////////////////////////////////////////////////////////////////////// // LibFile: geometry.scad // Geometry helpers. // To use, add the following lines to the beginning of your file: // ``` // use // ``` ////////////////////////////////////////////////////////////////////// // CommonCode: // include // Section: Lines and Triangles // Function: point_on_segment2d() // Usage: // point_on_segment2d(point, edge); // Description: // Determine if the point is on the line segment between two points. // Returns true if yes, and false if not. // Arguments: // point = The point to test. // edge = Array of two points forming the line segment to test against. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_on_segment2d(point, edge, eps=EPSILON) = approx(point,edge[0],eps=eps) || approx(point,edge[1],eps=eps) || // The point is an endpoint sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the && sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints && approx(point_left_of_segment2d(point, edge),0,eps=eps); // and on the line defined by edge // Function: point_left_of_segment2d() // Usage: // point_left_of_segment2d(point, edge); // Description: // Return >0 if point is left of the line defined by edge. // Return =0 if point is on the line. // Return <0 if point is right of the line. // Arguments: // point = The point to check position of. // edge = Array of two points forming the line segment to test against. function point_left_of_segment2d(point, edge) = (edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y); // Internal non-exposed function. function _point_above_below_segment(point, edge) = edge[0].y <= point.y? ( (edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0 ) : ( (edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0 ); // Function: collinear() // Usage: // collinear(a, b, c, [eps]); // Description: // Returns true if three points are co-linear. // Arguments: // a = First point. // b = Second point. // c = Third point. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function collinear(a, b, c, eps=EPSILON) = distance_from_line([a,b], c) < eps; // Function: collinear_indexed() // Usage: // collinear_indexed(points, a, b, c, [eps]); // Description: // Returns true if three points are co-linear. // Arguments: // points = A list of points. // a = Index in `points` of first point. // b = Index in `points` of second point. // c = Index in `points` of third point. // eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees. function collinear_indexed(points, a, b, c, eps=EPSILON) = let( p1=points[a], p2=points[b], p3=points[c] ) collinear(p1, p2, p3, eps); // Function: distance_from_line() // Usage: // distance_from_line(line, pt); // Description: // Finds the perpendicular distance of a point `pt` from the line `line`. // Arguments: // line = A list of two points, defining a line that both are on. // pt = A point to find the distance of from the line. // Example: // distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8 function distance_from_line(line, pt) = let(a=line[0], n=normalize(line[1]-a), d=a-pt) norm(d - ((d * n) * n)); // Function: line_normal() // Usage: // line_normal([P1,P2]) // line_normal(p1,p2) // Description: // Returns the 2D normal vector to the given 2D line. This is otherwise known as the perpendicular vector counter-clockwise to the given ray. // Arguments: // p1 = First point on 2D line. // p2 = Second point on 2D line. // Example(2D): // p1 = [10,10]; // p2 = [50,30]; // n = line_normal(p1,p2); // stroke([p1,p2], endcap2="arrow2"); // color("green") stroke([p1,p1+10*n], endcap2="arrow2"); // color("blue") place_copies([p1,p2]) circle(d=2, $fn=12); function line_normal(p1,p2) = is_undef(p2)? line_normal(p1[0],p1[1]) : normalize([p1.y-p2.y,p2.x-p1.x]); // 2D Line intersection from two segments. // This function returns [p,t,u] where p is the intersection point of // the lines defined by the two segments, t is the bezier parameter // for the intersection point on s1 and u is the bezier parameter for // the intersection point on s2. The bezier parameter runs over [0,1] // for each segment, so if it is in this range, then the intersection // lies on the segment. Otherwise it lies somewhere on the extension // of the segment. function _general_line_intersection(s1,s2,eps=EPSILON) = let( denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]) ) approx(denominator,0,eps=eps)? [undef,undef,undef] : let( t = det2([s1[0],s2[0]]-s2) / denominator, u = det2([s1[0],s1[0]]-[s1[1],s2[1]]) /denominator ) [s1[0]+t*(s1[1]-s1[0]), t, u]; // Function: line_intersection() // Usage: // line_intersection(l1, l2); // Description: // Returns the 2D intersection point of two unbounded 2D lines. // Returns `undef` if the lines are parallel. // Arguments: // l1 = First 2D line, given as a list of two 2D points on the line. // l2 = Second 2D line, given as a list of two 2D points on the line. function line_intersection(l1,l2,eps=EPSILON) = let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0]; // Function: segment_intersection() // Usage: // segment_intersection(s1, s2); // Description: // Returns the 2D intersection point of two 2D line segments. // Returns `undef` if they do not intersect. // Arguments: // s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment. // s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function segment_intersection(s1,s2,eps=EPSILON) = let( isect = _general_line_intersection(s1,s2,eps=eps) ) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; // Function: line_segment_intersection() // Usage: // line_segment_intersection(line, segment); // Description: // Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment. // Returns `undef` if they do not intersect. // Arguments: // line = The unbounded 2D line, defined by two 2D points on the line. // segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function line_segment_intersection(line,segment,eps=EPSILON) = let( isect = _general_line_intersection(line,segment,eps=eps) ) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0]; // Function: line_closest_point() // Usage: // line_closest_point(line,pt); // Description: // Returns the point on the given `line` that is closest to the given point `pt`. // Arguments: // line = A list of two points that are on the unbounded line. // pt = The point to find the closest point on the line to. function line_closest_point(line,pt) = let( n = line_normal(line), isect = _general_line_intersection(line,[pt,pt+n]) ) isect[0]; // Function: segment_closest_point() // Usage: // segment_closest_point(seg,pt); // Description: // Returns the point on the given line segment `seg` that is closest to the given point `pt`. // Arguments: // seg = A list of two points that are the endpoints of the bounded line segment. // pt = The point to find the closest point on the segment to. function segment_closest_point(seg,pt) = let( n = line_normal(seg), isect = _general_line_intersection(seg,[pt,pt+n]) ) norm(n)==0? seg[0] : isect[1]<=0? seg[0] : isect[1]>=1? seg[1] : isect[0]; // Function: find_circle_2tangents() // Usage: // find_circle_2tangents(pt1, pt2, pt3, r|d); // Description: // Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point. // Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`. // If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle. // Arguments: // pt1 = A point that the first ray passes though. // pt2 = The starting point of both rays. // pt3 = A point that the second ray passes though. // r = The radius of the circle to find. // d = The diameter of the circle to find. // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // rad = 10; // stroke([pts[1],pts[0]], endcap2="arrow2"); // stroke([pts[1],pts[2]], endcap2="arrow2"); // circ = find_circle_2tangents(pt1=pts[0], pt2=pts[1], pt3=pts[2], r=rad); // translate(circ[0]) { // color("green") { // stroke(circle(r=rad),closed=true); // stroke([[0,0],rad*[cos(315),sin(315)]]); // } // } // place_copies(pts) color("blue") circle(d=2, $fn=12); // translate(circ[0]) color("red") circle(d=2, $fn=12); // labels = [[pts[0], "pt1"], [pts[1],"pt2"], [pts[2],"pt3"], [circ[0], "CP"], [circ[0]+[cos(315),sin(315)]*rad*0.7, "r"]]; // for(l=labels) translate(l[0]+[0,2]) color("black") text(text=l[1], size=2.5, halign="center"); function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) = let( r = get_radius(r=r, d=d, dflt=undef), v1 = normalize(pt1 - pt2), v2 = normalize(pt3 - pt2) ) approx(norm(v1+v2))? undef : assert(r!=undef, "Must specify either r or d.") let( a = vector_angle(v1,v2), n = vector_axis(v1,v2), v = normalize(mean([v1,v2])), s = r/sin(a/2), cp = pt2 + s*v/norm(v) ) [cp, n]; // Function: find_circle_3points() // Usage: // find_circle_3points(pt1, pt2, pt3); // Description: // Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear // points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three // points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]). // If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are // collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D // vector with a non-negative Z axis. // Arguments: // pt1 = The first point. // pt2 = The second point. // pt3 = The third point. // Example(2D): // pts = [[60,40], [10,10], [65,5]]; // circ = find_circle_3points(pts[0], pts[1], pts[2]); // translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72); // translate(circ[0]) color("red") circle(d=3, $fn=12); // place_copies(pts) color("blue") circle(d=3, $fn=12); function find_circle_3points(pt1, pt2, pt3) = collinear(pt1,pt2,pt3)? [undef,undef,undef] : let( v1 = pt1-pt2, v2 = pt3-pt2, n = vector_axis(v1,v2), n2 = n.z<0? -n : n ) len(pt1)+len(pt2)+len(pt3)>6? ( let( a = project_plane(pt1, pt1, pt2, pt3), b = project_plane(pt2, pt1, pt2, pt3), c = project_plane(pt3, pt1, pt2, pt3), res = find_circle_3points(a, b, c) ) res[0]==undef? [undef,undef,undef] : let( cp = lift_plane(res[0], pt1, pt2, pt3), r = norm(p2-cp) ) [cp, r, n2] ) : let( mp1 = pt2 + v1/2, mp2 = pt2 + v2/2, mpv1 = rot(90, v=n, p=v1), mpv2 = rot(90, v=n, p=v2), l1 = [mp1, mp1+mpv1], l2 = [mp2, mp2+mpv2], isect = line_intersection(l1,l2) ) is_undef(isect)? [undef,undef,undef] : let( r = norm(pt2-isect) ) [isect, r, n2]; // Function: tri_calc() // Usage: // tri_calc(ang,ang2,adj,opp,hyp); // Description: // Given a side length and an angle, or two side lengths, calculates the rest of the side lengths // and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where // ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side // opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees. // This is certainly more verbose and slower than writing your own calculations, but has the nice // benefit that you can just specify the info you have, and don't have to figure out which trig // formulas you need to use. // Figure(2D): // color("#ccc") { // stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]); // stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30)); // stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58)); // } // color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]); // color("#0c0") { // translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center"); // translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center"); // } // color("blue") { // translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center"); // translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center"); // translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center"); // } // Arguments: // ang = The angle in degrees of the primary corner of the triangle. // ang2 = The angle in degrees of the other non-right corner of the triangle. // adj = The length of the side adjacent to the primary corner. // opp = The length of the side opposite to the primary corner. // hyp = The length of the hypotenuse. // Example: // tri = tri_calc(opp=15,hyp=30); // echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]); // Examples: // adj = tri_calc(ang=30,opp=10)[0]; // opp = tri_calc(ang=20,hyp=30)[1]; // hyp = tri_calc(ang2=50,adj=20)[2]; // ang = tri_calc(adj=20,hyp=30)[3]; // ang2 = tri_calc(adj=20,hyp=40)[4]; function tri_calc(ang,ang2,adj,opp,hyp) = assert(num_defined([ang,ang2])<2,"You cannot specify both ang and ang2.") assert(num_defined([ang,ang2,adj,opp,hyp])==2, "You must specify exactly two arguments.") let( ang = ang!=undef? assert(ang>0&&ang<90) ang : ang2!=undef? (90-ang2) : adj==undef? asin(constrain(opp/hyp,-1,1)) : opp==undef? acos(constrain(adj/hyp,-1,1)) : atan2(opp,adj), ang2 = ang2!=undef? assert(ang2>0&&ang2<90) ang2 : (90-ang), adj = adj!=undef? assert(adj>0) adj : (opp!=undef? (opp/tan(ang)) : (hyp*cos(ang))), opp = opp!=undef? assert(opp>0) opp : (adj!=undef? (adj*tan(ang)) : (hyp*sin(ang))), hyp = hyp!=undef? assert(hyp>0) assert(adj EPSILON; // Section: Paths and Polygons // Function: is_path() // Usage: // is_path(x); // Description: // Returns true if the given item looks like a path. A path is defined as a list of two or more points. function is_path(x) = is_list(x) && is_vector(x.x) && len(x)>1; // Function: is_closed_path() // Usage: // is_closed_path(path, [eps]); // Description: // Returns true if the first and last points in the given path are coincident. function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps); // Function: close_path() // Usage: // close_path(path); // Description: // If a path's last point does not coincide with its first point, closes the path so it does. function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : concat(path,[path[0]]); // Function: cleanup_path() // Usage: // cleanup_path(path); // Description: // If a path's last point coincides with its first point, deletes the last point in the path. function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path; // Function: path_subselect() // Usage: // path_subselect(path,s1,u1,s2,u2): // Description: // Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of // segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start // of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment. // Arguments: // s1 = The number of the starting segment. // u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive. // s2 = The number of the ending segment. // u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive. function path_subselect(path,s1,u1,s2,u2) = let( l = len(path)-1, u1 = s1<0? 0 : s1>l? 1 : u1, u2 = s2<0? 0 : s2>l? 1 : u2, s1 = constrain(s1,0,l), s2 = constrain(s2,0,l), pathout = concat( (s10.5? 1 : 0) ) select(path,segnum,segnum+len(path)-1); // Function: first_noncollinear() // Usage: // first_noncollinear(i1, i2, points); // Description: // Finds the first point in `points` that is not collinear with the points indexed by `i1` and `i2`. Returns the index of the found point. // Arguments: // i1 = The first point. // i2 = The second point. // points = The list of points to find a non-collinear point from. function first_noncollinear(i1, i2, points, _i) = (_i>=len(points) || !collinear_indexed(points, i1, i2, _i))? _i : find_first_noncollinear(i1, i2, points, _i=_i+1); // Function: noncollinear_points() // Usage: // find_noncollinear_points(points); // Description: // Finds the indexes of three good points in the points list `points` that are not collinear. function find_noncollinear_points(points) = let( a = 0, b = furthest_point(a, points), c = first_noncollinear(a, b, points) ) [a, b, c]; // Function: centroid() // Usage: // centroid(vertices) // Description: // Given a simple 2D polygon, returns the coordinates of the polygon's centroid. // If the polygon is self-intersecting, the results are undefined. function centroid(vertices) = sum([ for(i=[0:len(vertices)-1]) let(segment=select(vertices,i,i+1)) det2(segment)*sum(segment) ]) / 6 / polygon_area(vertices); // Function: assemble_path_fragments() // Usage: // assemble_path_fragments(subpaths); // Description: // Given a list of incomplete paths, assembles them together into complete closed paths if it can. function assemble_path_fragments(subpaths,eps=EPSILON,_finished=[]) = len(subpaths)<=1? concat(_finished, subpaths) : let( path = subpaths[0] ) is_closed_path(path, eps=eps)? ( assemble_path_fragments( [for (i=[1:1:len(subpaths)-1]) subpaths[i]], eps=eps, _finished=concat(_finished, [path]) ) ) : let( matches = [ for (i=[1:1:len(subpaths)-1], rev1=[0,1], rev2=[0,1]) let( idx1 = rev1? 0 : len(path)-1, idx2 = rev2? len(subpaths[i])-1 : 0 ) if (approx(path[idx1], subpaths[i][idx2], eps=eps)) [ i, concat( rev1? reverse(path) : path, select(rev2? reverse(subpaths[i]) : subpaths[i], 1,-1) ) ] ] ) len(matches)==0? ( assemble_path_fragments( select(subpaths,1,-1), eps=eps, _finished=concat(_finished, [path]) ) ) : is_closed_path(matches[0][1], eps=eps)? ( assemble_path_fragments( [for (i=[1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]], eps=eps, _finished=concat(_finished, [matches[0][1]]) ) ) : let( subpath = matches[0][1], splen = len(subpath), conn1 = [for (i=[1:splen-1]) if (approx(subpath[0],subpath[i])) i], conn2 = [for (i=[0:splen-2]) if (approx(subpath[splen-1],subpath[i])) i] ) (conn1 != [] || conn2 != [])? let( finpath = select(subpath, 0, conn1!=[]? conn1[0] : conn2[0]), subpath2 = select(subpath, conn1!=[]? conn1[0] : conn2[0], -1) ) ( assemble_path_fragments( concat( [subpath2], [for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]] ), eps=eps, _finished=concat(_finished, [finpath]) ) ) : ( assemble_path_fragments( concat( [matches[0][1]], [for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]] ), eps=eps, _finished=_finished ) ); // Function: simplify_path() // Description: // Takes a path and removes unnecessary collinear points. // Usage: // simplify_path(path, [eps]) // Arguments: // path = A list of 2D path points. // eps = Largest positional variance allowed. Default: `EPSILON` (1-e9) function simplify_path(path, eps=EPSILON) = len(path)<=2? path : let( indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1]) ) [for (i = indices) path[i]]; // Function: simplify_path_indexed() // Description: // Takes a list of points, and a path as a list of indexes into `points`, // and removes all path points that are unecessarily collinear. // Usage: // simplify_path_indexed(path, eps) // Arguments: // points = A list of points. // path = A list of indexes into `points` that forms a path. // eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees. function simplify_path_indexed(points, path, eps=EPSILON) = len(path)<=2? path : let( indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1]) ) [for (i = indices) path[i]]; // Function: point_in_polygon() // Usage: // point_in_polygon(point, path) // Description: // This function tests whether the given point is inside, outside or on the boundary of // the specified 2D polygon using the Winding Number method. // The polygon is given as a list of 2D points, not including the repeated end point. // Returns -1 if the point is outside the polyon. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies in the interior. // The polygon does not need to be simple: it can have self-intersections. // But the polygon cannot have holes (it must be simply connected). // Rounding error may give mixed results for points on or near the boundary. // Arguments: // point = The point to check position of. // path = The list of 2D path points forming the perimeter of the polygon. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_polygon(point, path, eps=EPSILON) = // Original algorithm from http://geomalgorithms.com/a03-_inclusion.html // Does the point lie on any edges? If so return 0. sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) point_on_segment2d(point, seg, eps=eps)?1:0]) > 0? 0 : // Otherwise compute winding number and return 1 for interior, -1 for exterior sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) _point_above_below_segment(point, seg)]) != 0? 1 : -1; // Function: pointlist_bounds() // Usage: // pointlist_bounds(pts); // Description: // Finds the bounds containing all the 2D or 3D points in `pts`. // Returns `[[MINX, MINY, MINZ], [MAXX, MAXY, MAXZ]]` // Arguments: // pts = List of points. function pointlist_bounds(pts) = [ [for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ], [for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ] ]; // Function: closest_point() // Usage: // closest_point(pt, points); // Description: // Given a list of `points`, finds the point that is closest to the given point `pt`, and returns the index of it. // Arguments: // pt = The point to find the closest point to. // points = The list of points to search. function closest_point(pt, points) = let( i = min_index([for (j=idx(points)) norm(points[j]-pt)]) ) i; // Function: furthest_point() // Usage: // furthest_point(pt, points); // Description: // Given a list of `points`, finds the point that is farthest from the given point `pt`, and returns the index of it. // Arguments: // pt = The point to find the farthest point from. // points = The list of points to search. function furthest_point(pt, points) = let( i = max_index([for (j=idx(points)) norm(points[j]-pt)]) ) i; // Function: polygon_is_clockwise() // Usage: // polygon_is_clockwise(path); // Description: // Return true if the given 2D simple polygon is in clockwise order, false otherwise. // Results for complex (self-intersecting) polygon are indeterminate. // Arguments: // path = The list of 2D path points for the perimeter of the polygon. function polygon_is_clockwise(path) = let( minx = min(subindex(path,0)), lowind = search(minx, path, 0, 0), lowpts = select(path, lowind), miny = min(subindex(lowpts, 1)), extreme_sub = search(miny, lowpts, 1, 1)[0], extreme = select(lowind,extreme_sub) ) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0; // Function: clockwise_polygon() // Usage: // clockwise_polygon(path); // Description: // Given a polygon path, returns the clockwise winding version of that path. function clockwise_polygon(path) = polygon_is_clockwise(path)? path : reverse(path); // Function: ccw_polygon() // Usage: // ccw_polygon(path); // Description: // Given a polygon path, returns the counter-clockwise winding version of that path. function ccw_polygon(path) = polygon_is_clockwise(path)? reverse(path) : path; // Section: Regions and Boolean 2D Geometry // Function: is_region() // Usage: // is_region(x); // Description: // Returns true if the given item looks like a region. A region is defined as a list of zero or more paths. function is_region(x) = is_list(x) && is_path(x.x); // Function: close_region() // Usage: // close_region(region); // Description: // Closes all paths within a given region. function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)]; // Function: check_and_fix_path() // Usage: // check_and_fix_path(path, [valid_dim], [closed]) // Description: // Checks that the input is a path. If it is a region with one component, converts it to a path. // valid_dim specfies the allowed dimension of the points in the path. // If the path is closed, removed duplicate endpoint if present. // Arguments: // path = path to process // valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef // closed = set to true if the path is closed, which enables a check for endpoint duplication function check_and_fix_path(path,valid_dim=undef,closed=false) = let( path = is_region(path) ? assert(len(path)==1,"Region supplied as path does not have exactly one component") path[0] : assert(is_path(path), "Input is not a path") path, dim = array_dim(path)) assert(dim[0]>1,"Path must have at least 2 points") assert(len(dim)==2,"Invalid path: path is either a list of scalars or a list of matrices") assert(is_def(dim[1]), "Invalid path: entries in the path have variable length") let(valid=is_undef(valid_dim) || in_list(dim[1],valid_dim)) assert(valid, str("The points on the path have length ",dim[1]," but length must be ", len(valid_dim)==1? valid_dim[0] : str("one of ",valid_dim))) closed && approx(path[0],select(path,-1)) ? slice(path,0,-2) : path; // Function: cleanup_region() // Usage: // cleanup_region(region); // Description: // For all paths in the given region, if the last point coincides with the first point, removes the last point. function cleanup_region(region, eps=EPSILON) = [for (path=region) cleanup_path(path, eps=eps)]; // Function: point_in_region() // Usage: // point_in_region(point, region); // Description: // Tests if a point is inside, outside, or on the border of a region. // Returns -1 if the point is outside the region. // Returns 0 if the point is on the boundary. // Returns 1 if the point lies inside the region. // Arguments: // point = The point to test. // region = The region to test against. Given as a list of polygon paths. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) = (_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let( pip = point_in_polygon(point, region[_i], eps=eps) ) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0)); // Function: region_path_crossings() // Usage: // region_path_crossings(path, region); // Description: // Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path. // Arguments: // path = The path to find crossings on. // region = Region to test for crossings of. // eps = Acceptable variance. Default: `EPSILON` (1e-9) function region_path_crossings(path, region, eps=EPSILON) = sort([ for ( s1=enumerate(pair(close_path(path))), p=close_region(region), s2=pair(p) ) let( isect = _general_line_intersection(s1[1],s2,eps=eps) ) if ( !is_undef(isect) && isect[1] >= 0-eps && isect[1] < 1+eps && isect[2] >= 0-eps && isect[2] < 1+eps ) [s1[0], isect[1]] ]); function _offset_chamfer(center, points, delta) = let( dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])), endline = _shift_segment(select(points,[0,2]), delta-dist) ) [ line_intersection(endline, select(points,[0,1])), line_intersection(endline, select(points,[1,2])) ]; function _shift_segment(segment, d) = move(d*line_normal(segment),segment); // Extend to segments to their intersection point. First check if the segments already have a point in common, // which can happen if two colinear segments are input to the path variant of `offset()` function _segment_extension(s1,s2) = norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2); function _makefaces(direction, startind, good, pointcount, closed) = let( lenlist = list_bset(good, pointcount), numfirst = len(lenlist), numsecond = sum(lenlist), prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed) ) direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces; function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) = // We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past // the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output. ((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces : _makefaces_recurse( startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind], lenlist[firstind]==0? ( // point in original path has been deleted in offset path, so it has no match. We therefore // make a triangular face using the current point from the offset (second) path // (The current point in the second path can be equal to numsecond if firstind is the last point) concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]]) // in this case a point or points exist in the offset path corresponding to the original path ) : ( concat(faces, // First generate triangular faces for all of the extra points (if there are any---loop may be empty) [for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]], // Finish (unconditionally) with a quadrilateral face [ [ firstind+startind1, (firstind+1)%numfirst+startind1, (secondind+lenlist[firstind])%numsecond+startind2, (secondind+lenlist[firstind]-1)%numsecond+startind2 ] ] ) ) ); // Determine which of the shifted segments are good function _good_segments(path, d, shiftsegs, closed, quality) = let( maxind = len(path)-(closed ? 1 : 2), pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]], pathseg_len = [for(seg=pathseg) norm(seg)], pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]], // Order matters because as soon as a valid point is found, the test stops // This order works better for circular paths because they succeed in the center alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1]) ) [ for (i=[0:len(shiftsegs)-1]) (i>maxind)? true : _segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha) ]; // Determine if a segment is good (approximately) // Input is the path, the path segments normalized to unit length, the length of each path segment // the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1]) // The last parameter, index, gives the current alpha index. // // A segment is good if any part of it is farther than distance d from the path. The test is expensive, so // we want to quit as soon as we find a point with distance > d, hence the recursive code structure. // // This test is approximate because it only samples the points listed in alpha. Listing more points // will make the test more accurate, but slower. function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) = index == len(alpha) ? false : _point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true : _segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1); // Input is the path, the path segments normalized to unit length, the length of each path segment // and a test point. Computes the (minimum) distance from the path to the point, taking into // account that the minimal distance may be anywhere along a path segment, not just at the ends. function _point_dist(path,pathseg_unit,pathseg_len,pt) = min([ for(i=[0:len(pathseg_unit)-1]) let( v = pt-path[i], projection = v*pathseg_unit[i], segdist = projection < 0? norm(pt-path[i]) : projection > pathseg_len[i]? norm(pt-select(path,i+1)) : norm(v-projection*pathseg_unit[i]) ) segdist ]); function _offset_region( paths, r, delta, chamfer, closed, maxstep, check_valid, quality, return_faces, firstface_index, flip_faces, _acc=[], _i=0 ) = _i>=len(paths)? _acc : _offset_region( paths, _i=_i+1, _acc = (paths[_i].x % 2 == 0)? ( union(_acc, [ offset( paths[_i].y, r=r, delta=delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ) : ( difference(_acc, [ offset( paths[_i].y, r=-r, delta=-delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ]) ), r=r, delta=delta, chamfer=chamfer, closed=closed, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ); // Function: offset() // // Description: // Takes an input path and returns a path offset by the specified amount. As with the built-in // offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with // corners. Positive offsets shift the path to the left (relative to the direction of the path). // // When offsets shrink the path, segments cross and become invalid. By default `offset()` checks // for this situation. To test validity the code checks that segments have distance larger than (r // or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate // segments you wanted included in various situations, so you can disable it if you wish by setting // check_valid=false. Another situation is that the test is not sufficiently thorough and some // segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This // increases the number of samples on the segment that are checked.) Run time will increase. In // some situations you may be able to decrease run time by setting quality to 0, which causes only // segment ends to be checked. // // For construction of polyhedra `offset()` can also return face lists. These list faces between // the original path and the offset path where the vertices are ordered with the original path // first, starting at `firstface_index` and the offset path vertices appearing afterwords. The // direction of the faces can be flipped using `flip_faces`. When you request faces the return // value is a list: [offset_path, face_list]. // Arguments: // path = the path to process. A list of 2d points. // r = offset radius. Distance to offset. Will round over corners. // delta = offset distance. Distance to offset with pointed corners. // chamfer = chamfer corners when you specify `delta`. Default: false // closed = path is a closed curve. Default: False. // check_valid = perform segment validity check. Default: True. // quality = validity check quality parameter, a small integer. Default: 1. // return_faces = return face list. Default: False. // firstface_index = starting index for face list. Default: 0. // flip_faces = flip face direction. Default: false // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true)); // Example(2D): // star = star(5, r=100, ir=30); // #stroke(closed=true, star); // stroke(closed=true, offset(star, r=-10, closed=true)); // Example(2D): This case needs `quality=2` for success // test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]]; // polygon(offset(test,r=-1.9, closed=true, quality=2)); // //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error // %down(.1)polygon(test); // Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve. // star = star(5, r=22, ir=13); // stroke(star,width=.2,closed=true); // color("green") // stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default) // color("red") // stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true // width=.2,closed=true); // Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks. // star = star(5, r=22, ir=13); // color("green") // stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true); // color("red") // stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true); // Example(2D): The extra triangles in this example show that the validity check cannot be skipped // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true); // Example(2D): The triangles are removed by the validity check // ellipse = scale([20,4], p=circle(r=1,$fn=64)); // stroke(ellipse, closed=true, width=0.3); // stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true); // Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path. // sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]]; // #stroke(sinpath); // stroke(offset(sinpath, r=17.5)); // Example(2D): Region // rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true))); // #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p); // region(offset(rgn, r=-5)); function offset( path, r=undef, delta=undef, chamfer=false, maxstep=0.1, closed=false, check_valid=true, quality=1, return_faces=false, firstface_index=0, flip_faces=false ) = is_region(path)? ( assert(!return_faces, "return_faces not supported for regions.") let( path = [for (p=path) polygon_is_clockwise(p)? p : reverse(p)], rgn = exclusive_or([for (p = path) [p]]), pathlist = sort(idx=0,[ for (i=[0:1:len(rgn)-1]) [ sum(concat([0],[ for (j=[0:1:len(rgn)-1]) if (i!=j) point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0 ])), rgn[i] ] ]) ) _offset_region( pathlist, r=r, delta=delta, chamfer=chamfer, closed=true, maxstep=maxstep, check_valid=check_valid, quality=quality, return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces ) ) : let(rcount = num_defined([r,delta])) assert(rcount==1,"Must define exactly one of 'delta' and 'r'") let( chamfer = is_def(r) ? false : chamfer, quality = max(0,round(quality)), flip_dir = closed && !polygon_is_clockwise(path) ? -1 : 1, d = flip_dir * (is_def(r) ? r : delta), shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)], // good segments are ones where no point on the segment is less than distance d from any point on the path good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : replist(true,len(shiftsegs)), goodsegs = bselect(shiftsegs, good), goodpath = bselect(path,good) ) assert(len(goodsegs)>0,"Offset of path is degenerate") let( // Extend the shifted segments to their intersection points sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))], // If some segments are parallel then the extended segments are undefined. This case is not handled // Note if !closed the last corner doesn't matter, so exclude it parallelcheck = (len(sharpcorners)==2 && !closed) || all_defined(select(sharpcorners,closed?0:1,-1)) ) assert(parallelcheck, "Path turns back on itself (180 deg turn)") let( // This is a boolean array that indicates whether a corner is an outside or inside corner // For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward // If either side turns back it is an inside corner---must check both. // Outside corners can get rounded (if r is specified and there is space to round them) outsidecorner = [ for(i=[0:len(goodsegs)-1]) let( prevseg=select(goodsegs,i-1) ) ( (goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0 ) && ( (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0 ) ], steps = is_def(delta) ? [] : [ for(i=[0:len(goodsegs)-1]) ceil( abs(r)*vector_angle( select(goodsegs,i-1)[1]-goodpath[i], goodsegs[i][0]-goodpath[i] )*PI/180/maxstep ) ], // If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed // Otherwise it's the same as sharpcorners // If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later // gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get // plain sharpcorners back. newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [ for(i=[0:len(goodsegs)-1]) ( (!chamfer && steps[i] <=2) //Chamfer all points but only round if steps is 3 or more || !outsidecorner[i] // Don't round inside corners || (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path )? [sharpcorners[i]] : ( chamfer? _offset_chamfer( goodpath[i], [ select(goodsegs,i-1)[1], sharpcorners[i], goodsegs[i][0] ], d ) : arc( cp=goodpath[i], points=[ select(goodsegs,i-1)[1], goodsegs[i][0] ], N=steps[i] ) ) ], pointcount = (is_def(delta) && !chamfer)? replist(1,len(sharpcorners)) : [for(i=[0:len(goodsegs)-1]) len(newcorners[i])], start = [goodsegs[0][0]], end = [goodsegs[len(goodsegs)-2][1]], edges = closed? flatten(newcorners) : concat(start,slice(flatten(newcorners),1,-2),end), faces = !return_faces? [] : _makefaces( flip_faces, firstface_index, good, pointcount, closed ) ) return_faces? [edges,faces] : edges; function _split_path_at_region_crossings(path, region, eps=EPSILON) = let( path = deduplicate(path, eps=eps), region = [for (path=region) deduplicate(path, eps=eps)], xings = region_path_crossings(path, region, eps=eps), crossings = deduplicate( concat( [[0,0]], xings, [[len(path)-2,1]] ), eps=eps ), subpaths = [ for (p = pair(crossings)) deduplicate(eps=eps, path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1]) ) ] ) subpaths; function _tag_subpaths(path, region, eps=EPSILON) = let( subpaths = _split_path_at_region_crossings(path, region, eps=eps), tagged = [ for (sub = subpaths) let( subpath = deduplicate(sub) ) if (len(sub)>1) let( midpt = lerp(subpath[0], subpath[1], 0.5), rel = point_in_region(midpt,region,eps=eps) ) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let( vec = normalize(subpath[1]-subpath[0]), perp = rot(90, planar=true, p=vec), sidept = midpt + perp*0.01, rel1 = point_in_polygon(sidept,path,eps=eps)>0, rel2 = point_in_region(sidept,region,eps=eps)>0 ) rel1==rel2? ["S", subpath] : ["U", subpath] ] ) tagged; function _tag_region_subpaths(region1, region2, eps=EPSILON) = [for (path=region1) each _tag_subpaths(path, region2, eps=eps)]; function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) = let( region1 = close_region(region1, eps=eps), region2 = close_region(region2, eps=eps), tagged1 = _tag_region_subpaths(region1, region2, eps=eps), tagged2 = _tag_region_subpaths(region2, region1, eps=eps), tagged = concat( [for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]], [for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]] ), outregion = assemble_path_fragments(tagged, eps=eps) ) outregion; // Function&Module: union() // Usage: // union() {...} // region = union(regions); // region = union(REGION1,REGION2); // region = union(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean union of all given regions. Result is a single region. // When called as the built-in module, makes the boolean union of the given children. // Arguments: // regions = List of regions to union. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(union(shape1,shape2)); function union(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : union( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: difference() // Usage: // difference() {...} // region = difference(regions); // region = difference(REGION1,REGION2); // region = difference(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, takes the first region and differences away all other regions from it. The resulting // region is returned. // When called as the built-in module, makes the boolean difference of the given children. // Arguments: // regions = List of regions to difference. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(difference(shape1,shape2)); function difference(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) : len(regions)<=1? regions[0] : difference( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: intersection() // Usage: // intersection() {...} // region = intersection(regions); // region = intersection(REGION1,REGION2); // region = intersection(REGION1,REGION2,REGION3); // Description: // When called as a function, and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean intersection of all given regions. Result is a single region. // When called as the built-in module, makes the boolean intersection of all the given children. // Arguments: // regions = List of regions to intersection. Each region is a list of closed paths. // Example(2D): // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true); // color("green") region(intersection(shape1,shape2)); function intersection(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : intersection( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); // Function&Module: exclusive_or() // Usage: // exclusive_or() {...} // region = exclusive_or(regions); // region = exclusive_or(REGION1,REGION2); // region = exclusive_or(REGION1,REGION2,REGION3); // Description: // When called as a function and given a list of regions, where each region is a list of closed // 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region. // When called as a module, performs a boolean exclusive-or of up to 10 children. // Arguments: // regions = List of regions to exclusive_or. Each region is a list of closed paths. // Example(2D): As Function // shape1 = move([-8,-8,0], p=circle(d=50)); // shape2 = move([ 8, 8,0], p=circle(d=50)); // for (shape = [shape1,shape2]) // color("red") stroke(shape, width=0.5, closed=true); // color("green") region(exclusive_or(shape1,shape2)); // Example(2D): As Module // exclusive_or() { // square(40,center=false); // circle(d=40); // } function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) = b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) : len(regions)<=1? regions[0] : exclusive_or( let(regions=[for (r=regions) is_path(r)? [r] : r]) concat( [union([ difference([regions[0],regions[1]], eps=eps), difference([regions[1],regions[0]], eps=eps) ], eps=eps)], [for (i=[2:1:len(regions)-1]) regions[i]] ), eps=eps ); module exclusive_or() { if ($children==1) { children(); } else if ($children==2) { difference() { children(0); children(1); } difference() { children(1); children(0); } } else if ($children==3) { exclusive_or() { exclusive_or() { children(0); children(1); } children(2); } } else if ($children==4) { exclusive_or() { exclusive_or() { children(0); children(1); } exclusive_or() { children(2); children(3); } } } else if ($children==5) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); } } else if ($children==6) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); } } else if ($children==7) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } children(4); children(5); children(6); } } else if ($children==8) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } } } else if ($children==9) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); } } else if ($children==10) { exclusive_or() { exclusive_or() { children(0); children(1); children(2); children(3); } exclusive_or() { children(4); children(5); children(6); children(7); } children(8); children(9); } } else { assert($children<=10, "exclusive_or() can only handle up to 10 children."); } } // Module: region() // Usage: // region(r); // Description: // Creates 2D polygons for the given region. The region given is a list of closed 2D paths. // Each path will be effectively exclusive-ORed from all other paths in the region, so if a // path is inside another path, it will be effectively subtracted from it. // Example(2D): // region([circle(d=50), square(25,center=true)]); // Example(2D): // rgn = concat( // [for (d=[50:-10:10]) circle(d=d-5)], // [square([60,10], center=true)] // ); // region(rgn); module region(r) { points = flatten(r); paths = [ for (i=[0:1:len(r)-1]) let( start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0) ) [for (k=[0:1:len(r[i])-1]) start+k] ]; polygon(points=points, paths=paths); } // Section: Creating Polyhedrons with VNF Structures // VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the // first item is a list of vertex points, and the second is a list of face indices into the vertex // list. Each VNF is self contained, with face indices referring only to its own vertex list. // You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then // merge the various VNFs to get the completed polyhedron vertex list and faces. // Function: is_vnf() // Description: Returns true if the given value looks passingly like a VNF structure. function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || is_vector(x[0][0])) && (x[1]==[] || is_vector(x[1][0])); // Function: is_vnf_list() // Description: Returns true if the given value looks passingly like a list of VNF structures. function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]); // Function: vnf_vertices() // Description: Given a VNF structure, returns the list of vertex points. function vnf_vertices(vnf) = vnf[0]; // Function: vnf_faces() // Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list. function vnf_faces(vnf) = vnf[1]; // Function: vnf_get_vertex() // Usage: // vvnf = vnf_get_vertex(vnf, p); // Description: // Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. If said // point does not already exist in the VNF vertex list, it is added. Returns: `[INDEX, VNF]` where // INDEX if the index of the point, and VNF is the possibly modified new VNF structure. // If `p` is given as a list of points, then INDEX will be a list of indices. // Arguments: // vnf = The VNF structue to get the point index from. // p = The point, or list of points to get the index of. // Example: // vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]] // vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]] // vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]] // vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]] function vnf_get_vertex(vnf=[[],[]], p) = is_path(p)? _vnf_get_vertices(vnf, p) : let( p = quant(p,1/1024), // OpenSCAD internally quantizes objects to 1/1024. v = search([p], vnf[0])[0] ) [ v != []? v : len(vnf[0]), [ concat(vnf[0], v != []? [] : [p]), vnf[1] ] ]; // Internal use only function _vnf_get_vertices(vnf=[[],[]], pts, _i=0, _idxs=[]) = _i>=len(pts)? [_idxs, vnf] : let( vvnf = vnf_get_vertex(vnf, pts[_i]) ) _vnf_get_vertices(vvnf[1], pts, _i=_i+1, _idxs=concat(_idxs,[vvnf[0]])); // Function: vnf_add_face() // Usage: // vnf_add_face(vnf, pts); // Description: // Given a VNF structure and a list of face vertex points, adds the face to the VNF structure. // Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make // sure that the points are in the correct order to make the face normal point outwards. // Arguments: // vnf = The VNF structure to add a face to. // pts = The vertex points for the face. function vnf_add_face(vnf=[[],[]], pts) = let( vvnf = vnf_get_vertex(vnf, pts), face = deduplicate(vvnf[0], closed=true), vnf2 = vvnf[1] ) [ vnf_vertices(vnf2), concat(vnf_faces(vnf2), len(face)>2? [face] : []) ]; // Function: vnf_add_faces() // Usage: // vnf_add_faces(vnf, faces); // Description: // Given a VNF structure and a list of faces, where each face is given as a list of vertex points, // adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`. // It is up to the caller to make sure that the points are in the correct order to make the face // normals point outwards. // Arguments: // vnf = The VNF structure to add a face to. // faces = The list of faces, where each face is given as a list of vertex points. function vnf_add_faces(vnf=[[],[]], faces, _i=0) = _i=len(vnfs)? _acc : vnf_merge( vnfs, _i=_i+1, _acc = let(base=len(_acc[0])) [ concat(_acc[0], vnfs[_i][0]), concat(_acc[1], [for (f=vnfs[_i][1]) [for (i=f) i+base]]), ] ); // Function: vnf_triangulate() // Usage: // vnf2 = vnf_triangulate(vnf); // Description: // Forces triangulation of faces in the VNF that have more than 3 vertices. function vnf_triangulate(vnf) = let( vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf ) [vnf[0], triangulate_faces(vnf[0], vnf[1])]; // Function: vnf_vertex_array() // Usage: // vnf = vnf_vertex_array(points, cols, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]); // Description: // Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows, // adding faces to tile the surface. You can optionally have faces added to wrap the last column // back to the first column, or wrap the last row to the first. Endcaps can be added to either // the first and/or last rows. // Arguments: // points = A list of vertices to divide into columns and rows. // cols = The number of points in a column. // caps = If true, add endcap faces to the first AND last rows. // cap1 = If true, add an endcap face to the first row. // cap2 = If true, add an endcap face to the last row. // col_wrap = If true, add faces to connect the last column to the first. // row_wrap = If true, add faces to connect the last row to the first. // reverse = If true, reverse all face normals. // style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx". // vnf = If given, add all the vertices and faces to this existing VNF structure. // Example(3D): // vnf = vnf_vertex_array( // points=[ // for (h = [0:5:180-EPSILON]) [ // for (t = [0:5:360-EPSILON]) // cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h) // ] // ], // col_wrap=true, caps=true, reverse=true, style="alt" // ); // vnf_polyhedron(vnf); // Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360-EPSILON]) // affine3d_apply( // circle(d=20), // [xrot(90), right(30), zrot(a)] // ) // ], // col_wrap=true, row_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same. // vnf = vnf_vertex_array( // points=[ // for (a=[0:5:360]) affine3d_apply( // square([1,10], center=true), // [zrot(a/2+60), xrot(90), right(30), zrot(a)] // ) // ], // col_wrap=true, reverse=true // ); // vnf_polyhedron(vnf); // Example(3D): Assembling a Polyhedron from Multiple Parts // wall_points = [ // for (a = [-90:2:90]) affine3d_apply( // circle(d=100), // [scale([1-0.1*cos(a*6), 1-0.1*cos((a+90)*6), 1]), up(a)] // ) // ]; // cap = [ // for (a = [0:0.01:1+EPSILON]) affine3d_apply( // wall_points[0], // [scale([a,a,1]), up(90-5*sin(a*360*2))] // ) // ]; // cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))]; // cap2 = [for (p=cap) up(90, p=p)]; // vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true); // vnf2 = vnf_vertex_array(points=cap1, col_wrap=true); // vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true); // vnf_polyhedron([vnf1, vnf2, vnf3]); function vnf_vertex_array( points, caps, cap1, cap2, col_wrap=false, row_wrap=false, reverse=false, style="default", vnf=[[],[]] ) = assert((!caps)||(caps&&col_wrap)) assert(in_list(style,["default","alt","quincunx"])) let( pts = flatten(points), rows = len(points), cols = len(points[0]), errchk = [for (row=points) assert(len(row)==cols, "All rows much have the same number of columns.") 0], cap1 = first_defined([cap1,caps,false]), cap2 = first_defined([cap2,caps,false]), colcnt = cols - (col_wrap?0:1), rowcnt = rows - (row_wrap?0:1) ) vnf_merge([ vnf, [ concat( pts, style!="quincunx"? [] : [ for (r = [0:1:rowcnt-1]) ( for (c = [0:1:colcnt-1]) ( let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols) ) mean([pts[i1], pts[i2], pts[i3], pts[i4]]) ) ) ] ), concat( [ for (r = [0:1:rowcnt-1]) ( for (c = [0:1:colcnt-1]) each ( let( i1 = ((r+0)%rows)*cols + ((c+0)%cols), i2 = ((r+1)%rows)*cols + ((c+0)%cols), i3 = ((r+1)%rows)*cols + ((c+1)%cols), i4 = ((r+0)%rows)*cols + ((c+1)%cols) ) style=="quincunx"? ( let(i5 = pcnt + r*colcnt + c) reverse? [[i1,i2,i5],[i2,i3,i5],[i3,i4,i5],[i4,i1,i5]] : [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]] ) : style=="alt"? ( reverse? [[i1,i2,i4],[i2,i3,i4]] : [[i1,i4,i2],[i2,i4,i3]] ) : ( reverse? [[i1,i2,i3],[i1,i3,i4]] : [[i1,i3,i2],[i1,i4,i3]] ) ) ) ], !cap1? [] : [ reverse? [for (c = [0:1:cols-1]) c] : [for (c = [cols-1:-1:0]) c] ], !cap2? [] : [ reverse? [for (c = [cols-1:-1:0]) (rows-1)*cols + c] : [for (c = [0:1:cols-1]) (rows-1)*cols + c] ] ) ] ]); // Module: vnf_polyhedron() // Usage: // vnf_polyhedron(vnf); // vnf_polyhedron([VNF, VNF, VNF, ...]); // Description: // Given a VNF structure, or a list of VNF structures, creates a polyhedron from them. // Arguments: // vnf = A VNF structure, or list of VNF structures. module vnf_polyhedron(vnf) { vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf; polyhedron(vnf[0], vnf[1]); } // vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap