mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
524 lines
20 KiB
OpenSCAD
524 lines
20 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: mutators.scad
|
|
// Functions and modules to mutate children in various ways.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
// FileGroup: Basic Modeling
|
|
// FileSummary: Modules and Functions to mutate items.
|
|
// FileFootnotes: STD=Included in std.scad
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Bounding Box
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: bounding_box()
|
|
// Usage:
|
|
// bounding_box([excess],[planar]) CHILDREN;
|
|
// Description:
|
|
// Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D)
|
|
// children given. The module children() must 3d when planar=false and
|
|
// 2d when planar=true, or you will get a warning of mixing dimension
|
|
// or scaling by 0.
|
|
// Arguments:
|
|
// excess = The amount that the bounding box should be larger than needed to bound the children, in each axis.
|
|
// planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false
|
|
// Example(3D):
|
|
// module shapes() {
|
|
// translate([10,8,4]) cube(5);
|
|
// translate([3,0,12]) cube(2);
|
|
// }
|
|
// #bounding_box() shapes();
|
|
// shapes();
|
|
// Example(2D):
|
|
// module shapes() {
|
|
// translate([10,8]) square(5);
|
|
// translate([3,0]) square(2);
|
|
// }
|
|
// #bounding_box(planar=true) shapes();
|
|
// shapes();
|
|
module bounding_box(excess=0, planar=false) {
|
|
// a 3d (or 2d when planar=true) approx. of the children projection on X axis
|
|
module _xProjection() {
|
|
if (planar) {
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(1, center=true)
|
|
hull()
|
|
children();
|
|
} else {
|
|
xs = excess<.1? 1: excess;
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
hull()
|
|
children();
|
|
}
|
|
}
|
|
|
|
// a bounding box with an offset of 1 in all axis
|
|
module _oversize_bbox() {
|
|
if (planar) {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
}
|
|
} else {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis
|
|
}
|
|
}
|
|
}
|
|
|
|
// offsets a cube by `excess`
|
|
module _shrink_cube() {
|
|
intersection() {
|
|
translate((1-excess)*[ 1, 1, 1]) children();
|
|
translate((1-excess)*[-1,-1,-1]) children();
|
|
}
|
|
}
|
|
|
|
if(planar) {
|
|
offset(excess-1/2) _oversize_bbox() children();
|
|
} else {
|
|
render(convexity=2)
|
|
if (excess>.1) {
|
|
_oversize_bbox() children();
|
|
} else {
|
|
_shrink_cube() _oversize_bbox() children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Warp Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: chain_hull()
|
|
//
|
|
// Usage:
|
|
// chain_hull() CHILDREN;
|
|
//
|
|
// Description:
|
|
// Performs hull operations between consecutive pairs of children,
|
|
// then unions all of the hull results. This can be a very slow
|
|
// operation, but it can provide results that are hard to get
|
|
// otherwise.
|
|
//
|
|
// Side Effects:
|
|
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
|
|
// `$primary` is set to true when the child is the first in a chain pair.
|
|
//
|
|
// Example:
|
|
// chain_hull() {
|
|
// cube(5, center=true);
|
|
// translate([30, 0, 0]) sphere(d=15);
|
|
// translate([60, 30, 0]) cylinder(d=10, h=20);
|
|
// translate([60, 60, 0]) cube([10,1,20], center=false);
|
|
// }
|
|
// Example: Using `$idx` and `$primary`
|
|
// chain_hull() {
|
|
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// }
|
|
module chain_hull()
|
|
{
|
|
union() {
|
|
if ($children == 1) {
|
|
children();
|
|
} else if ($children > 1) {
|
|
for (i =[1:1:$children-1]) {
|
|
$idx = i;
|
|
hull() {
|
|
let($primary=true) children(i-1);
|
|
let($primary=false) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: path_extrude2d()
|
|
// Usage:
|
|
// path_extrude2d(path, [caps=], [closed=], [s=], [convexity=]) 2D-CHILDREN;
|
|
// Description:
|
|
// Extrudes 2D children along the given 2D path, with optional rounded endcaps.
|
|
// It works by constructing straight sections corresponding to each segment of the path and inserting rounded joints at each corner.
|
|
// If the children are symmetric across the Y axis line then you can set caps=true to produce rounded caps on the ends of the profile.
|
|
// If you set caps to true for asymmetric children then incorrect caps will be generated.
|
|
// Arguments:
|
|
// path = The 2D path to extrude the geometry along.
|
|
// ---
|
|
// caps = If true, caps each end of the path with a rounded copy of the children. Children must by symmetric across the Y axis, or results are wrong. Default: false
|
|
// closed = If true, connect the starting point of the path to the ending point. Default: false
|
|
// convexity = The max number of times a line could pass though a wall. Default: 10
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: The length of the diagonal of the path's bounding box.
|
|
// Example:
|
|
// path = [
|
|
// each right(50, p=arc(d=100,angle=[90,180])),
|
|
// each left(50, p=arc(d=100,angle=[0,-90])),
|
|
// ];
|
|
// path_extrude2d(path,caps=false) {
|
|
// fwd(2.5) square([5,6],center=true);
|
|
// fwd(6) square([10,5],center=true);
|
|
// }
|
|
// Example:
|
|
// path_extrude2d(arc(d=100,angle=[180,270]),caps=true)
|
|
// trapezoid(w1=10, w2=5, h=10, anchor=BACK);
|
|
// Example:
|
|
// include <BOSL2/beziers.scad>
|
|
// path = bezpath_curve([
|
|
// [-50,0], [-25,50], [0,0], [50,0]
|
|
// ]);
|
|
// path_extrude2d(path, caps=false)
|
|
// trapezoid(w1=10, w2=3, h=5, anchor=BACK);
|
|
// Example: Un-Closed Path
|
|
// $fn=16;
|
|
// spath = star(id=15,od=35,n=5);
|
|
// path_extrude2d(spath, caps=false, closed=false)
|
|
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
|
|
// circle(r=1.5);
|
|
// Example: Complex Endcaps
|
|
// $fn=16;
|
|
// spath = star(id=15,od=35,n=5);
|
|
// path_extrude2d(spath, caps=true, closed=false)
|
|
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
|
|
// circle(r=1.5);
|
|
module path_extrude2d(path, caps=false, closed=false, s, convexity=10) {
|
|
extra_ang = 0.1; // Extra angle for overlap of joints
|
|
check =
|
|
assert(caps==false || closed==false, "Cannot have caps on a closed extrusion")
|
|
assert(is_path(path,2));
|
|
path = deduplicate(path);
|
|
s = s!=undef? s :
|
|
let(b = pointlist_bounds(path))
|
|
norm(b[1]-b[0]);
|
|
check2 = assert(is_finite(s));
|
|
L = len(path);
|
|
for (i = [0:1:L-(closed?1:2)]) {
|
|
seg = select(path, i, i+1);
|
|
segv = seg[1] - seg[0];
|
|
seglen = norm(segv);
|
|
translate((seg[0]+seg[1])/2) {
|
|
rot(from=BACK, to=segv) {
|
|
difference() {
|
|
xrot(90) {
|
|
linear_extrude(height=seglen, center=true, convexity=convexity) {
|
|
children();
|
|
}
|
|
}
|
|
if (closed || i>0) {
|
|
pt = select(path, i-1);
|
|
pang = v_theta(rot(from=-segv, to=RIGHT, p=pt - seg[0]));
|
|
fwd(seglen/2+0.01) zrot(pang/2) cube(s, anchor=BACK);
|
|
}
|
|
if (closed || i<L-2) {
|
|
pt = select(path, i+2);
|
|
pang = v_theta(rot(from=segv, to=RIGHT, p=pt - seg[1]));
|
|
back(seglen/2+0.01) zrot(pang/2) cube(s, anchor=FWD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (t=triplet(path,wrap=closed)) {
|
|
ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]]));
|
|
delt = point3d(t[2] - t[1]);
|
|
if (ang!=0)
|
|
translate(t[1]) {
|
|
frame_map(y=delt, z=UP)
|
|
rotate(-sign(ang)*extra_ang/2)
|
|
rotate_extrude(angle=ang+sign(ang)*extra_ang)
|
|
if (ang<0)
|
|
right_half(planar=true) children();
|
|
else
|
|
left_half(planar=true) children();
|
|
}
|
|
|
|
}
|
|
if (caps) {
|
|
bseg = select(path,0,1);
|
|
move(bseg[0])
|
|
rot(from=BACK, to=bseg[0]-bseg[1])
|
|
rotate_extrude(angle=180)
|
|
right_half(planar=true) children();
|
|
eseg = select(path,-2,-1);
|
|
move(eseg[1])
|
|
rot(from=BACK, to=eseg[1]-eseg[0])
|
|
rotate_extrude(angle=180)
|
|
right_half(planar=true) children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: cylindrical_extrude()
|
|
// Usage:
|
|
// cylindrical_extrude(ir|id=, or|od=, [size=], [convexity=], [spin=], [orient=]) 2D-CHILDREN;
|
|
// Description:
|
|
// Extrudes its 2D children outwards, curved around a cylindrical shape. Uses $fn/$fa/$fs to
|
|
// control the faceting of the extrusion.
|
|
// Arguments:
|
|
// ir = The inner radius to extrude from.
|
|
// or = The outer radius to extrude to.
|
|
// ---
|
|
// od = The outer diameter to extrude to.
|
|
// id = The inner diameter to extrude from.
|
|
// size = The [X,Y] size of the 2D children to extrude. Default: [1000,1000]
|
|
// convexity = The max number of times a line could pass though a wall. Default: 10
|
|
// spin = Amount in degrees to spin around cylindrical axis. Default: 0
|
|
// orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP
|
|
// Example:
|
|
// cylindrical_extrude(or=50, ir=45)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Spin Around the Cylindrical Axis
|
|
// cylindrical_extrude(or=50, ir=45, spin=90)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Orient to the Y Axis.
|
|
// cylindrical_extrude(or=40, ir=35, orient=BACK)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
module cylindrical_extrude(ir, or, od, id, size=1000, convexity=10, spin=0, orient=UP) {
|
|
check1 = assert(is_num(size) || is_vector(size,2));
|
|
size = is_num(size)? [size,size] : size;
|
|
ir = get_radius(r=ir,d=id);
|
|
or = get_radius(r=or,d=od);
|
|
check2 = assert(all_positive([ir,or]), "Must supply positive inner and outer radius or diameter");
|
|
index_r = or;
|
|
circumf = 2 * PI * index_r;
|
|
width = min(size.x, circumf);
|
|
check3 = assert(width <= circumf, "Shape would more than completely wrap around.");
|
|
sides = segs(or);
|
|
step = circumf / sides;
|
|
steps = ceil(width / step);
|
|
rot(from=UP, to=orient) rot(spin) {
|
|
for (i=[0:1:steps-2]) {
|
|
x = (i+0.5-steps/2) * step;
|
|
zrot(360 * x / circumf) {
|
|
fwd(or*cos(180/sides)) {
|
|
xrot(-90) {
|
|
linear_extrude(height=or-ir, scale=[ir/or,1], center=false, convexity=convexity) {
|
|
yflip()
|
|
intersection() {
|
|
left(x) children();
|
|
rect([quantup(step,pow(2,-15)),size.y]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: extrude_from_to()
|
|
// Usage:
|
|
// extrude_from_to(pt1, pt2, [convexity=], [twist=], [scale=], [slices=]) 2D-CHILDREN;
|
|
// Description:
|
|
// Extrudes the 2D children linearly between the 3d points pt1 and pt2. The origin of the 2D children are placed on
|
|
// pt1 and pt2, and oriented perpendicular to the line between the points.
|
|
// Arguments:
|
|
// pt1 = starting point of extrusion.
|
|
// pt2 = ending point of extrusion.
|
|
// ---
|
|
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
|
|
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
|
|
// scale = scale multiplier for end of extrusion compared the start.
|
|
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
|
|
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
|
|
// xcopies(3) circle(3, $fn=32);
|
|
// }
|
|
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
|
|
check =
|
|
assert(is_vector(pt1),"First point must be a vector")
|
|
assert(is_vector(pt2),"Second point must be a vector");
|
|
pt1 = point3d(pt1);
|
|
pt2 = point3d(pt2);
|
|
rtp = xyz_to_spherical(pt2-pt1);
|
|
translate(pt1) {
|
|
rotate([0, rtp[2], rtp[1]]) {
|
|
if (rtp[0] > 0) {
|
|
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: path_extrude()
|
|
// Usage: path_extrude(path, [convexity], [clipsize]) 2D-CHILDREN;
|
|
// Description:
|
|
// Extrudes 2D children along a 3D path. This may be slow and can have problems with twisting.
|
|
// See Also: path_sweep()
|
|
// Arguments:
|
|
// path = Array of points for the bezier path to extrude along.
|
|
// convexity = Maximum number of walls a ray can pass through.
|
|
// clipsize = Increase if artifacts are left. Default: 100
|
|
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
|
|
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
|
|
// path_extrude(path) circle(r=10, $fn=6);
|
|
module path_extrude(path, convexity=10, clipsize=100) {
|
|
rotmats = cumprod([
|
|
for (i = idx(path,e=-2)) let(
|
|
vec1 = i==0? UP : unit(path[i]-path[i-1], UP),
|
|
vec2 = unit(path[i+1]-path[i], UP)
|
|
) rot(from=vec1,to=vec2)
|
|
]);
|
|
// This adds a rotation midway between each item on the list
|
|
interp = rot_resample(rotmats,n=2,method="count");
|
|
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
|
|
ptcount = len(path);
|
|
for (i = [0:1:ptcount-2]) {
|
|
pt1 = path[i];
|
|
pt2 = path[i+1];
|
|
dist = norm(pt2-pt1);
|
|
T = rotmats[i];
|
|
difference() {
|
|
translate(pt1) {
|
|
multmatrix(T) {
|
|
down(clipsize/2/2) {
|
|
if ((dist+clipsize/2) > 0) {
|
|
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
translate(pt1) {
|
|
hq = (i > 0)? interp[2*i-1] : T;
|
|
multmatrix(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
translate(pt2) {
|
|
hq = (i < ptcount-2)? interp[2*i+1] : T;
|
|
multmatrix(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Offset Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: minkowski_difference()
|
|
// Usage:
|
|
// minkowski_difference() { BASE; DIFF1; DIFF2; ... }
|
|
// Description:
|
|
// Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the
|
|
// surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the
|
|
// surface of its base shape.
|
|
// Arguments:
|
|
// planar = If true, performs minkowski difference in 2D. Default: false (3D)
|
|
// Example:
|
|
// minkowski_difference() {
|
|
// union() {
|
|
// cube([120,70,70], center=true);
|
|
// cube([70,120,70], center=true);
|
|
// cube([70,70,120], center=true);
|
|
// }
|
|
// sphere(r=10);
|
|
// }
|
|
module minkowski_difference(planar=false) {
|
|
difference() {
|
|
bounding_box(excess=0, planar=planar) children(0);
|
|
render(convexity=20) {
|
|
minkowski() {
|
|
difference() {
|
|
bounding_box(excess=1, planar=planar) children(0);
|
|
children(0);
|
|
}
|
|
for (i=[1:1:$children-1]) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// Module: offset3d()
|
|
// Usage:
|
|
// offset3d(r, [size], [convexity]) CHILDREN;
|
|
// Description:
|
|
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
|
|
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
|
|
// This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to expand object by. Negative numbers contract the object.
|
|
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
|
|
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
|
|
module offset3d(r, size=100, convexity=10) {
|
|
n = quant(max(8,segs(abs(r))),4);
|
|
if (r==0) {
|
|
children();
|
|
} else if (r>0) {
|
|
render(convexity=convexity)
|
|
minkowski() {
|
|
children();
|
|
sphere(r, $fn=n);
|
|
}
|
|
} else {
|
|
size2 = size * [1,1,1];
|
|
size1 = size2 * 1.02;
|
|
render(convexity=convexity)
|
|
difference() {
|
|
cube(size2, center=true);
|
|
minkowski() {
|
|
difference() {
|
|
cube(size1, center=true);
|
|
children();
|
|
}
|
|
sphere(-r, $fn=n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: round3d()
|
|
// Usage:
|
|
// round3d(r) CHILDREN;
|
|
// round3d(or) CHILDREN;
|
|
// round3d(ir) CHILDREN;
|
|
// round3d(or, ir) CHILDREN;
|
|
// Description:
|
|
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 3D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
|
|
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
|
|
// Use this as a last resort. This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
module round3d(r, or, ir, size=100)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset3d(or, size=size)
|
|
offset3d(-ir-or, size=size)
|
|
offset3d(ir, size=size)
|
|
children();
|
|
}
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|