BOSL2/geometry.scad
2019-05-28 18:44:41 -07:00

385 lines
13 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: geometry.scad
// Geometry helpers.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Lines and Triangles
// Function: point_on_segment2d()
// Usage:
// point_on_segment2d(point, edge);
// Description:
// Determine if the point is on the line segment between two points.
// Returns true if yes, and false if not.
// Arguments:
// point = The point to test.
// edge = Array of two points forming the line segment to test against.
function point_on_segment2d(point, edge) =
point==edge[0] || point==edge[1] || // The point is an endpoint
sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
&& sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
&& point_left_of_segment2d(point, edge)==0; // and on the line defined by edge
// Function: point_left_of_segment2d()
// Usage:
// point_left_of_segment2d(point, edge);
// Description:
// Return >0 if point is left of the line defined by edge.
// Return =0 if point is on the line.
// Return <0 if point is right of the line.
// Arguments:
// point = The point to check position of.
// edge = Array of two points forming the line segment to test against.
function point_left_of_segment2d(point, edge) =
(edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y);
// Internal non-exposed function.
function _point_above_below_segment(point, edge) =
edge[0].y <= point.y? (
(edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0
) : (
(edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0
);
// Function: right_of_line2d()
// Usage:
// right_of_line2d(line, pt)
// Description:
// Returns true if the given point is to the left of the extended line defined by two points on it.
// Arguments:
// line = A list of two points.
// pt = The point to test.
function right_of_line2d(line, pt) =
triangle_area2d(line[0], line[1], pt) < 0;
// Function: collinear()
// Usage:
// collinear(a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// a = First point.
// b = Second point.
// c = Third point.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function collinear(a, b, c, eps=EPSILON) =
distance_from_line([a,b], c) < eps;
// Function: collinear_indexed()
// Usage:
// collinear_indexed(points, a, b, c, [eps]);
// Description:
// Returns true if three points are co-linear.
// Arguments:
// points = A list of points.
// a = Index in `points` of first point.
// b = Index in `points` of second point.
// c = Index in `points` of third point.
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
function collinear_indexed(points, a, b, c, eps=EPSILON) =
let(
p1=points[a],
p2=points[b],
p3=points[c]
) collinear(p1, p2, p3, eps);
// Function: distance_from_line()
// Usage:
// distance_from_line(line, pt);
// Description:
// Finds the perpendicular distance of a point `pt` from the line `line`.
// Arguments:
// line = A list of two points, defining a line that both are on.
// pt = A point to find the distance of from the line.
// Example:
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
function distance_from_line(line, pt) =
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
norm(d - ((d * n) * n));
// Function: line_normal()
// Usage:
// line_normal([P1,P2])
// line_normal(p1,p2)
// Description: Returns the 2D normal vector to the given 2D line.
// Arguments:
// p1 = First point on 2D line.
// p2 = Second point on 2D line.
function line_normal(p1,p2) =
is_undef(p2)? line_normal(p1[0],p1[1]) :
normalize([p1.y-p2.y,p2.x-p1.x]);
// 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of
// the lines defined by the two segments, t is the bezier parameter
// for the intersection point on s1 and u is the bezier parameter for
// the intersection point on s2. The bezier parameter runs over [0,1]
// for each segment, so if it is in this range, then the intersection
// lies on the segment. Otherwise it lies somewhere on the extension
// of the segment.
function _general_line_intersection(s1,s2) =
let( denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]),
t=det2([s1[0],s2[0]]-s2)/denominator,
u=det2([s1[0],s1[0]]-[s1[1],s2[1]])/denominator)
[denominator==0 ? undef : s1[0]+t*(s1[1]-s1[0]),t,u];
// Function: line_intersection()
// Usage:
// line_intersection(l1, l2);
// Description:
// Returns the 2D intersection point of two unbounded 2D lines.
// Returns `undef` if the lines are parallel.
// Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line.
// l2 = Second 2D line, given as a list of two 2D points on the line.
function line_intersection(l1,l2) = let( isect = _general_line_intersection(l1,l2)) isect[0];
// Function: segment_intersection()
// Usage:
// segment_intersection(s1, s2);
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
function segment_intersection(s1,s2) = let( isect = _general_line_intersection(s1,s2))
isect[1]<0 || isect[1]>1 || isect[2]<0 || isect[2]>1 ? undef : isect[0];
// Function: line_segment_intersection()
// Usage:
// line_segment_intersection(line, segment);
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
function line_segment_intersection(line,segment) = let(
isect = _general_line_intersection(line,segment)
) isect[2]<0 || isect[2]>1 ? undef : isect[0];
// Function: triangle_area2d()
// Usage:
// triangle_area2d(a,b,c);
// Description:
// Returns the area of a triangle formed between three vertices.
// Result will be negative if the points are in clockwise order.
// Examples:
// triangle_area2d([0,0], [5,10], [10,0]); // Returns -50
// triangle_area2d([10,0], [5,10], [0,0]); // Returns 50
function triangle_area2d(a,b,c) =
(
a.x * (b.y - c.y) +
b.x * (c.y - a.y) +
c.x * (a.y - b.y)
) / 2;
// Section: Planes
// Function: plane3pt()
// Usage:
// plane3pt(p1, p2, p3);
// Description:
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// p1 = The first point on the plane.
// p2 = The second point on the plane.
// p3 = The third point on the plane.
function plane3pt(p1, p2, p3) =
let(
p1=point3d(p1),
p2=point3d(p2),
p3=point3d(p3),
normal = normalize(cross(p3-p1, p2-p1))
) concat(normal, [normal*p1]);
// Function: plane3pt_indexed()
// Usage:
// plane3pt_indexed(points, i1, i2, i3);
// Description:
// Given a list of points, and the indexes of three of those points,
// generates the cartesian equation of a plane that those points all
// lie on. Requires that the three indexed points be non-collinear.
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
// Arguments:
// points = A list of points.
// i1 = The index into `points` of the first point on the plane.
// i2 = The index into `points` of the second point on the plane.
// i3 = The index into `points` of the third point on the plane.
function plane3pt_indexed(points, i1, i2, i3) =
let(
p1 = points[i1],
p2 = points[i2],
p3 = points[i3]
) plane3pt(p1,p2,p3);
// Function: plane_normal()
// Usage:
// plane_normal(plane);
// Description:
// Returns the normal vector for the given plane.
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
// Function: distance_from_plane()
// Usage:
// distance_from_plane(plane, point)
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
// The returned distance will be positive if the point is in front of the
// plane; on the same side of the plane as the normal of that plane points
// towards. If the point is behind the plane, then the distance returned
// will be negative. The normal of the plane is the same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function distance_from_plane(plane, point) =
[plane.x, plane.y, plane.z] * point - plane[3];
// Function: coplanar()
// Usage:
// coplanar(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
// Returns true if the point is on that plane.
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function coplanar(plane, point) =
abs(distance_from_plane(plane, point)) <= EPSILON;
// Function: in_front_of_plane()
// Usage:
// in_front_of_plane(plane, point);
// Description:
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
// plane that the normal points towards. The normal of the plane is the
// same as [A,B,C].
// Arguments:
// plane = The [A,B,C,D] values for the equation of the plane.
// point = The point to test.
function in_front_of_plane(plane, point) =
distance_from_plane(plane, point) > EPSILON;
// Section: Paths and Polygons
// Function: simplify_path()
// Description:
// Takes a path and removes unnecessary collinear points.
// Usage:
// simplify_path(path, [eps])
// Arguments:
// path = A list of 2D path points.
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
function simplify_path(path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: simplify_path_indexed()
// Description:
// Takes a list of points, and a path as a list of indexes into `points`,
// and removes all path points that are unecessarily collinear.
// Usage:
// simplify_path_indexed(path, eps)
// Arguments:
// points = A list of points.
// path = A list of indexes into `points` that forms a path.
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
function simplify_path_indexed(points, path, eps=EPSILON) =
len(path)<=2? path : let(
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
) [for (i = indices) path[i]];
// Function: point_in_polygon()
// Usage:
// point_in_polygon(point, path)
// Description:
// This function tests whether the given point is inside, outside or on the boundary of
// the specified 2D polygon using the Winding Number method.
// The polygon is given as a list of 2D points, not including the repeated end point.
// Returns -1 if the point is outside the polyon.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies in the interior.
// The polygon does not need to be simple: it can have self-intersections.
// But the polygon cannot have holes (it must be simply connected).
// Rounding error may give mixed results for points on or near the boundary.
// Arguments:
// point = The point to check position of.
// path = The list of 2D path points forming the perimeter of the polygon.
function point_in_polygon(point, path) =
// Does the point lie on any edges? If so return 0.
sum([for(i=[0:1:len(path)-1]) point_on_segment2d(point, select(path, i, i+1))?1:0])>0 ? 0 :
// Otherwise compute winding number and return 1 for interior, -1 for exterior
sum([for(i=[0:1:len(path)-1]) _point_above_below_segment(point, select(path, i, i+1))]) != 0 ? 1 : -1;
// Function: pointlist_bounds()
// Usage:
// pointlist_bounds(pts);
// Description:
// Finds the bounds containing all the 2D or 3D points in `pts`.
// Returns [[minx, miny, minz], [maxx, maxy, maxz]]
// Arguments:
// pts = List of points.
function pointlist_bounds(pts) = [
[for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ],
[for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ]
];
// Function: polygon_clockwise()
// Usage:
// polygon_clockwise(path);
// Description:
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
// Results for complex (self-intersecting) polygon are indeterminate.
// Arguments:
// path = The list of 2D path points for the perimeter of the polygon.
function polygon_clockwise(path) =
let(
minx = min(array_subindex(path,0)),
lowind = search(minx, path, 0, 0),
lowpts = select(path, lowind),
miny = min(array_subindex(lowpts, 1)),
extreme_sub = search(miny, lowpts, 1, 1)[0],
extreme = select(lowind,extreme_sub)
)
det2( [select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap