $slop = 0.2; // difference() { // square([20,12],center=true); // back(3) square([10+2*$slop,11],center=true); // } // back(8) { // rect([15,5],anchor=FWD); // rect([10,8],anchor=BACK); // } // color("#000") { // arrow_path = [[5.1,6.1], [6.0,7.1], [8,7.1], [10.5,10]]; // xflip_copy() // stroke(arrow_path, width=0.3, endcap1="arrow2"); // xcopies(21) back(10.5) { // back(1.8) text("$slop", size=1.5, halign="center"); // text("gap", size=1.5, halign="center"); // } // } $slop = 0.0; // Constant: INCH // Description: // The number of millimeters in an inch. INCH = 25.4; // Section: Directional Vectors // Vectors useful for `rotate()`, `mirror()`, and `anchor` arguments for `cuboid()`, `cyl()`, etc. // Constant: LEFT // Description: Vector pointing left. [-1,0,0] // Example(3D): Usage with `anchor` // cuboid(20, anchor=LEFT); LEFT = [-1, 0, 0]; // Constant: RIGHT // Description: Vector pointing right. [1,0,0] // Example(3D): Usage with `anchor` // cuboid(20, anchor=RIGHT); RIGHT = [ 1, 0, 0]; // Constant: FRONT // Aliases: FWD, FORWARD // Description: Vector pointing forward. [0,-1,0] // Example(3D): Usage with `anchor` // cuboid(20, anchor=FRONT); FRONT = [ 0, -1, 0]; FWD = FRONT; FORWARD = FRONT; // Constant: BACK // Description: Vector pointing back. [0,1,0] // Example(3D): Usage with `anchor` // cuboid(20, anchor=BACK); BACK = [ 0, 1, 0]; // Constant: BOTTOM // Aliases: BOT, BTM, DOWN // Description: Vector pointing down. [0,0,-1] // Example(3D): Usage with `anchor` // cuboid(20, anchor=BOTTOM); BOTTOM = [ 0, 0, -1]; BOT = BOTTOM; BTM = BOTTOM; DOWN = BOTTOM; // Constant: TOP // Aliases: UP // Description: Vector pointing up. [0,0,1] // Example(3D): Usage with `anchor` // cuboid(20, anchor=TOP); TOP = [ 0, 0, 1]; UP = TOP; // Constant: ALLPOS // Description: Vector pointing right, back, and up. [1,1,1] // Example(3D): Usage with `anchor` // cuboid(20, anchor=ALLPOS); ALLPOS = [ 1, 1, 1]; // Vector pointing X+,Y+,Z+. // Constant: ALLNEG // Description: Vector pointing left, forwards, and down. [-1,-1,-1] // Example(3D): Usage with `anchor` // cuboid(20, anchor=ALLNEG); ALLNEG = [-1, -1, -1]; // Vector pointing X-,Y-,Z-. // Constant: CENTER // Aliases: CTR // Description: Zero vector. Centered. [0,0,0] // Example(3D): Usage with `anchor` // cuboid(20, anchor=CENTER); CENTER = [ 0, 0, 0]; // Centered zero vector. CTR = CENTER; // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap