mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
467 lines
16 KiB
OpenSCAD
467 lines
16 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: common.scad
|
|
// Common functions used in argument processing.
|
|
// To use, include this line at the top of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Type handling helpers.
|
|
|
|
|
|
// Function: typeof()
|
|
// Usage:
|
|
// typ = typeof(x);
|
|
// Description:
|
|
// Returns a string representing the type of the value. One of "undef", "boolean", "number", "nan", "string", "list", "range" or "invalid".
|
|
// Some malformed "ranges", like '[0:NAN:INF]' and '[0:"a":INF]', may be classified as "undef" or "invalid".
|
|
function typeof(x) =
|
|
is_undef(x)? "undef" :
|
|
is_bool(x)? "boolean" :
|
|
is_num(x)? "number" :
|
|
is_nan(x)? "nan" :
|
|
is_string(x)? "string" :
|
|
is_list(x)? "list" :
|
|
is_range(x) ? "range" :
|
|
"invalid";
|
|
|
|
|
|
|
|
// Function: is_type()
|
|
// Usage:
|
|
// b = is_type(x, types);
|
|
// Description:
|
|
// Returns true if the type of the value `x` is one of those given as strings in the list `types`.
|
|
// Valid types are "undef", "boolean", "number", "nan", "string", "list", or "range"
|
|
// Arguments:
|
|
// x = The value to check the type of.
|
|
// types = A list of types to check
|
|
// Example:
|
|
// is_str_or_list = is_type("foo", ["string","list"]); // Returns: true
|
|
// is_str_or_list2 = is_type([1,2,3], ["string","list"]); // Returns: true
|
|
// is_str_or_list3 = is_type(2, ["string","list"]); // Returns: false
|
|
// is_str = is_type("foo", "string"); // Returns: true
|
|
// is_str2 = is_type([3,4], "string"); // Returns: false
|
|
// is_str3 = is_type(["foo"], "string"); // Returns: false
|
|
// is_str4 = is_type(3, "string"); // Returns: false
|
|
function is_type(x,types) =
|
|
is_list(types)? in_list(typeof(x),types) :
|
|
is_string(types)? typeof(x) == types :
|
|
assert(is_list(types)||is_string(types));
|
|
|
|
|
|
// Function: is_def()
|
|
// Usage:
|
|
// is_def(x)
|
|
// Description:
|
|
// Returns true if `x` is not `undef`. False if `x==undef`.
|
|
function is_def(x) = !is_undef(x);
|
|
|
|
|
|
// Function: is_str()
|
|
// Usage:
|
|
// is_str(x)
|
|
// Description:
|
|
// Returns true if `x` is a string. A shortcut for `is_string()`.
|
|
function is_str(x) = is_string(x);
|
|
|
|
|
|
// Function: is_int()
|
|
// Usage:
|
|
// is_int(n)
|
|
// Description:
|
|
// Returns true if the given value is an integer (it is a number and it rounds to itself).
|
|
function is_int(n) = is_finite(n) && n == round(n);
|
|
function is_integer(n) = is_finite(n) && n == round(n);
|
|
|
|
|
|
// Function: is_nan()
|
|
// Usage:
|
|
// is_nan(x);
|
|
// Description:
|
|
// Returns true if a given value `x` is nan, a floating point value representing "not a number".
|
|
function is_nan(x) = (x!=x);
|
|
|
|
|
|
// Function: is_finite()
|
|
// Usage:
|
|
// is_finite(x);
|
|
// Description:
|
|
// Returns true if a given value `x` is a finite number.
|
|
function is_finite(x) = is_num(x) && !is_nan(0*x);
|
|
|
|
|
|
// Function: is_range()
|
|
// Description:
|
|
// Returns true if its argument is a range
|
|
function is_range(x) = !is_list(x) && is_finite(x[0]) && is_finite(x[1]) && is_finite(x[2]) ;
|
|
|
|
|
|
// Function: valid_range()
|
|
// Description:
|
|
// Returns true if its argument is a valid range (deprecated ranges excluded).
|
|
function valid_range(x) =
|
|
is_range(x)
|
|
&& ( x[1]>0
|
|
? x[0]<=x[2]
|
|
: ( x[1]<0 && x[0]>=x[2] ) );
|
|
|
|
|
|
// Function: is_list_of()
|
|
// Usage:
|
|
// is_list_of(list, pattern)
|
|
// Description:
|
|
// Tests whether the input is a list whose entries are all numeric lists that have the same
|
|
// list shape as the pattern.
|
|
// Example:
|
|
// is_list_of([3,4,5], 0); // Returns true
|
|
// is_list_of([3,4,undef], 0); // Returns false
|
|
// is_list_of([[3,4],[4,5]], [1,1]); // Returns true
|
|
// is_list_of([[3,"a"],[4,true]], [1,undef]); // Returns true
|
|
// is_list_of([[3,4], 6, [4,5]], [1,1]); // Returns false
|
|
// is_list_of([[1,[3,4]], [4,[5,6]]], [1,[2,3]]); // Returns true
|
|
// is_list_of([[1,[3,INF]], [4,[5,6]]], [1,[2,3]]); // Returns false
|
|
// is_list_of([], [1,[2,3]]); // Returns true
|
|
function is_list_of(list,pattern) =
|
|
let(pattern = 0*pattern)
|
|
is_list(list) &&
|
|
[]==[for(entry=0*list) if (entry != pattern) entry];
|
|
|
|
|
|
// Function: is_consistent()
|
|
// Usage:
|
|
// is_consistent(list)
|
|
// Description:
|
|
// Tests whether input is a list of entries which all have the same list structure
|
|
// and are filled with finite numerical data. It returns `true`for the empty list.
|
|
// Example:
|
|
// is_consistent([3,4,5]); // Returns true
|
|
// is_consistent([[3,4],[4,5],[6,7]]); // Returns true
|
|
// is_consistent([[3,4,5],[3,4]]); // Returns false
|
|
// is_consistent([[3,[3,4,[5]]], [5,[2,9,[9]]]]); // Returns true
|
|
// is_consistent([[3,[3,4,[5]]], [5,[2,9,9]]]); // Returns false
|
|
function is_consistent(list) =
|
|
/*is_list(list) &&*/ is_list_of(list, _list_pattern(list[0]));
|
|
|
|
|
|
//Internal function
|
|
//Creates a list with the same structure of `list` with each of its elements substituted by 0.
|
|
function _list_pattern(list) =
|
|
is_list(list)
|
|
? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0]
|
|
: 0;
|
|
|
|
|
|
// Function: same_shape()
|
|
// Usage:
|
|
// same_shape(a,b)
|
|
// Description:
|
|
// Tests whether the inputs `a` and `b` are both numeric and are the same shaped list.
|
|
// Example:
|
|
// same_shape([3,[4,5]],[7,[3,4]]); // Returns true
|
|
// same_shape([3,4,5], [7,[3,4]]); // Returns false
|
|
function same_shape(a,b) = _list_pattern(a) == b*0;
|
|
|
|
|
|
// Section: Handling `undef`s.
|
|
|
|
|
|
// Function: default()
|
|
// Description:
|
|
// Returns the value given as `v` if it is not `undef`.
|
|
// Otherwise, returns the value of `dflt`.
|
|
// Arguments:
|
|
// v = Value to pass through if not `undef`.
|
|
// dflt = Value to return if `v` *is* `undef`.
|
|
function default(v,dflt=undef) = is_undef(v)? dflt : v;
|
|
|
|
|
|
// Function: first_defined()
|
|
// Description:
|
|
// Returns the first item in the list that is not `undef`.
|
|
// If all items are `undef`, or list is empty, returns `undef`.
|
|
// Arguments:
|
|
// v = The list whose items are being checked.
|
|
// recursive = If true, sublists are checked recursively for defined values. The first sublist that has a defined item is returned.
|
|
function first_defined(v,recursive=false,_i=0) =
|
|
_i<len(v) && (
|
|
is_undef(v[_i]) || (
|
|
recursive &&
|
|
is_list(v[_i]) &&
|
|
is_undef(first_defined(v[_i],recursive=recursive))
|
|
)
|
|
)? first_defined(v,recursive=recursive,_i=_i+1) : v[_i];
|
|
|
|
|
|
// Function: one_defined()
|
|
// Usage:
|
|
// one_defined(vars, names, <required>)
|
|
// Description:
|
|
// Examines the input list `vars` and returns the entry which is not `undef`. If more
|
|
// than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed
|
|
// by the defined items from the `names` parameter. If `required` is set to false then it is OK if all of the
|
|
// entries of `vars` are undefined, and in this case, `undef` is returned.
|
|
// Example:
|
|
// length = one_defined([length,L,l], ["length","L","l"]);
|
|
function one_defined(vars, names, required=true) =
|
|
assert(len(vars)==len(names))
|
|
let (
|
|
ok = num_defined(vars)==1 || (!required && num_defined(vars)==0)
|
|
)
|
|
assert(ok,str("Must define ",required?"exactly":"at most"," one of ",num_defined(vars)==0?names:[for(i=[0:len(vars)]) if (is_def(vars[i])) names[i]]))
|
|
first_defined(vars);
|
|
|
|
|
|
// Function: num_defined()
|
|
// Description: Counts how many items in list `v` are not `undef`.
|
|
function num_defined(v) = len([for(vi=v) if(!is_undef(vi)) 1]);
|
|
|
|
// Function: any_defined()
|
|
// Description:
|
|
// Returns true if any item in the given array is not `undef`.
|
|
// Arguments:
|
|
// v = The list whose items are being checked.
|
|
// recursive = If true, any sublists are evaluated recursively.
|
|
function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) != undef;
|
|
|
|
|
|
// Function: all_defined()
|
|
// Description:
|
|
// Returns true if all items in the given array are not `undef`.
|
|
// Arguments:
|
|
// v = The list whose items are being checked.
|
|
// recursive = If true, any sublists are evaluated recursively.
|
|
function all_defined(v,recursive=false) =
|
|
[]==[for (x=v) if(is_undef(x)||(recursive && is_list(x) && !all_defined(x,recursive))) 0 ];
|
|
|
|
|
|
|
|
// Section: Argument Helpers
|
|
|
|
|
|
// Function: get_anchor()
|
|
// Usage:
|
|
// get_anchor(anchor,center,<uncentered>,<dflt>);
|
|
// Description:
|
|
// Calculated the correct anchor from `anchor` and `center`. In order:
|
|
// - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned.
|
|
// - Otherwise, if `center` is not `undef` and `center` evaluates as false, then the value of `uncentered` is returned.
|
|
// - Otherwise, if `anchor` is not `undef`, then the value of `anchor` is returned.
|
|
// - Otherwise, the value of `dflt` is returned.
|
|
// This ordering ensures that `center` will override `anchor`.
|
|
// Arguments:
|
|
// anchor = The anchor name or vector.
|
|
// center = If not `undef`, this overrides the value of `anchor`.
|
|
// uncentered = The value to return if `center` is not `undef` and evaluates as false. Default: ALLNEG
|
|
// dflt = The default value to return if both `anchor` and `center` are `undef`. Default: `CENTER`
|
|
function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
|
|
!is_undef(center)? (center? CENTER : uncentered) :
|
|
!is_undef(anchor)? anchor :
|
|
dflt;
|
|
|
|
|
|
// Function: get_radius()
|
|
// Usage:
|
|
// get_radius(<r1>, <r2>, <r>, <d1>, <d2>, <d>, <dflt>);
|
|
// Description:
|
|
// Given various radii and diameters, returns the most specific radius.
|
|
// If a diameter is most specific, returns half its value, giving the radius.
|
|
// If no radii or diameters are defined, returns the value of dflt.
|
|
// Value specificity order is r1, r2, d1, d2, r, d, then dflt
|
|
// Only one of `r1`, `r2`, `d1`, or `d2` can be defined at once, or else it
|
|
// errors out, complaining about conflicting radius/diameter values.
|
|
// Only one of `r` or `d` can be defined at once, or else it errors out,
|
|
// complaining about conflicting radius/diameter values.
|
|
// Arguments:
|
|
// r1 = Most specific radius.
|
|
// d1 = Most specific diameter.
|
|
// r2 = Second most specific radius.
|
|
// d2 = Second most specific diameter.
|
|
// r = Most general radius.
|
|
// d = Most general diameter.
|
|
// dflt = Value to return if all other values given are `undef`.
|
|
function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) =
|
|
assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.")
|
|
!is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1
|
|
: !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2
|
|
: !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2
|
|
: !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2
|
|
: !is_undef(r)
|
|
? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.")
|
|
assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." )
|
|
r
|
|
: !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2
|
|
: dflt;
|
|
|
|
|
|
// Function: get_height()
|
|
// Usage:
|
|
// get_height(<h>,<l>,<height>,<dflt>)
|
|
// Description:
|
|
// Given several different parameters for height check that height is not multiply defined
|
|
// and return a single value. If the three values `l`, `h`, and `height` are all undefined
|
|
// then return the value `dflt`, if given, or undef otherwise.
|
|
// Arguments:
|
|
// l = l.
|
|
// h = h.
|
|
// height = height.
|
|
// dflt = Value to return if other values are `undef`.
|
|
function get_height(h=undef,l=undef,height=undef,dflt=undef) =
|
|
assert(num_defined([h,l,height])<=1,"You must specify only one of `l`, `h`, and `height`")
|
|
first_defined([h,l,height,dflt]);
|
|
|
|
|
|
// Function: scalar_vec3()
|
|
// Usage:
|
|
// scalar_vec3(v, <dflt>);
|
|
// Description:
|
|
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
|
|
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
|
|
// If `v` is a vector, returns the first 3 items, with any missing values replaced by `dflt`.
|
|
// If `v` is `undef`, returns `undef`.
|
|
// Arguments:
|
|
// v = Value to return vector from.
|
|
// dflt = Default value to set empty vector parts from.
|
|
function scalar_vec3(v, dflt=undef) =
|
|
is_undef(v)? undef :
|
|
is_list(v)? [for (i=[0:2]) default(v[i], default(dflt, 0))] :
|
|
!is_undef(dflt)? [v,dflt,dflt] : [v,v,v];
|
|
|
|
|
|
// Function: segs()
|
|
// Usage:
|
|
// sides = segs(r);
|
|
// Description:
|
|
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
|
|
// Arguments:
|
|
// r = Radius of circle to get the number of segments for.
|
|
function segs(r) =
|
|
$fn>0? ($fn>3? $fn : 3) :
|
|
let( r = is_finite(r)? r: 0 )
|
|
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs))) ;
|
|
|
|
|
|
|
|
// Module: no_children()
|
|
// Usage:
|
|
// no_children($children);
|
|
// Description:
|
|
// Assert that the calling module does not support children. Prints an error message to this effect and fails if children are present,
|
|
// as indicated by its argument.
|
|
// Arguments:
|
|
// $children = number of children the module has.
|
|
module no_children(count) {
|
|
assert($children==0, "Module no_children() does not support child modules");
|
|
assert(count==0, str("Module ",parent_module(1),"() does not support child modules"));
|
|
}
|
|
|
|
|
|
// Section: Testing Helpers
|
|
|
|
|
|
function _valstr(x) =
|
|
is_list(x)? str("[",str_join([for (xx=x) _valstr(xx)],","),"]") :
|
|
is_finite(x)? fmt_float(x,12) : x;
|
|
|
|
|
|
// Module: assert_approx()
|
|
// Usage:
|
|
// assert_approx(got, expected, <info>);
|
|
// Description:
|
|
// Tests if the value gotten is what was expected. If not, then
|
|
// the expected and received values are printed to the console and
|
|
// an assertion is thrown to stop execution.
|
|
// Arguments:
|
|
// got = The value actually received.
|
|
// expected = The value that was expected.
|
|
// info = Extra info to print out to make the error clearer.
|
|
module assert_approx(got, expected, info) {
|
|
no_children($children);
|
|
if (!approx(got, expected)) {
|
|
echo();
|
|
echo(str("EXPECT: ", _valstr(expected)));
|
|
echo(str("GOT : ", _valstr(got)));
|
|
if (same_shape(got, expected)) {
|
|
echo(str("DELTA : ", _valstr(got - expected)));
|
|
}
|
|
if (is_def(info)) {
|
|
echo(str("INFO : ", _valstr(info)));
|
|
}
|
|
assert(approx(got, expected));
|
|
}
|
|
}
|
|
|
|
|
|
// Module: assert_equal()
|
|
// Usage:
|
|
// assert_equal(got, expected, <info>);
|
|
// Description:
|
|
// Tests if the value gotten is what was expected. If not, then
|
|
// the expected and received values are printed to the console and
|
|
// an assertion is thrown to stop execution.
|
|
// Arguments:
|
|
// got = The value actually received.
|
|
// expected = The value that was expected.
|
|
// info = Extra info to print out to make the error clearer.
|
|
module assert_equal(got, expected, info) {
|
|
no_children($children);
|
|
if (got != expected || (is_nan(got) && is_nan(expected))) {
|
|
echo();
|
|
echo(str("EXPECT: ", _valstr(expected)));
|
|
echo(str("GOT : ", _valstr(got)));
|
|
if (same_shape(got, expected)) {
|
|
echo(str("DELTA : ", _valstr(got - expected)));
|
|
}
|
|
if (is_def(info)) {
|
|
echo(str("INFO : ", _valstr(info)));
|
|
}
|
|
assert(got == expected);
|
|
}
|
|
}
|
|
|
|
|
|
// Module: shape_compare()
|
|
// Usage:
|
|
// shape_compare(<eps>) {test_shape(); expected_shape();}
|
|
// Description:
|
|
// Compares two child shapes, returning empty geometry if they are very nearly the same shape and size.
|
|
// Returns the differential geometry if they are not nearly the same shape and size.
|
|
// Arguments:
|
|
// eps = The surface of the two shapes must be within this size of each other. Default: 1/1024
|
|
module shape_compare(eps=1/1024) {
|
|
union() {
|
|
difference() {
|
|
children(0);
|
|
if (eps==0) {
|
|
children(1);
|
|
} else {
|
|
minkowski() {
|
|
children(1);
|
|
cube(eps, center=true);
|
|
}
|
|
}
|
|
}
|
|
difference() {
|
|
children(1);
|
|
if (eps==0) {
|
|
children(0);
|
|
} else {
|
|
minkowski() {
|
|
children(0);
|
|
cube(eps, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
function loop_start() = 0;
|
|
function loop_done(x) = x==1;
|
|
function looping(x) = x<2;
|
|
function loop_next(x,b) = x>=1? 2 : (b? 0 : 1);
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|