BOSL2/shapes.scad
2021-04-12 02:30:50 -07:00

1854 lines
77 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: shapes.scad
// Common useful shapes and structured objects.
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
// Section: Cuboids
// Module: cuboid()
//
// Usage: Standard Cubes
// cuboid(size, <anchor=>, <spin=>, <orient=>);
// cuboid(size, p1=, ...);
// cuboid(p1=, p2=, ...);
// Usage: Chamfered Cubes
// cuboid(size, <chamfer=>, <edges=>, <except_edges=>, <trimcorners=>, ...);
// Usage: Rounded Cubes
// cuboid(size, <rounding=>, <edges=>, <except_edges=>, <trimcorners=>, ...);
// Usage: Attaching children
// cuboid(size, <anchor=>, ...) <attachments>;
//
// Description:
// Creates a cube or cuboid object, with optional chamfering or rounding.
// Negative chamfers and roundings can be applied to create external masks,
// but only apply to edges around the top or bottom faces.
//
// Arguments:
// size = The size of the cube.
// ---
// chamfer = Size of chamfer, inset from sides. Default: No chamfering.
// rounding = Radius of the edge rounding. Default: No rounding.
// edges = Edges to chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
// except_edges = Edges to explicitly NOT chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
// trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true`
// p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=ALLNEG`.
// p2 = If given with `p1`, defines the cornerpoints of the cuboid.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Simple regular cube.
// cuboid(40);
// Example: Cube with minimum cornerpoint given.
// cuboid(20, p1=[10,0,0]);
// Example: Rectangular cube, with given X, Y, and Z sizes.
// cuboid([20,40,50]);
// Example: Cube by Opposing Corners.
// cuboid(p1=[0,10,0], p2=[20,30,30]);
// Example: Chamferred Edges and Corners.
// cuboid([30,40,50], chamfer=5);
// Example: Chamferred Edges, Untrimmed Corners.
// cuboid([30,40,50], chamfer=5, trimcorners=false);
// Example: Rounded Edges and Corners
// cuboid([30,40,50], rounding=10);
// Example: Rounded Edges, Untrimmed Corners
// cuboid([30,40,50], rounding=10, trimcorners=false);
// Example: Chamferring Selected Edges
// cuboid([30,40,50], chamfer=5, edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], $fn=24);
// Example: Rounding Selected Edges
// cuboid([30,40,50], rounding=5, edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT], $fn=24);
// Example: Negative Chamferring
// cuboid([30,40,50], chamfer=-5, edges=[TOP,BOT], except_edges=RIGHT, $fn=24);
// Example: Negative Chamferring, Untrimmed Corners
// cuboid([30,40,50], chamfer=-5, edges=[TOP,BOT], except_edges=RIGHT, trimcorners=false, $fn=24);
// Example: Negative Rounding
// cuboid([30,40,50], rounding=-5, edges=[TOP,BOT], except_edges=RIGHT, $fn=24);
// Example: Negative Rounding, Untrimmed Corners
// cuboid([30,40,50], rounding=-5, edges=[TOP,BOT], except_edges=RIGHT, trimcorners=false, $fn=24);
// Example: Standard Connectors
// cuboid(40) show_anchors();
module cuboid(
size=[1,1,1],
p1, p2,
chamfer,
rounding,
edges=EDGES_ALL,
except_edges=[],
trimcorners=true,
anchor=CENTER,
spin=0,
orient=UP
) {
module corner_shape(corner) {
e = corner_edges(edges, corner);
cnt = sum(e);
r = first_defined([chamfer, rounding, 0]);
c = [min(r,size.x/2), min(r,size.y/2), min(r,size.z/2)];
c2 = vmul(corner,c/2);
$fn = is_finite(chamfer)? 4 : segs(r);
translate(vmul(corner, size/2-c)) {
if (cnt == 0 || approx(r,0)) {
translate(c2) cube(c, center=true);
} else if (cnt == 1) {
if (e.x) right(c2.x) xcyl(l=c.x, r=r);
if (e.y) back (c2.y) ycyl(l=c.y, r=r);
if (e.z) up (c2.z) zcyl(l=c.z, r=r);
} else if (cnt == 2) {
if (!e.x) {
intersection() {
ycyl(l=c.y*2, r=r);
zcyl(l=c.z*2, r=r);
}
} else if (!e.y) {
intersection() {
xcyl(l=c.x*2, r=r);
zcyl(l=c.z*2, r=r);
}
} else {
intersection() {
xcyl(l=c.x*2, r=r);
ycyl(l=c.y*2, r=r);
}
}
} else {
if (trimcorners) {
spheroid(r=r, style="octa");
} else {
intersection() {
xcyl(l=c.x*2, r=r);
ycyl(l=c.y*2, r=r);
zcyl(l=c.z*2, r=r);
}
}
}
}
}
size = scalar_vec3(size);
edges = edges(edges, except=except_edges);
assert(is_vector(size,3));
assert(is_undef(chamfer) || is_finite(chamfer));
assert(is_undef(rounding) || is_finite(rounding));
assert(is_undef(p1) || is_vector(p1));
assert(is_undef(p2) || is_vector(p2));
assert(is_bool(trimcorners));
if (!is_undef(p1)) {
if (!is_undef(p2)) {
translate(pointlist_bounds([p1,p2])[0]) {
cuboid(size=vabs(p2-p1), chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children();
}
} else {
translate(p1) {
cuboid(size=size, chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children();
}
}
} else {
if (is_finite(chamfer)) {
if (any(edges[0])) assert(chamfer <= size.y/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube length or height.");
if (any(edges[1])) assert(chamfer <= size.x/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube width or height.");
if (any(edges[2])) assert(chamfer <= size.x/2 && chamfer <=size.y/2, "chamfer must be smaller than half the cube width or length.");
}
if (is_finite(rounding)) {
if (any(edges[0])) assert(rounding <= size.y/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube length or height.");
if (any(edges[1])) assert(rounding <= size.x/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube width or height.");
if (any(edges[2])) assert(rounding <= size.x/2 && rounding<=size.y/2, "rounding radius must be smaller than half the cube width or length.");
}
majrots = [[0,90,0], [90,0,0], [0,0,0]];
attachable(anchor,spin,orient, size=size) {
if (is_finite(chamfer) && !approx(chamfer,0)) {
if (edges == EDGES_ALL && trimcorners) {
if (chamfer<0) {
cube(size, center=true) {
attach(TOP,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP);
attach(BOT,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP);
}
} else {
isize = [for (v = size) max(0.001, v-2*chamfer)];
hull() {
cube([ size.x, isize.y, isize.z], center=true);
cube([isize.x, size.y, isize.z], center=true);
cube([isize.x, isize.y, size.z], center=true);
}
}
} else if (chamfer<0) {
ach = abs(chamfer);
cube(size, center=true);
// External-Chamfer mask edges
difference() {
union() {
for (i = [0:3], axis=[0:1]) {
if (edges[axis][i]>0) {
vec = EDGE_OFFSETS[axis][i];
translate(vmul(vec/2, size+[ach,ach,-ach])) {
rotate(majrots[axis]) {
cube([ach, ach, size[axis]], center=true);
}
}
}
}
// Add multi-edge corners.
if (trimcorners) {
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
ce = corner_edges(edges, [xa,ya,za]);
if (ce.x + ce.y > 1) {
translate(vmul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) {
cube([ach+0.01,ach+0.01,ach], center=true);
}
}
}
}
}
// Remove bevels from overhangs.
for (i = [0:3], axis=[0:1]) {
if (edges[axis][i]>0) {
vec = EDGE_OFFSETS[axis][i];
translate(vmul(vec/2, size+[2*ach,2*ach,-2*ach])) {
rotate(majrots[axis]) {
zrot(45) cube([ach*sqrt(2), ach*sqrt(2), size[axis]+2.1*ach], center=true);
}
}
}
}
}
} else {
hull() {
corner_shape([-1,-1,-1]);
corner_shape([ 1,-1,-1]);
corner_shape([-1, 1,-1]);
corner_shape([ 1, 1,-1]);
corner_shape([-1,-1, 1]);
corner_shape([ 1,-1, 1]);
corner_shape([-1, 1, 1]);
corner_shape([ 1, 1, 1]);
}
}
} else if (is_finite(rounding) && !approx(rounding,0)) {
sides = quantup(segs(rounding),4);
if (edges == EDGES_ALL) {
if(rounding<0) {
cube(size, center=true);
zflip_copy() {
up(size.z/2) {
difference() {
down(-rounding/2) cube([size.x-2*rounding, size.y-2*rounding, -rounding], center=true);
down(-rounding) {
ycopies(size.y-2*rounding) xcyl(l=size.x-3*rounding, r=-rounding);
xcopies(size.x-2*rounding) ycyl(l=size.y-3*rounding, r=-rounding);
}
}
}
}
} else {
isize = [for (v = size) max(0.001, v-2*rounding)];
minkowski() {
cube(isize, center=true);
if (trimcorners) {
spheroid(r=rounding, style="octa", $fn=sides);
} else {
intersection() {
cyl(r=rounding, h=rounding*2, $fn=sides);
rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
}
}
}
}
} else if (rounding<0) {
ard = abs(rounding);
cube(size, center=true);
// External-Rounding mask edges
difference() {
union() {
for (i = [0:3], axis=[0:1]) {
if (edges[axis][i]>0) {
vec = EDGE_OFFSETS[axis][i];
translate(vmul(vec/2, size+[ard,ard,-ard])) {
rotate(majrots[axis]) {
cube([ard, ard, size[axis]], center=true);
}
}
}
}
// Add multi-edge corners.
if (trimcorners) {
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
ce = corner_edges(edges, [xa,ya,za]);
if (ce.x + ce.y > 1) {
translate(vmul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) {
cube([ard+0.01,ard+0.01,ard], center=true);
}
}
}
}
}
// Remove roundings from overhangs.
for (i = [0:3], axis=[0:1]) {
if (edges[axis][i]>0) {
vec = EDGE_OFFSETS[axis][i];
translate(vmul(vec/2, size+[2*ard,2*ard,-2*ard])) {
rotate(majrots[axis]) {
cyl(l=size[axis]+2.1*ard, r=ard);
}
}
}
}
}
} else {
hull() {
corner_shape([-1,-1,-1]);
corner_shape([ 1,-1,-1]);
corner_shape([-1, 1,-1]);
corner_shape([ 1, 1,-1]);
corner_shape([-1,-1, 1]);
corner_shape([ 1,-1, 1]);
corner_shape([-1, 1, 1]);
corner_shape([ 1, 1, 1]);
}
}
} else {
cube(size=size, center=true);
}
children();
}
}
}
function cuboid(
size=[1,1,1],
p1, p2,
chamfer,
rounding,
edges=EDGES_ALL,
except_edges=[],
trimcorners=true,
anchor=CENTER,
spin=0,
orient=UP
) = no_function("cuboid");
// Section: Prismoids
// Function&Module: prismoid()
//
// Usage: Typical Prismoids
// prismoid(size1, size2, h|l, <shift>, ...);
// Usage: Attaching Children
// prismoid(size1, size2, h|l, <shift>, ...) <attachments>;
// Usage: Chamfered Prismoids
// prismoid(size1, size2, h|l, <chamfer=>, ...);
// prismoid(size1, size2, h|l, <chamfer1=>, <chamfer2=>, ...);
// Usage: Rounded Prismoids
// prismoid(size1, size2, h|l, <rounding=>, ...);
// prismoid(size1, size2, h|l, <rounding1=>, <rounding2=>, ...);
// Usage: As Function
// vnf = prismoid(size1, size2, h|l, <shift>, <rounding>, <chamfer>);
// vnf = prismoid(size1, size2, h|l, <shift>, <rounding1>, <rounding2>, <chamfer1>, <chamfer2>);
//
// Description:
// Creates a rectangular prismoid shape with optional roundovers and chamfering.
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
// specify rounding and/or chamferring per-edge, and for top and bottom separately.
// Note: if using chamfers or rounding, you **must** also include the hull.scad file:
// ```
// include <BOSL2/hull.scad>
// ```
//
// Arguments:
// size1 = [width, length] of the bottom end of the prism.
// size2 = [width, length] of the top end of the prism.
// h|l = Height of the prism.
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
// ---
// rounding = The roundover radius for the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
// rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
// chamfer = The chamfer size for the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
// chamfer1 = The chamfer size for the bottom of the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
// chamfer2 = The chamfer size for the top of the vertical-ish edges of the prismoid. Requires including hull.scad. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Rectangular Pyramid
// prismoid([40,40], [0,0], h=20);
// Example: Prism
// prismoid(size1=[40,40], size2=[0,40], h=20);
// Example: Truncated Pyramid
// prismoid(size1=[35,50], size2=[20,30], h=20);
// Example: Wedge
// prismoid(size1=[60,35], size2=[30,0], h=30);
// Example: Truncated Tetrahedron
// prismoid(size1=[10,40], size2=[40,10], h=40);
// Example: Inverted Truncated Pyramid
// prismoid(size1=[15,5], size2=[30,20], h=20);
// Example: Right Prism
// prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30);
// Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing
// prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]);
// Example: Rounding
// include <BOSL2/hull.scad>
// prismoid(100, 80, rounding=10, h=30);
// Example: Outer Chamfer Only
// include <BOSL2/hull.scad>
// prismoid(100, 80, chamfer=5, h=30);
// Example: Gradiant Rounding
// include <BOSL2/hull.scad>
// prismoid(100, 80, rounding1=10, rounding2=0, h=30);
// Example: Per Corner Rounding
// include <BOSL2/hull.scad>
// prismoid(100, 80, rounding=[0,5,10,15], h=30);
// Example: Per Corner Chamfer
// include <BOSL2/hull.scad>
// prismoid(100, 80, chamfer=[0,5,10,15], h=30);
// Example: Mixing Chamfer and Rounding
// include <BOSL2/hull.scad>
// prismoid(100, 80, chamfer=[0,5,0,10], rounding=[5,0,10,0], h=30);
// Example: Really Mixing It Up
// include <BOSL2/hull.scad>
// prismoid(
// size1=[100,80], size2=[80,60], h=20,
// chamfer1=[0,5,0,10], chamfer2=[5,0,10,0],
// rounding1=[5,0,10,0], rounding2=[0,5,0,10]
// );
// Example(Spin,VPD=160,VPT=[0,0,10]): Standard Connectors
// prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5])
// show_anchors();
module prismoid(
size1, size2, h, shift=[0,0],
rounding=0, rounding1, rounding2,
chamfer=0, chamfer1, chamfer2,
l, center,
anchor, spin=0, orient=UP
) {
assert(is_num(size1) || is_vector(size1,2));
assert(is_num(size2) || is_vector(size2,2));
assert(is_num(h) || is_num(l));
assert(is_vector(shift,2));
assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.");
assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.");
assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.");
assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.");
assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.");
assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument.");
eps = pow(2,-14);
size1 = is_num(size1)? [size1,size1] : size1;
size2 = is_num(size2)? [size2,size2] : size2;
s1 = [max(size1.x, eps), max(size1.y, eps)];
s2 = [max(size2.x, eps), max(size2.y, eps)];
rounding1 = default(rounding1, rounding);
rounding2 = default(rounding2, rounding);
chamfer1 = default(chamfer1, chamfer);
chamfer2 = default(chamfer2, chamfer);
anchor = get_anchor(anchor, center, BOT, BOT);
vnf = prismoid(
size1=size1, size2=size2, h=h, shift=shift,
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
l=l, center=CENTER
);
attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) {
vnf_polyhedron(vnf, convexity=4);
children();
}
}
function prismoid(
size1, size2, h, shift=[0,0],
rounding=0, rounding1, rounding2,
chamfer=0, chamfer1, chamfer2,
l, center,
anchor=DOWN, spin=0, orient=UP
) =
assert(is_vector(size1,2))
assert(is_vector(size2,2))
assert(is_num(h) || is_num(l))
assert(is_vector(shift,2))
assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.")
assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.")
assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.")
assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.")
assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.")
assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument.")
let(
eps = pow(2,-14),
h = first_defined([h,l,1]),
shiftby = point3d(point2d(shift)),
s1 = [max(size1.x, eps), max(size1.y, eps)],
s2 = [max(size2.x, eps), max(size2.y, eps)],
rounding1 = default(rounding1, rounding),
rounding2 = default(rounding2, rounding),
chamfer1 = default(chamfer1, chamfer),
chamfer2 = default(chamfer2, chamfer),
anchor = get_anchor(anchor, center, BOT, BOT),
vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? (
let(
corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5,
points = [
for (p=corners) point3d(vmul(s2,p), +h/2) + shiftby,
for (p=corners) point3d(vmul(s1,p), -h/2)
],
faces=[
[0,1,2], [0,2,3], [0,4,5], [0,5,1],
[1,5,6], [1,6,2], [2,6,7], [2,7,3],
[3,7,4], [3,4,0], [4,7,6], [4,6,5],
]
) [points, faces]
) : (
let(
path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR),
path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR),
points = [
each path3d(path1, -h/2),
each path3d(move(shiftby, p=path2), +h/2),
],
faces = hull(points)
) [points, faces]
)
) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf);
// Module: rect_tube()
// Usage: Typical Rectangular Tubes
// rect_tube(h, size, isize, <center>, <shift>);
// rect_tube(h, size, wall=, <center=>);
// rect_tube(h, isize=, wall=, <center=>);
// Usage: Tapering Rectangular Tubes
// rect_tube(h, size1=, size2=, wall=, ...);
// rect_tube(h, isize1=, isize2=, wall=, ...);
// rect_tube(h, size1=, size2=, isize1=, isize2=, ...);
// Usage: Chamfered
// rect_tube(h, size, isize, chamfer=, ...);
// rect_tube(h, size, isize, chamfer1=, chamfer2= ...);
// rect_tube(h, size, isize, ichamfer=, ...);
// rect_tube(h, size, isize, ichamfer1=, ichamfer2= ...);
// rect_tube(h, size, isize, chamfer=, ichamfer=, ...);
// Usage: Rounded
// rect_tube(h, size, isize, rounding=, ...);
// rect_tube(h, size, isize, rounding1=, rounding2= ...);
// rect_tube(h, size, isize, irounding=, ...);
// rect_tube(h, size, isize, irounding1=, irounding2= ...);
// rect_tube(h, size, isize, rounding=, irounding=, ...);
// Usage: Attaching Children
// rect_tube(h, size, isize, ...) <attachments>;
//
// Description:
// Creates a rectangular or prismoid tube with optional roundovers and/or chamfers.
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
// specify rounding and/or chamferring per-edge, and for top and bottom, inside and
// outside separately.
// Note: if using chamfers or rounding, you **must** also include the hull.scad file:
// ```
// include <BOSL2/hull.scad>
// ```
// Arguments:
// h|l = The height or length of the rectangular tube. Default: 1
// size = The outer [X,Y] size of the rectangular tube.
// isize = The inner [X,Y] size of the rectangular tube.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
// ---
// wall = The thickness of the rectangular tube wall.
// size1 = The [X,Y] size of the outside of the bottom of the rectangular tube.
// size2 = The [X,Y] size of the outside of the top of the rectangular tube.
// isize1 = The [X,Y] size of the inside of the bottom of the rectangular tube.
// isize2 = The [X,Y] size of the inside of the top of the rectangular tube.
// rounding = The roundover radius for the outside edges of the rectangular tube.
// rounding1 = The roundover radius for the outside bottom corner of the rectangular tube.
// rounding2 = The roundover radius for the outside top corner of the rectangular tube.
// chamfer = The chamfer size for the outside edges of the rectangular tube.
// chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube.
// chamfer2 = The chamfer size for the outside top corner of the rectangular tube.
// irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding`
// irounding1 = The roundover radius for the inside bottom corner of the rectangular tube.
// irounding2 = The roundover radius for the inside top corner of the rectangular tube.
// ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer`
// ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube.
// ichamfer2 = The chamfer size for the inside top corner of the rectangular tube.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `BOTTOM`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// rect_tube(size=50, wall=5, h=30);
// rect_tube(size=[100,60], wall=5, h=30);
// rect_tube(isize=[60,80], wall=5, h=30);
// rect_tube(size=[100,60], isize=[90,50], h=30);
// rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30);
// rect_tube(size1=[100,60], size2=[70,40], isize1=[40,20], isize2=[65,35], h=15);
// Example: Outer Rounding Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30);
// Example: Outer Chamfer Only
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30);
// Example: Outer Rounding, Inner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30);
// Example: Inner Rounding, Outer Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30);
// Example: Gradiant Rounding
// include <BOSL2/hull.scad>
// rect_tube(size1=100, size2=80, wall=5, rounding1=10, rounding2=0, irounding1=8, irounding2=0, h=30);
// Example: Per Corner Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, rounding=[0,5,10,15], irounding=0, h=30);
// Example: Per Corner Chamfer
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,10,15], ichamfer=0, h=30);
// Example: Mixing Chamfer and Rounding
// include <BOSL2/hull.scad>
// rect_tube(size=100, wall=10, chamfer=[0,5,0,10], ichamfer=0, rounding=[5,0,10,0], irounding=0, h=30);
// Example: Really Mixing It Up
// include <BOSL2/hull.scad>
// rect_tube(
// size1=[100,80], size2=[80,60],
// isize1=[50,30], isize2=[70,50], h=20,
// chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8],
// chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0],
// rounding1=[5,0,10,0], irounding1=[3,0,8,0],
// rounding2=[0,5,0,10], irounding2=[0,3,0,8]
// );
module rect_tube(
h, size, isize, center, shift=[0,0],
wall, size1, size2, isize1, isize2,
rounding=0, rounding1, rounding2,
irounding=0, irounding1, irounding2,
chamfer=0, chamfer1, chamfer2,
ichamfer=0, ichamfer1, ichamfer2,
anchor, spin=0, orient=UP,
l
) {
h = one_defined([h,l],"h,l");
assert(is_num(h), "l or h argument required.");
assert(is_vector(shift,2));
s1 = is_num(size1)? [size1, size1] :
is_vector(size1,2)? size1 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
s2 = is_num(size2)? [size2, size2] :
is_vector(size2,2)? size2 :
is_num(size)? [size, size] :
is_vector(size,2)? size :
undef;
is1 = is_num(isize1)? [isize1, isize1] :
is_vector(isize1,2)? isize1 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
is2 = is_num(isize2)? [isize2, isize2] :
is_vector(isize2,2)? isize2 :
is_num(isize)? [isize, isize] :
is_vector(isize,2)? isize :
undef;
size1 = is_def(s1)? s1 :
(is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) :
undef;
size2 = is_def(s2)? s2 :
(is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) :
undef;
isize1 = is_def(is1)? is1 :
(is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) :
undef;
isize2 = is_def(is2)? is2 :
(is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) :
undef;
assert(wall==undef || is_num(wall));
assert(size1!=undef, "Bad size/size1 argument.");
assert(size2!=undef, "Bad size/size2 argument.");
assert(isize1!=undef, "Bad isize/isize1 argument.");
assert(isize2!=undef, "Bad isize/isize2 argument.");
assert(isize1.x < size1.x, "Inner size is larger than outer size.");
assert(isize1.y < size1.y, "Inner size is larger than outer size.");
assert(isize2.x < size2.x, "Inner size is larger than outer size.");
assert(isize2.y < size2.y, "Inner size is larger than outer size.");
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) {
diff("_H_o_L_e_")
prismoid(
size1, size2, h=h, shift=shift,
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
anchor=CTR
) {
children();
tags("_H_o_L_e_") prismoid(
isize1, isize2, h=h+0.05, shift=shift,
rounding=irounding, rounding1=irounding1, rounding2=irounding2,
chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2,
anchor=CTR
);
}
children();
}
}
function rect_tube(
h, size, isize, center, shift=[0,0],
wall, size1, size2, isize1, isize2,
rounding=0, rounding1, rounding2,
irounding=0, irounding1, irounding2,
chamfer=0, chamfer1, chamfer2,
ichamfer=0, ichamfer1, ichamfer2,
anchor, spin=0, orient=UP,
l
) = no_function("rect_tube");
// Module: right_triangle()
//
// Usage:
// right_triangle(size, <center>);
//
// Description:
// Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant.
//
// Arguments:
// size = [width, thickness, height]
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
// ---
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `ALLNEG`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Centered
// right_triangle([60, 40, 10], center=true);
// Example: *Non*-Centered
// right_triangle([60, 40, 10]);
// Example: Standard Connectors
// right_triangle([60, 40, 15]) show_anchors();
module right_triangle(size=[1, 1, 1], center, anchor, spin=0, orient=UP)
{
size = scalar_vec3(size);
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
attachable(anchor,spin,orient, size=size) {
if (size.z > 0) {
linear_extrude(height=size.z, convexity=2, center=true) {
polygon([[-size.x/2,-size.y/2], [-size.x/2,size.y/2], [size.x/2,-size.y/2]]);
}
}
children();
}
}
function right_triangle(size=[1,1,1], center, anchor, spin=0, orient=UP) =
no_function("right_triangle");
// Section: Cylindroids
// Module: cyl()
//
// Description:
// Creates cylinders in various anchorings and orientations, with optional rounding and chamfers.
// You can use `h` and `l` interchangably, and all variants allow specifying size by either `r`|`d`,
// or `r1`|`d1` and `r2`|`d2`. Note: the chamfers and rounding cannot be cumulatively longer than
// the cylinder's length.
//
// Usage: Normal Cylinders
// cyl(l|h, r, <center>, <circum=>, <realign=>);
// cyl(l|h, d=, ...);
// cyl(l|h, r1=, r2=, ...);
// cyl(l|h, d1=, d2=, ...);
//
// Usage: Chamferred Cylinders
// cyl(l|h, r|d, chamfer=, <chamfang=>, <from_end=>, ...);
// cyl(l|h, r|d, chamfer1=, <chamfang1=>, <from_end=>, ...);
// cyl(l|h, r|d, chamfer2=, <chamfang2=>, <from_end=>, ...);
// cyl(l|h, r|d, chamfer1=, chamfer2=, <chamfang1=>, <chamfang2=>, <from_end=>, ...);
//
// Usage: Rounded End Cylinders
// cyl(l|h, r|d, rounding=, ...);
// cyl(l|h, r|d, rounding1=, ...);
// cyl(l|h, r|d, rounding2=, ...);
// cyl(l|h, r|d, rounding1=, rounding2=, ...);
//
// Arguments:
// l / h = Length of cylinder along oriented axis. Default: 1
// r = Radius of cylinder. Default: 1
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
// ---
// r1 = Radius of the negative (X-, Y-, Z-) end of cylinder.
// r2 = Radius of the positive (X+, Y+, Z+) end of cylinder.
// d = Diameter of cylinder.
// d1 = Diameter of the negative (X-, Y-, Z-) end of cylinder.
// d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder.
// circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false`
// chamfer = The size of the chamfers on the ends of the cylinder. Default: none.
// chamfer1 = The size of the chamfer on the bottom end of the cylinder. Default: none.
// chamfer2 = The size of the chamfer on the top end of the cylinder. Default: none.
// chamfang = The angle in degrees of the chamfers on the ends of the cylinder.
// chamfang1 = The angle in degrees of the chamfer on the bottom end of the cylinder.
// chamfang2 = The angle in degrees of the chamfer on the top end of the cylinder.
// from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`.
// rounding = The radius of the rounding on the ends of the cylinder. Default: none.
// rounding1 = The radius of the rounding on the bottom end of the cylinder.
// rounding2 = The radius of the rounding on the top end of the cylinder.
// realign = If true, rotate the cylinder by half the angle of one face.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: By Radius
// xdistribute(30) {
// cyl(l=40, r=10);
// cyl(l=40, r1=10, r2=5);
// }
//
// Example: By Diameter
// xdistribute(30) {
// cyl(l=40, d=25);
// cyl(l=40, d1=25, d2=10);
// }
//
// Example: Chamferring
// xdistribute(60) {
// // Shown Left to right.
// cyl(l=40, d=40, chamfer=7); // Default chamfang=45
// cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=false);
// cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=true);
// }
//
// Example: Rounding
// cyl(l=40, d=40, rounding=10);
//
// Example: Heterogenous Chamfers and Rounding
// ydistribute(80) {
// // Shown Front to Back.
// cyl(l=40, d=40, rounding1=15, orient=UP);
// cyl(l=40, d=40, chamfer2=5, orient=UP);
// cyl(l=40, d=40, chamfer1=12, rounding2=10, orient=UP);
// }
//
// Example: Putting it all together
// cyl(l=40, d1=25, d2=15, chamfer1=10, chamfang1=30, from_end=true, rounding2=5);
//
// Example: External Chamfers
// cyl(l=50, r=30, chamfer=-5, chamfang=30, $fa=1, $fs=1);
//
// Example: External Roundings
// cyl(l=50, r=30, rounding1=-5, rounding2=5, $fa=1, $fs=1);
//
// Example: Standard Connectors
// xdistribute(40) {
// cyl(l=30, d=25) show_anchors();
// cyl(l=30, d1=25, d2=10) show_anchors();
// }
//
module cyl(
h, r, center,
l, r1, r2,
d, d1, d2,
chamfer, chamfer1, chamfer2,
chamfang, chamfang1, chamfang2,
rounding, rounding1, rounding2,
circum=false, realign=false, from_end=false,
anchor, spin=0, orient=UP
) {
l = first_defined([l, h, 1]);
_r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
_r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
sides = segs(max(_r1,_r2));
sc = circum? 1/cos(180/sides) : 1;
r1=_r1*sc;
r2=_r2*sc;
phi = atan2(l, r2-r1);
anchor = get_anchor(anchor,center,BOT,CENTER);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
zrot(realign? 180/sides : 0) {
if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])) {
cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides);
} else {
vang = atan2(l, r1-r2)/2;
chang1 = 90-first_defined([chamfang1, chamfang, vang]);
chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]);
cham1 = u_mul(first_defined([chamfer1, chamfer]) , (from_end? 1 : tan(chang1)));
cham2 = u_mul(first_defined([chamfer2, chamfer]) , (from_end? 1 : tan(chang2)));
fil1 = first_defined([rounding1, rounding]);
fil2 = first_defined([rounding2, rounding]);
if (chamfer != undef) {
assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder.");
assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder.");
}
if (cham1 != undef) {
assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder.");
}
if (cham2 != undef) {
assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder.");
}
if (rounding != undef) {
assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder.");
assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder.");
}
if (fil1 != undef) {
assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder.");
}
if (fil2 != undef) {
assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder.");
}
dy1 = abs(first_defined([cham1, fil1, 0]));
dy2 = abs(first_defined([cham2, fil2, 0]));
assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder.");
path = concat(
[[0,l/2]],
!is_undef(cham2)? (
let(
p1 = [r2-cham2/tan(chang2),l/2],
p2 = lerp([r2,l/2],[r1,-l/2],abs(cham2)/l)
) [p1,p2]
) : !is_undef(fil2)? (
let(
cn = circle_2tangents([r2-fil2,l/2], [r2,l/2], [r1,-l/2], r=abs(fil2)),
ang = fil2<0? phi : phi-180,
steps = ceil(abs(ang)/360*segs(abs(fil2))),
step = ang/steps,
pts = [for (i=[0:1:steps]) let(a=90+i*step) cn[0]+abs(fil2)*[cos(a),sin(a)]]
) pts
) : [[r2,l/2]],
!is_undef(cham1)? (
let(
p1 = lerp([r1,-l/2],[r2,l/2],abs(cham1)/l),
p2 = [r1-cham1/tan(chang1),-l/2]
) [p1,p2]
) : !is_undef(fil1)? (
let(
cn = circle_2tangents([r1-fil1,-l/2], [r1,-l/2], [r2,l/2], r=abs(fil1)),
ang = fil1<0? 180-phi : -phi,
steps = ceil(abs(ang)/360*segs(abs(fil1))),
step = ang/steps,
pts = [for (i=[0:1:steps]) let(a=(fil1<0?180:0)+(phi-90)+i*step) cn[0]+abs(fil1)*[cos(a),sin(a)]]
) pts
) : [[r1,-l/2]],
[[0,-l/2]]
);
rotate_extrude(convexity=2) {
polygon(path);
}
}
}
children();
}
}
// Module: xcyl()
//
// Description:
// Creates a cylinder oriented along the X axis.
//
// Usage: Typical
// xcyl(l|h, r, <anchor=>);
// xcyl(l|h, d=, <anchor=>);
// xcyl(l|h, r1=|d1=, r2=|d2=, <anchor=>);
// Usage: Attaching Children
// xcyl(l|h, r, <anchor=>) <attachments>;
//
// Arguments:
// l / h = Length of cylinder along oriented axis. Default: 1
// r = Radius of cylinder. Default: 1
// ---
// r1 = Optional radius of left (X-) end of cylinder.
// r2 = Optional radius of right (X+) end of cylinder.
// d = Optional diameter of cylinder. (use instead of `r`)
// d1 = Optional diameter of left (X-) end of cylinder.
// d2 = Optional diameter of right (X+) end of cylinder.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
//
// Example: By Radius
// ydistribute(50) {
// xcyl(l=35, r=10);
// xcyl(l=35, r1=15, r2=5);
// }
//
// Example: By Diameter
// ydistribute(50) {
// xcyl(l=35, d=20);
// xcyl(l=35, d1=30, d2=10);
// }
module xcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
{
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
l = first_defined([l, h, 1]);
attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=RIGHT) {
cyl(l=l, r1=r1, r2=r2, orient=RIGHT, anchor=CENTER);
children();
}
}
// Module: ycyl()
//
// Description:
// Creates a cylinder oriented along the Y axis.
//
// Usage: Typical
// ycyl(l|h, r, <anchor=>);
// ycyl(l|h, d=, <anchor=>);
// ycyl(l|h, r1=|d1=, r2=|d2=, <anchor=>);
// Usage: Attaching Children
// ycyl(l|h, r, <anchor=>) <attachments>;
//
// Arguments:
// l / h = Length of cylinder along oriented axis. (Default: `1.0`)
// r = Radius of cylinder.
// ---
// r1 = Radius of front (Y-) end of cone.
// r2 = Radius of back (Y+) end of one.
// d = Diameter of cylinder.
// d1 = Diameter of front (Y-) end of one.
// d2 = Diameter of back (Y+) end of one.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
//
// Example: By Radius
// xdistribute(50) {
// ycyl(l=35, r=10);
// ycyl(l=35, r1=15, r2=5);
// }
//
// Example: By Diameter
// xdistribute(50) {
// ycyl(l=35, d=20);
// ycyl(l=35, d1=30, d2=10);
// }
module ycyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
{
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
l = first_defined([l, h, 1]);
attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=BACK) {
cyl(l=l, h=h, r1=r1, r2=r2, orient=BACK, anchor=CENTER);
children();
}
}
// Module: zcyl()
//
// Description:
// Creates a cylinder oriented along the Z axis.
//
// Usage: Typical
// zcyl(l|h, r, <anchor=>);
// zcyl(l|h, d=, <anchor=>);
// zcyl(l|h, r1=|d1=, r2=|d2=, <anchor=>);
// Usage: Attaching Children
// zcyl(l|h, r, <anchor=>) <attachments>;
//
// Arguments:
// l / h = Length of cylinder along oriented axis. (Default: 1.0)
// r = Radius of cylinder.
// ---
// r1 = Radius of front (Y-) end of cone.
// r2 = Radius of back (Y+) end of one.
// d = Diameter of cylinder.
// d1 = Diameter of front (Y-) end of one.
// d2 = Diameter of back (Y+) end of one.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
//
// Example: By Radius
// xdistribute(50) {
// zcyl(l=35, r=10);
// zcyl(l=35, r1=15, r2=5);
// }
//
// Example: By Diameter
// xdistribute(50) {
// zcyl(l=35, d=20);
// zcyl(l=35, d1=30, d2=10);
// }
module zcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
{
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) children();
}
// Module: tube()
//
// Description:
// Makes a hollow tube with the given outer size and wall thickness.
//
// Usage: Typical
// tube(h|l, or, ir, <center>, <realign=>);
// tube(h|l, or=|od=, ir=|id=, ...);
// tube(h|l, ir|id, wall, ...);
// tube(h|l, or|od, wall, ...);
// tube(h|l, ir1|id1, ir2|id2, wall, ...);
// tube(h|l, or1|od1, or2|od2, wall, ...);
// tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, <realign>);
// Usage: Attaching Children
// tube(h|l, or, ir, <center>) <attachments>;
//
// Arguments:
// h / l = height of tube. Default: 1
// or = Outer radius of tube. Default: 1
// ir = Inner radius of tube.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
// ---
// od = Outer diameter of tube.
// id = Inner diameter of tube.
// wall = horizontal thickness of tube wall. Default 0.5
// or1 = Outer radius of bottom of tube. Default: value of r)
// or2 = Outer radius of top of tube. Default: value of r)
// od1 = Outer diameter of bottom of tube.
// od2 = Outer diameter of top of tube.
// ir1 = Inner radius of bottom of tube.
// ir2 = Inner radius of top of tube.
// id1 = Inner diameter of bottom of tube.
// id2 = Inner diameter of top of tube.
// realign = If true, rotate the tube by half the angle of one face.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: These all Produce the Same Tube
// tube(h=30, or=40, wall=5);
// tube(h=30, ir=35, wall=5);
// tube(h=30, or=40, ir=35);
// tube(h=30, od=80, id=70);
// Example: These all Produce the Same Conical Tube
// tube(h=30, or1=40, or2=25, wall=5);
// tube(h=30, ir1=35, or2=20, wall=5);
// tube(h=30, or1=40, or2=25, ir1=35, ir2=20);
// Example: Circular Wedge
// tube(h=30, or1=40, or2=30, ir1=20, ir2=30);
// Example: Standard Connectors
// tube(h=30, or=40, wall=5) show_anchors();
module tube(
h, or, ir, center,
od, id, wall,
or1, or2, od1, od2,
ir1, ir2, id1, id2,
realign=false, l,
anchor, spin=0, orient=UP
) {
h = first_defined([h,l,1]);
orr1 = get_radius(r1=or1, r=or, d1=od1, d=od, dflt=undef);
orr2 = get_radius(r1=or2, r=or, d1=od2, d=od, dflt=undef);
irr1 = get_radius(r1=ir1, r=ir, d1=id1, d=id, dflt=undef);
irr2 = get_radius(r1=ir2, r=ir, d1=id2, d=id, dflt=undef);
r1 = default(orr1, u_add(irr1,wall));
r2 = default(orr2, u_add(irr2,wall));
ir1 = default(irr1, u_sub(orr1,wall));
ir2 = default(irr2, u_sub(orr2,wall));
assert(ir1 <= r1, "Inner radius is larger than outer radius.");
assert(ir2 <= r2, "Inner radius is larger than outer radius.");
sides = segs(max(r1,r2));
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
zrot(realign? 180/sides : 0) {
difference() {
cyl(h=h, r1=r1, r2=r2, $fn=sides) children();
cyl(h=h+0.05, r1=ir1, r2=ir2);
}
}
children();
}
}
// Module: torus()
//
// Usage: Typical
// torus(r_maj|d_maj, r_min|d_min, <center>, ...);
// torus(or|od, ir|id, ...);
// torus(r_maj|d_maj, or|od, ...);
// torus(r_maj|d_maj, ir|id, ...);
// torus(r_min|d_min, or|od, ...);
// torus(r_min|d_min, ir|id, ...);
// Usage: Attaching Children
// torus(or|od, ir|id, ...) <attachments>;;
//
// Description:
// Creates a torus shape.
//
// Figure(2D,Med):
// module text3d(t,size=8) text(text=t,size=size,font="Helvetica", halign="center",valign="center");
// module dashcirc(r,start=0,angle=359.9,dashlen=5) let(step=360*dashlen/(2*r*PI)) for(a=[start:step:start+angle]) stroke(arc(r=r,start=a,angle=step/2));
// r = 75; r2 = 30;
// down(r2+0.1) #torus(r_maj=r, r_min=r2, $fn=72);
// color("blue") linear_extrude(height=0.01) {
// dashcirc(r=r,start=15,angle=45);
// dashcirc(r=r-r2, start=90+15, angle=60);
// dashcirc(r=r+r2, start=180+45, angle=30);
// dashcirc(r=r+r2, start=15, angle=30);
// }
// rot(240) color("blue") linear_extrude(height=0.01) {
// stroke([[0,0],[r+r2,0]], endcaps="arrow2",width=2);
// right(r) fwd(9) rot(-240) text3d("or",size=10);
// }
// rot(135) color("blue") linear_extrude(height=0.01) {
// stroke([[0,0],[r-r2,0]], endcaps="arrow2",width=2);
// right((r-r2)/2) back(8) rot(-135) text3d("ir",size=10);
// }
// rot(45) color("blue") linear_extrude(height=0.01) {
// stroke([[0,0],[r,0]], endcaps="arrow2",width=2);
// right(r/2) back(8) text3d("r_maj",size=9);
// }
// rot(30) color("blue") linear_extrude(height=0.01) {
// stroke([[r,0],[r+r2,0]], endcaps="arrow2",width=2);
// right(r+r2/2) fwd(8) text3d("r_min",size=7);
// }
//
// Arguments:
// r_maj = major radius of torus ring. (use with 'r_min', or 'd_min')
// r_min = minor radius of torus ring. (use with 'r_maj', or 'd_maj')
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
// ---
// d_maj = major diameter of torus ring. (use with 'r_min', or 'd_min')
// d_min = minor diameter of torus ring. (use with 'r_maj', or 'd_maj')
// or = outer radius of the torus. (use with 'ir', or 'id')
// ir = inside radius of the torus. (use with 'or', or 'od')
// od = outer diameter of the torus. (use with 'ir' or 'id')
// id = inside diameter of the torus. (use with 'or' or 'od')
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example:
// // These all produce the same torus.
// torus(r_maj=22.5, r_min=7.5);
// torus(d_maj=45, d_min=15);
// torus(or=30, ir=15);
// torus(od=60, id=30);
// torus(d_maj=45, id=30);
// torus(d_maj=45, od=60);
// torus(d_min=15, id=30);
// torus(d_min=15, od=60);
// Example: Standard Connectors
// torus(od=60, id=30) show_anchors();
module torus(
r_maj, r_min, center,
d_maj, d_min,
or, od, ir, id,
anchor, spin=0, orient=UP
) {
_or = get_radius(r=or, d=od, dflt=undef);
_ir = get_radius(r=ir, d=id, dflt=undef);
_r_maj = get_radius(r=r_maj, d=d_maj, dflt=undef);
_r_min = get_radius(r=r_min, d=d_min, dflt=undef);
majrad = is_finite(_r_maj)? _r_maj :
is_finite(_ir) && is_finite(_or)? (_or + _ir)/2 :
is_finite(_ir) && is_finite(_r_min)? (_ir + _r_min) :
is_finite(_or) && is_finite(_r_min)? (_or - _r_min) :
assert(false, "Bad Parameters");
minrad = is_finite(_r_min)? _r_min :
is_finite(_ir)? (majrad - _ir) :
is_finite(_or)? (_or - majrad) :
assert(false, "Bad Parameters");
anchor = get_anchor(anchor, center, BOT, CENTER);
attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) {
rotate_extrude(convexity=4) {
right(majrad) circle(r=minrad);
}
children();
}
}
// Section: Spheroid
// Function&Module: spheroid()
// Usage: Typical
// spheroid(r|d, <circum>, <style>);
// Usage: Attaching Children
// spheroid(r|d, <circum>, <style>) <attachments>;
// Usage: As Function
// vnf = spheroid(r|d, <circum>, <style>);
// Description:
// Creates a spheroid object, with support for anchoring and attachments.
// This is a drop-in replacement for the built-in `sphere()` module.
// When called as a function, returns a [VNF](vnf.scad) for a spheroid.
// The exact triangulation of this spheroid can be controlled via the `style=`
// argument, where the value can be one of `"orig"`, `"aligned"`, `"stagger"`,
// `"octa"`, or `"icosa"`:
// - `style="orig"` constructs a sphere the same way that the OpenSCAD `sphere()` built-in does.
// - `style="aligned"` constructs a sphere where, if `$fn` is a multiple of 4, it has vertices at all axis maxima and minima. ie: its bounding box is exactly the sphere diameter in length on all three axes. This is the default.
// - `style="stagger"` forms a sphere where all faces are triangular, but the top and bottom poles have thinner triangles.
// - `style="octa"` forms a sphere by subdividing an octahedron (8-sided platonic solid). This makes more uniform faces over the entirety of the sphere, and guarantees the bounding box is the sphere diameter in size on all axes. The effective `$fn` value is quantized to a multiple of 4, though. This is used in constructing rounded corners for various other shapes.
// - `style="icosa"` forms a sphere by subdividing an icosahedron (20-sided platonic solid). This makes even more uniform faces over the entirety of the sphere. The effective `$fn` value is quantized to a multiple of 5, though.
// Arguments:
// r = Radius of the spheroid.
// style = The style of the spheroid's construction. One of "orig", "aligned", "stagger", "octa", or "icosa". Default: "aligned"
// ---
// d = Diameter of the spheroid.
// circum = If true, the spheroid is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: By Radius
// spheroid(r=50);
// Example: By Diameter
// spheroid(d=100);
// Example: style="orig"
// spheroid(d=100, style="orig", $fn=10);
// Example: style="aligned"
// spheroid(d=100, style="aligned", $fn=10);
// Example: style="stagger"
// spheroid(d=100, style="stagger", $fn=10);
// Example: style="octa", octahedral based tesselation.
// spheroid(d=100, style="octa", $fn=10);
// // In "octa" style, $fn is quantized
// // to the nearest multiple of 4.
// Example: style="icosa", icosahedral based tesselation.
// spheroid(d=100, style="icosa", $fn=10);
// // In "icosa" style, $fn is quantized
// // to the nearest multiple of 5.
// Example: Anchoring
// spheroid(d=100, anchor=FRONT);
// Example: Spin
// spheroid(d=100, anchor=FRONT, spin=45);
// Example: Orientation
// spheroid(d=100, anchor=FRONT, spin=45, orient=FWD);
// Example: Standard Connectors
// spheroid(d=50) show_anchors();
// Example: Called as Function
// vnf = spheroid(d=100, style="icosa");
// vnf_polyhedron(vnf);
module spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
vsides = ceil(sides/2);
attachable(anchor,spin,orient, r=r) {
if (style=="orig") {
merids = [ for (i=[0:1:vsides-1]) 90-(i+0.5)*180/vsides ];
path = [
let(a = merids[0]) [0, sin(a)],
for (a=merids) [cos(a), sin(a)],
let(a = last(merids)) [0, sin(a)]
];
scale(r) rotate(180) rotate_extrude(convexity=2,$fn=sides) polygon(path);
} else {
vnf = spheroid(r=r, circum=circum, style=style);
vnf_polyhedron(vnf, convexity=2);
}
children();
}
}
function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP) =
let(
r = get_radius(r=r, d=d, dflt=1),
hsides = segs(r),
vsides = max(2,ceil(hsides/2)),
octa_steps = round(max(4,hsides)/4),
icosa_steps = round(max(5,hsides)/5),
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
stagger = style=="stagger",
verts = style=="orig"? [
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
spherical_to_xyz(rr, theta, phi),
] : style=="aligned" || style=="stagger"? [
spherical_to_xyz(rr, 0, 0),
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
spherical_to_xyz(rr, theta, phi),
spherical_to_xyz(rr, 0, 180)
] : style=="octa"? let(
meridians = [
1,
for (i = [1:1:octa_steps]) i*4,
for (i = [octa_steps-1:-1:1]) i*4,
1,
]
) [
for (i=idx(meridians), j=[0:1:meridians[i]-1])
spherical_to_xyz(rr, j*360/meridians[i], i*180/(len(meridians)-1))
] : style=="icosa"? [
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
theta0 = i*360/5,
theta1 = (i-0.5)*360/5,
theta2 = (i+0.5)*360/5,
phi0 = 180/3 * j,
phi1 = 180/3,
v0 = spherical_to_xyz(1,theta0,phi0),
v1 = spherical_to_xyz(1,theta1,phi1),
v2 = spherical_to_xyz(1,theta2,phi1),
ax0 = vector_axis(v0, v1),
ang0 = vector_angle(v0, v1),
ax1 = vector_axis(v0, v2),
ang1 = vector_angle(v0, v2)
)
for (k = [0:1:icosa_steps]) let(
u = k/icosa_steps,
vv0 = rot(ang0*u, ax0, p=v0),
vv1 = rot(ang1*u, ax1, p=v0),
ax2 = vector_axis(vv0, vv1),
ang2 = vector_angle(vv0, vv1)
)
for (l = [0:1:k]) let(
v = k? l/k : 0,
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
) pt
] : assert(in_list(style,["orig","aligned","stagger","octa","icosa"])),
lv = len(verts),
faces = style=="orig"? [
[for (i=[0:1:hsides-1]) hsides-i-1],
[for (i=[0:1:hsides-1]) lv-hsides+i],
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
]
] : style=="aligned" || style=="stagger"? [
for (i=[0:1:hsides-1]) let(
b2 = lv-2-hsides
) each [
[i+1, 0, ((i+1)%hsides)+1],
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
],
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
base = 1 + hsides*i
) each (
(stagger && i%2!=0)? [
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
[base+j, base+(j+1)%hsides, base+hsides+j],
] : [
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
]
)
] : style=="octa"? let(
meridians = [
0, 1,
for (i = [1:1:octa_steps]) i*4,
for (i = [octa_steps-1:-1:1]) i*4,
1,
],
offs = cumsum(meridians),
pc = last(offs)-1,
os = octa_steps * 2
) [
for (i=[0:1:3]) [0, 1+(i+1)%4, 1+i],
for (i=[0:1:3]) [pc-0, pc-(1+(i+1)%4), pc-(1+i)],
for (i=[1:1:octa_steps-1]) let(
m = meridians[i+2]/4
)
for (j=[0:1:3], k=[0:1:m-1]) let(
m1 = meridians[i+1],
m2 = meridians[i+2],
p1 = offs[i+0] + (j*m1/4 + k+0) % m1,
p2 = offs[i+0] + (j*m1/4 + k+1) % m1,
p3 = offs[i+1] + (j*m2/4 + k+0) % m2,
p4 = offs[i+1] + (j*m2/4 + k+1) % m2,
p5 = offs[os-i+0] + (j*m1/4 + k+0) % m1,
p6 = offs[os-i+0] + (j*m1/4 + k+1) % m1,
p7 = offs[os-i-1] + (j*m2/4 + k+0) % m2,
p8 = offs[os-i-1] + (j*m2/4 + k+1) % m2
) each [
[p1, p4, p3],
if (k<m-1) [p1, p2, p4],
[p5, p7, p8],
if (k<m-1) [p5, p8, p6],
],
] : style=="icosa"? let(
pyr = [for (x=[0:1:icosa_steps+1]) x],
tri = sum(pyr),
soff = cumsum(pyr)
) [
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
base = ((((tb*2) + j) * 5) + i) * tri
)
for (k = [0:1:icosa_steps-1])
for (l = [0:1:k]) let(
v1 = base + soff[k] + l,
v2 = base + soff[k+1] + l,
v3 = base + soff[k+1] + (l + 1),
faces = [
if(l>0) [v1-1,v1,v2],
[v1,v3,v2],
],
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
) each faces2
] : []
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
// Section: 3D Printing Shapes
// Module: teardrop()
//
// Description:
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
//
// Usage: Typical
// teardrop(h|l, r, <ang>, <cap_h>, ...);
// teardrop(h|l, d=, <ang=>, <cap_h=>, ...);
// Usage: Attaching Children
// teardrop(h|l, r, ...) <attachments>;
//
// Arguments:
// h / l = Thickness of teardrop. Default: 1
// r = Radius of circular part of teardrop. Default: 1
// ang = Angle of hat walls from the Z axis. Default: 45 degrees
// cap_h = If given, height above center where the shape will be truncated. Default: `undef` (no truncation)
// ---
// d = Diameter of circular portion of bottom. (Use instead of r)
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Typical Shape
// teardrop(r=30, h=10, ang=30);
// Example: Crop Cap
// teardrop(r=30, h=10, ang=30, cap_h=40);
// Example: Close Crop
// teardrop(r=30, h=10, ang=30, cap_h=20);
// Example: Standard Connectors
// teardrop(r=30, h=10, ang=30) show_anchors();
module teardrop(h, r, ang=45, cap_h, d, l, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
l = first_defined([l, h, 1]);
tip_y = adj_ang_to_hyp(r, 90-ang);
cap_h = min(default(cap_h,tip_y), tip_y);
anchors = [
["cap", [0,0,cap_h], UP, 0]
];
attachable(anchor,spin,orient, r=r, l=l, axis=BACK, anchors=anchors) {
rot(from=UP,to=FWD) {
if (l > 0) {
linear_extrude(height=l, center=true, slices=2) {
teardrop2d(r=r, ang=ang, cap_h=cap_h);
}
}
}
children();
}
}
// Module: onion()
//
// Description:
// Creates a sphere with a conical hat, to make a 3D teardrop.
//
// Usage:
// onion(r|d, <ang>, <cap_h>);
// Usage: Typical
// onion(r, <ang>, <cap_h>, ...);
// onion(d=, <ang=>, <cap_h=>, ...);
// Usage: Attaching Children
// onion(r, ...) <attachments>;
//
// Arguments:
// r = radius of spherical portion of the bottom. Default: 1
// ang = Angle of cone on top from vertical. Default: 45 degrees
// cap_h = If given, height above sphere center to truncate teardrop shape. Default: `undef` (no truncation)
// ---
// d = diameter of spherical portion of bottom.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Typical Shape
// onion(r=30, ang=30);
// Example: Crop Cap
// onion(r=30, ang=30, cap_h=40);
// Example: Close Crop
// onion(r=30, ang=30, cap_h=20);
// Example: Standard Connectors
// onion(r=30, ang=30, cap_h=40) show_anchors();
module onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP)
{
r = get_radius(r=r, d=d, dflt=1);
tip_y = adj_ang_to_hyp(r, 90-ang);
cap_h = min(default(cap_h,tip_y), tip_y);
anchors = [
["cap", [0,0,cap_h], UP, 0]
];
attachable(anchor,spin,orient, r=r, anchors=anchors) {
rotate_extrude(convexity=2) {
difference() {
teardrop2d(r=r, ang=ang, cap_h=cap_h);
left(r) square(size=[2*r,2*max(cap_h,r)+1], center=true);
}
}
children();
}
}
// Section: Miscellaneous
// Module: nil()
//
// Description:
// Useful when you MUST pass a child to a module, but you want it to be nothing.
module nil() union(){}
// Module: noop()
//
// Description:
// Passes through the children passed to it, with no action at all. Useful while debugging when
// you want to replace a command. This is an attachable non-object.
//
// Arguments:
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
module noop(spin=0, orient=UP) attachable(CENTER,spin,orient, d=0.01) {nil(); children();}
// Module: pie_slice()
//
// Description:
// Creates a pie slice shape.
//
// Usage: Typical
// pie_slice(l|h, r, ang, <center>);
// pie_slice(l|h, d=, ang=, ...);
// pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...);
// Usage: Attaching Children
// pie_slice(l|h, r, ang, ...) <attachments>;
//
// Arguments:
// h / l = height of pie slice.
// r = radius of pie slice.
// ang = pie slice angle in degrees.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
// ---
// r1 = bottom radius of pie slice.
// r2 = top radius of pie slice.
// d = diameter of pie slice.
// d1 = bottom diameter of pie slice.
// d2 = top diameter of pie slice.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example: Cylindrical Pie Slice
// pie_slice(ang=45, l=20, r=30);
// Example: Conical Pie Slice
// pie_slice(ang=60, l=20, d1=50, d2=70);
module pie_slice(
h, r, ang=30, center,
r1, r2, d, d1, d2, l,
anchor, spin=0, orient=UP
) {
l = first_defined([l, h, 1]);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10);
maxd = max(r1,r2)+0.1;
anchor = get_anchor(anchor, center, BOT, BOT);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
difference() {
cyl(r1=r1, r2=r2, h=l);
if (ang<180) rotate(ang) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true);
difference() {
fwd(maxd/2) cube([2*maxd, maxd, l+0.2], center=true);
if (ang>180) rotate(ang-180) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true);
}
}
children();
}
}
// Module: interior_fillet()
//
// Description:
// Creates a shape that can be unioned into a concave joint between two faces, to fillet them.
// Center this part along the concave edge to be chamfered and union it in.
//
// Usage: Typical
// interior_fillet(l, r, <ang>, <overlap>, ...);
// interior_fillet(l, d=, <ang=>, <overlap=>, ...);
// Usage: Attaching Children
// interior_fillet(l, r, <ang>, <overlap>, ...) <attachments>;
//
// Arguments:
// l = Length of edge to fillet.
// r = Radius of fillet.
// ang = Angle between faces to fillet.
// overlap = Overlap size for unioning with faces.
// ---
// d = Diameter of fillet.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `FRONT+LEFT`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Example:
// union() {
// translate([0,2,-4]) cube([20, 4, 24], anchor=BOTTOM);
// translate([0,-10,-4]) cube([20, 20, 4], anchor=BOTTOM);
// color("green") interior_fillet(l=20, r=10, spin=180, orient=RIGHT);
// }
//
// Example:
// interior_fillet(l=40, r=10, spin=-90);
//
// Example: Using with Attachments
// cube(50,center=true) {
// position(FRONT+LEFT)
// interior_fillet(l=50, r=10, spin=-90);
// position(BOT+FRONT)
// interior_fillet(l=50, r=10, spin=180, orient=RIGHT);
// }
module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spin=0, orient=UP) {
r = get_radius(r=r, d=d, dflt=1);
dy = r/tan(ang/2);
steps = ceil(segs(r)*ang/360);
step = ang/steps;
attachable(anchor,spin,orient, size=[r,r,l]) {
if (l > 0) {
linear_extrude(height=l, convexity=4, center=true) {
path = concat(
[[0,0]],
[for (i=[0:1:steps]) let(a=270-i*step) r*[cos(a),sin(a)]+[dy,r]]
);
translate(-[r,r]/2) polygon(path);
}
}
children();
}
}
// Function&Module: heightfield()
// Usage: As Module
// heightfield(data, <size>, <bottom>, <maxz>, <xrange>, <yrange>, <style>, <convexity>, ...);
// Usage: Attaching Children
// heightfield(data, <size>, ...) <attachments>;
// Usage: As Function
// vnf = heightfield(data, <size>, <bottom>, <maxz>, <xrange>, <yrange>, <style>, ...);
// Description:
// Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D
// surface where the height at any given point is the scalar value for that position.
// Arguments:
// data = This is either the 2D rectangular array of heights, or a function literal that takes X and Y arguments.
// size = The [X,Y] size of the surface to create. If given as a scalar, use it for both X and Y sizes. Default: `[100,100]`
// bottom = The Z coordinate for the bottom of the heightfield object to create. Any heights lower than this will be truncated to very slightly above this height. Default: -20
// maxz = The maximum height to model. Truncates anything taller to this height. Default: 99
// xrange = A range of values to iterate X over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
// yrange = A range of values to iterate Y over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx". Default: "default"
// ---
// convexity = Max number of times a line could intersect a wall of the surface being formed. Module only. Default: 10
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// heightfield(size=[100,100], bottom=-20, data=[
// for (y=[-180:4:180]) [for(x=[-180:4:180]) 10*cos(3*norm([x,y]))]
// ]);
// Example:
// intersection() {
// heightfield(size=[100,100], data=[
// for (y=[-180:5:180]) [for(x=[-180:5:180]) 10+5*cos(3*x)*sin(3*y)]
// ]);
// cylinder(h=50,d=100);
// }
// Example(NORENDER): Heightfield by Function
// fn = function (x,y) 10*sin(x*360)*cos(y*360);
// heightfield(size=[100,100], data=fn);
// Example(NORENDER): Heightfield by Function, with Specific Ranges
// fn = function (x,y) 2*cos(5*norm([x,y]));
// heightfield(size=[100,100], bottom=-20, data=fn, xrange=[-180:2:180], yrange=[-180:2:180]);
module heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", convexity=10, anchor=CENTER, spin=0, orient=UP)
{
size = is_num(size)? [size,size] : point2d(size);
vnf = heightfield(data=data, size=size, xrange=xrange, yrange=yrange, bottom=bottom, maxz=maxz, style=style);
attachable(anchor,spin,orient, vnf=vnf) {
vnf_polyhedron(vnf, convexity=convexity);
children();
}
}
function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", anchor=CENTER, spin=0, orient=UP) =
assert(is_list(data) || is_function(data))
let(
size = is_num(size)? [size,size] : point2d(size),
xvals = is_list(data)
? [for (i=idx(data[0])) i]
: assert(is_list(xrange)||is_range(xrange)) [for (x=xrange) x],
yvals = is_list(data)
? [for (i=idx(data)) i]
: assert(is_list(yrange)||is_range(yrange)) [for (y=yrange) y],
xcnt = len(xvals),
minx = min(xvals),
maxx = max(xvals),
ycnt = len(yvals),
miny = min(yvals),
maxy = max(yvals),
verts = is_list(data) ? [
for (y = [0:1:ycnt-1]) [
for (x = [0:1:xcnt-1]) [
size.x * (x/(xcnt-1)-0.5),
size.y * (y/(ycnt-1)-0.5),
data[y][x]
]
]
] : [
for (y = yrange) [
for (x = xrange) let(
z = data(x,y)
) [
size.x * ((x-minx)/(maxx-minx)-0.5),
size.y * ((y-miny)/(maxy-miny)-0.5),
min(maxz, max(bottom+0.1, default(z,0)))
]
]
],
vnf = vnf_merge([
vnf_vertex_array(verts, style=style, reverse=true),
vnf_vertex_array([
verts[0],
[for (v=verts[0]) [v.x, v.y, bottom]],
]),
vnf_vertex_array([
[for (v=verts[ycnt-1]) [v.x, v.y, bottom]],
verts[ycnt-1],
]),
vnf_vertex_array([
[for (r=verts) let(v=r[0]) [v.x, v.y, bottom]],
[for (r=verts) let(v=r[0]) v],
]),
vnf_vertex_array([
[for (r=verts) let(v=r[xcnt-1]) v],
[for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom]],
]),
vnf_vertex_array([
[
for (v=verts[0]) [v.x, v.y, bottom],
for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom],
], [
for (r=verts) let(v=r[0]) [v.x, v.y, bottom],
for (v=verts[ycnt-1]) [v.x, v.y, bottom],
]
])
])
) reorient(anchor,spin,orient, vnf=vnf, p=vnf);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap