BOSL2/transforms.scad

2663 lines
96 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: transforms.scad
// This is the file that the most commonly used transformations, distributors, and mutator are in.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Section: Translations
//////////////////////////////////////////////////////////////////////
// Function&Module: move()
//
// Usage: As Module
// move([x], [y], [z]) ...
// move(v) ...
// Usage: Translate Points
// pts = move(v, p);
// pts = move([x], [y], [z], p);
// Usage: Get Translation Matrix
// mat = move(v);
//
// Description:
// Translates position by the given amount.
// * Called as a module, moves/translates all children.
// * Called as a function with a point in the `p` argument, returns the translated point.
// * Called as a function with a list of points in the `p` argument, returns the translated list of points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the translated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the translated VNF.
// * Called as a function with the `p` argument, returns the translated point or list of points.
// * Called as a function without a `p` argument, with a 2D offset vector `v`, returns an affine2d translation matrix.
// * Called as a function without a `p` argument, with a 3D offset vector `v`, returns an affine3d translation matrix.
//
// Arguments:
// v = An [X,Y,Z] vector to translate by.
// x = X axis translation.
// y = Y axis translation.
// z = Z axis translation.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// move([0,20,30]) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(y=20) sphere(d=10);
//
// Example:
// #sphere(d=10);
// move(x=-10, y=-5) sphere(d=10);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(move([10,20],p=path), closed=true);
//
// Example(NORENDER):
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
module move(v=[0,0,0], x=0, y=0, z=0)
{
translate(v+[x,y,z]) children();
}
function move(v=[0,0,0], p=undef, x=0, y=0, z=0) =
is_undef(p)? (
len(v)==2? affine2d_translate(v+[x,y]) :
affine3d_translate(point3d(v)+[x,y,z])
) : (
assert(is_list(p))
let(v=v+[x,y,z])
is_num(p.x)? p+v :
is_vnf(p)? [move(v=v,p=p.x), p.y] :
[for (l=p) is_vector(l)? l+v : move(v=v, p=l)]
);
function translate(v=[0,0,0], p=undef) = move(v=v, p=p);
// Function&Module: left()
//
// Usage: As Module
// left(x) ...
// Usage: Translate Points
// pts = left(x, p);
// Usage: Get Translation Matrix
// mat = left(x);
//
// Description:
// If called as a module, moves/translates all children left (in the X- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move left.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// left(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = left(20, p=[23,42]); // Returns: [3,42]
// pt2 = left(20, p=[15,23,42]); // Returns: [-5,23,42]
// pt3 = left(3, p=[[1,2,3],[4,5,6]]); // Returns: [[-2,2,3], [1,5,6]]
// mat3d = left(4); // Returns: [[1,0,0,-4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module left(x=0) translate([-x,0,0]) children();
function left(x=0,p=undef) = move([-x,0,0],p=p);
// Function&Module: right()
//
// Usage: As Module
// right(x) ...
// Usage: Translate Points
// pts = right(x, p);
// Usage: Get Translation Matrix
// mat = right(x);
//
// Description:
// If called as a module, moves/translates all children right (in the X+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// x = Scalar amount to move right.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// right(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = right(20, p=[23,42]); // Returns: [43,42]
// pt2 = right(20, p=[15,23,42]); // Returns: [35,23,42]
// pt3 = right(3, p=[[1,2,3],[4,5,6]]); // Returns: [[4,2,3], [7,5,6]]
// mat3d = right(4); // Returns: [[1,0,0,4],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
module right(x=0) translate([x,0,0]) children();
function right(x=0,p=undef) = move([x,0,0],p=p);
// Function&Module: fwd()
//
// Usage: As Module
// fwd(y) ...
// Usage: Translate Points
// pts = fwd(y, p);
// Usage: Get Translation Matrix
// mat = fwd(y);
//
// Description:
// If called as a module, moves/translates all children forward (in the Y- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move forward.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// fwd(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = fwd(20, p=[23,42]); // Returns: [23,22]
// pt2 = fwd(20, p=[15,23,42]); // Returns: [15,3,42]
// pt3 = fwd(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,-1,3], [4,2,6]]
// mat3d = fwd(4); // Returns: [[1,0,0,0],[0,1,0,-4],[0,0,1,0],[0,0,0,1]]
module fwd(y=0) translate([0,-y,0]) children();
function fwd(y=0,p=undef) = move([0,-y,0],p=p);
// Function&Module: back()
//
// Usage: As Module
// back(y) ...
// Usage: Translate Points
// pts = back(y, p);
// Usage: Get Translation Matrix
// mat = back(y);
//
// Description:
// If called as a module, moves/translates all children back (in the Y+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// y = Scalar amount to move back.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// back(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = back(20, p=[23,42]); // Returns: [23,62]
// pt2 = back(20, p=[15,23,42]); // Returns: [15,43,42]
// pt3 = back(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,3], [4,8,6]]
// mat3d = back(4); // Returns: [[1,0,0,0],[0,1,0,4],[0,0,1,0],[0,0,0,1]]
module back(y=0) translate([0,y,0]) children();
function back(y=0,p=undef) = move([0,y,0],p=p);
// Function&Module: down()
//
// Usage: As Module
// down(z) ...
// Usage: Translate Points
// pts = down(z, p);
// Usage: Get Translation Matrix
// mat = down(z);
//
// Description:
// If called as a module, moves/translates all children down (in the Z- direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move down.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// down(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = down(20, p=[15,23,42]); // Returns: [15,23,22]
// pt2 = down(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,0], [4,5,3]]
// mat3d = down(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,-4],[0,0,0,1]]
module down(z=0) translate([0,0,-z]) children();
function down(z=0,p=undef) = move([0,0,-z],p=p);
// Function&Module: up()
//
// Usage: As Module
// up(z) ...
// Usage: Translate Points
// pts = up(z, p);
// Usage: Get Translation Matrix
// mat = up(z);
//
// Description:
// If called as a module, moves/translates all children up (in the Z+ direction) by the given amount.
// If called as a function with the `p` argument, returns the translated point or list of points.
// If called as a function without the `p` argument, returns an affine3d translation matrix.
//
// Arguments:
// z = Scalar amount to move up.
// p = Either a point, or a list of points to be translated when used as a function.
//
// Example:
// #sphere(d=10);
// up(20) sphere(d=10);
//
// Example(NORENDER):
// pt1 = up(20, p=[15,23,42]); // Returns: [15,23,62]
// pt2 = up(3, p=[[1,2,3],[4,5,6]]); // Returns: [[1,2,6], [4,5,9]]
// mat3d = up(4); // Returns: [[1,0,0,0],[0,1,0,0],[0,0,1,4],[0,0,0,1]]
module up(z=0) translate([0,0,z]) children();
function up(z=0,p=undef) = move([0,0,z],p=p);
//////////////////////////////////////////////////////////////////////
// Section: Rotations
//////////////////////////////////////////////////////////////////////
// Function&Module: rot()
//
// Usage:
// rot(a, [cp], [reverse]) ...
// rot([X,Y,Z], [cp], [reverse]) ...
// rot(a, v, [cp], [reverse]) ...
// rot(from, to, [a], [reverse]) ...
//
// Description:
// This is a shorthand version of the built-in `rotate()`, and operates similarly, with a few additional capabilities.
// You can specify the rotation to perform in one of several ways:
// * `rot(30)` or `rot(a=30)` rotates 30 degrees around the Z axis.
// * `rot([20,30,40])` or `rot(a=[20,30,40])` rotates 20 degrees around the X axis, then 30 degrees around the Y axis, then 40 degrees around the Z axis.
// * `rot(30, [1,1,0])` or `rot(a=30, v=[1,1,0])` rotates 30 degrees around the axis vector `[1,1,0]`.
// * `rot(from=[0,0,1], to=[1,0,0])` rotates the top towards the right, similar to `rot(a=90,v=[0,1,0]`.
// * `rot(from=[0,0,1], to=[1,1,0], a=45)` rotates 45 degrees around the Z axis, then rotates the top towards the back-right. Similar to `rot(a=90,v=[-1,1,0])`
// If the `cp` centerpoint argument is given, then rotations are performed around that centerpoint.
// If the `reverse` argument is true, then the rotations performed will be exactly reversed.
// The behavior and return value varies depending on how `rot()` is called:
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
// v = vector for the axis of rotation. Default: [0,0,1] or UP
// cp = centerpoint to rotate around. Default: [0,0,0]
// from = Starting vector for vector-based rotations.
// to = Target vector for vector-based rotations.
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
// planar = If called as a function, this specifies if you want to work with 2D points.
// p = If called as a function, this contains a point or list of points to rotate.
//
// Example:
// #cube([2,4,9]);
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
//
// Example:
// #cube([2,4,9]);
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
//
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(rot(30,p=path), closed=true);
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
{
if (!is_undef(cp)) {
translate(cp) rot(a=a, v=v, from=from, to=to, reverse=reverse) translate(-cp) children();
} else if (!is_undef(from)) {
assert(!is_undef(to), "`from` and `to` should be used together.");
from = point3d(from);
to = point3d(to);
axis = vector_axis(from, to);
ang = vector_angle(from, to);
if (ang < 0.0001 && a == 0) {
children(); // May be slightly faster?
} else if (reverse) {
rotate(a=-ang, v=axis) rotate(a=-a, v=from) children();
} else {
rotate(a=ang, v=axis) rotate(a=a, v=from) children();
}
} else if (a == 0) {
children(); // May be slightly faster?
} else if (reverse) {
if (!is_undef(v)) {
rotate(a=-a, v=v) children();
} else if (is_num(a)) {
rotate(-a) children();
} else {
rotate([-a[0],0,0]) rotate([0,-a[1],0]) rotate([0,0,-a[2]]) children();
}
} else {
rotate(a=a, v=v) children();
}
}
function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=undef, planar=false) =
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
let(rev = reverse? -1 : 1)
is_undef(p)? (
is_undef(cp)? (
planar? (
is_undef(from)? affine2d_zrot(a*rev) :
affine2d_zrot(vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev)
) : (
!is_undef(from)? affine3d_rot_by_axis(vector_axis(from,to),vector_angle(from,to)*rev) :
!is_undef(v)? affine3d_rot_by_axis(v,a*rev) :
is_num(a)? affine3d_zrot(a*rev) :
reverse? affine3d_chain([affine3d_zrot(-a.z),affine3d_yrot(-a.y),affine3d_xrot(-a.x)]) :
affine3d_chain([affine3d_xrot(a.x),affine3d_yrot(a.y),affine3d_zrot(a.z)])
)
) : (
planar? (
affine2d_chain([
move(-cp),
rot(a=a, v=v, from=from, to=to, reverse=reverse, planar=true),
move(cp)
])
) : (
affine3d_chain([
move(-cp),
rot(a=a, v=v, from=from, to=to, reverse=reverse),
move(cp)
])
)
)
) : (
assert(is_list(p))
is_num(p.x)? (
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0]
) : is_vnf(p)? (
[rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=p.x, planar=planar), p.y]
) : is_list(p.x) && is_list(p.x.x)? (
[for (l=p) rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=l, planar=planar)]
) : (
(
(planar || (p!=[] && len(p[0])==2)) && !(
(is_vector(a) && norm(point2d(a))>0) ||
(!is_undef(v) && norm(point2d(v))>0 && !approx(a,0)) ||
(!is_undef(from) && !approx(from,to) && !(abs(from.z)>0 || abs(to.z))) ||
(!is_undef(from) && approx(from,to) && norm(point2d(from))>0 && a!=0)
)
)? (
is_undef(from)? rotate_points2d(p, a=a*rev, cp=cp) : (
approx(from,to)&&approx(a,0)? p :
rotate_points2d(p, a=vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev, cp=cp)
)
) : (
rotate_points3d(p, a=a, v=v, cp=(is_undef(cp)? [0,0,0] : cp), from=from, to=to, reverse=reverse)
)
)
);
// Function&Module: xrot()
//
// Usage: As Module
// xrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = xrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = xrot(a, [cp]);
//
// Description:
// Rotates around the X axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
// Example:
// #cylinder(h=50, r=10, center=true);
// xrot(90) cylinder(h=50, r=10, center=true);
module xrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([a, 0, 0]) translate(-cp) children();
} else {
rotate([a, 0, 0]) children();
}
}
function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
// Function&Module: yrot()
//
// Usage: As Module
// yrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = yrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = yrot(a, [cp]);
//
// Description:
// Rotates around the Y axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
// Example:
// #cylinder(h=50, r=10, center=true);
// yrot(90) cylinder(h=50, r=10, center=true);
module yrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate([0, a, 0]) translate(-cp) children();
} else {
rotate([0, a, 0]) children();
}
}
function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
// Function&Module: zrot()
//
// Usage: As Module
// zrot(a, [cp]) ...
// Usage: Rotate Points
// rotated = zrot(a, p, [cp]);
// Usage: Get Rotation Matrix
// mat = zrot(a, [cp]);
//
// Description:
// Rotates around the Z axis by the given number of degrees. If `cp` is given, rotations are performed around that centerpoint.
// * Called as a module, rotates all children.
// * Called as a function with a `p` argument containing a point, returns the rotated point.
// * Called as a function with a `p` argument containing a list of points, returns the list of rotated points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the rotated patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the rotated VNF.
// * Called as a function without a `p` argument, and `planar` is true, returns the affine2d rotational matrix.
// * Called as a function without a `p` argument, and `planar` is false, returns the affine3d rotational matrix.
//
// Arguments:
// a = angle to rotate by in degrees.
// cp = centerpoint to rotate around. Default: [0,0,0]
// p = If called as a function, this contains a point or list of points to rotate.
//
// Example:
// #cube(size=[60,20,40], center=true);
// zrot(90) cube(size=[60,20,40], center=true);
module zrot(a=0, cp=undef)
{
if (a==0) {
children(); // May be slightly faster?
} else if (!is_undef(cp)) {
translate(cp) rotate(a) translate(-cp) children();
} else {
rotate(a) children();
}
}
function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
//////////////////////////////////////////////////////////////////////
// Section: Scaling and Mirroring
//////////////////////////////////////////////////////////////////////
// Function&Module: scale()
// Usage: As Module
// scale(SCALAR) ...
// scale([X,Y,Z]) ...
// Usage: Scale Points
// pts = scale(v, p);
// Usage: Get Scaling Matrix
// mat = scale(v);
// Description:
// Scales by the [X,Y,Z] scaling factors given in `v`. If `v` is given as a scalar number, all axes are scaled uniformly by that amount.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
// Arguments:
// v = Either a numeric uniform scaling factor, or a list of [X,Y,Z] scaling factors. Default: 1
// p = If called as a function, the point or list of points to scale.
// Example(NORENDER):
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
// Example(2D):
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(scale([1.5,3],p=path),closed=true);
function scale(v=1, p=undef) =
let(v = is_num(v)? [v,v,v] : v)
is_undef(p)? (
len(v)==2? affine2d_scale(v) : affine3d_scale(point3d(v))
) : (
assert(is_list(p))
is_num(p.x)? vmul(p,v) :
is_vnf(p)? let(inv=product([for (x=v) x<0? -1 : 1])) [
scale(v=v,p=p.x),
inv>=0? p.y : [for (l=p.y) reverse(l)]
] :
[for (l=p) is_vector(l)? vmul(l,v) : scale(v=v, p=l)]
);
// Function&Module: xscale()
//
//
// Usage: As Module
// xscale(x) ...
// Usage: Scale Points
// scaled = xscale(x, p);
// Usage: Get Affine Matrix
// mat = xscale(x);
//
// Description:
// Scales along the X axis by the scaling factor `x`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// x = Factor to scale by, along the X axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// xscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(xscale(2,p=path),closed=true);
module xscale(x=1) scale([x,1,1]) children();
function xscale(x=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([x,1],p=p) : scale([x,1,1],p=p);
// Function&Module: yscale()
//
// Usage: As Module
// yscale(y) ...
// Usage: Scale Points
// scaled = yscale(y, p);
// Usage: Get Affine Matrix
// mat = yscale(y);
//
// Description:
// Scales along the Y axis by the scaling factor `y`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// y = Factor to scale by, along the Y axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// yscale(3) sphere(r=10);
//
// Example(2D): Scaling Points
// path = circle(d=50,$fn=12);
// #stroke(path,closed=true);
// stroke(yscale(2,p=path),closed=true);
module yscale(y=1) scale([1,y,1]) children();
function yscale(y=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([1,y],p=p) : scale([1,y,1],p=p);
// Function&Module: zscale()
//
// Usage: As Module
// zscale(z) ...
// Usage: Scale Points
// scaled = zscale(z, p);
// Usage: Get Affine Matrix
// mat = zscale(z);
//
// Description:
// Scales along the Z axis by the scaling factor `z`.
// * Called as the built-in module, scales all children.
// * Called as a function with a point in the `p` argument, returns the scaled point.
// * Called as a function with a list of points in the `p` argument, returns the list of scaled points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the scaled patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the scaled VNF.
// * Called as a function without a `p` argument, and a 2D list of scaling factors in `v`, returns an affine2d scaling matrix.
// * Called as a function without a `p` argument, and a 3D list of scaling factors in `v`, returns an affine3d scaling matrix.
//
// Arguments:
// z = Factor to scale by, along the Z axis.
// p = A point or path to scale, when called as a function.
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
//
// Example: As Module
// zscale(3) sphere(r=10);
//
// Example: Scaling Points
// path = xrot(90,p=circle(d=50,$fn=12));
// #trace_polyline(path);
// trace_polyline(zscale(2,p=path));
module zscale(z=1) scale([1,1,z]) children();
function zscale(z=1, p=undef) = scale([1,1,z],p=p);
// Function&Module: mirror()
// Usage: As Module
// mirror(v) ...
// Usage: As Function
// pt = mirror(v, p);
// Usage: Get Reflection/Mirror Matrix
// mat = mirror(v);
// Description:
// Mirrors/reflects across the plane or line whose normal vector is given in `v`.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
// Arguments:
// v = The normal vector of the line or plane to mirror across.
// p = If called as a function, the point or list of points to scale.
// Example:
// n = [1,0,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,0];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example:
// n = [1,1,1];
// module obj() right(20) rotate([0,15,-15]) cube([40,30,20]);
// obj();
// mirror(n) obj();
// rot(a=atan2(n.y,n.x),from=UP,to=n) {
// color("red") anchor_arrow(s=20, flag=false);
// color("#7777") cube([75,75,0.1], center=true);
// }
// Example(2D):
// n = [0,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
// Example(2D):
// n = [1,1];
// path = rot(30, p=square([50,30]));
// color("gray") rot(from=[0,1],to=n) stroke([[-60,0],[60,0]]);
// color("red") stroke([[0,0],10*n],endcap2="arrow2");
// #stroke(path,closed=true);
// stroke(mirror(n, p=path),closed=true);
function mirror(v, p) =
is_undef(p)? (
len(v)==2? affine2d_mirror(v) : affine3d_mirror(v)
) : (
assert(is_list(p))
is_num(p.x)? p - (2*(p*v)/(v*v))*v :
is_vnf(p)? [mirror(v=v,p=p.x), [for (l=p.y) reverse(l)]] :
[for (l=p) mirror(v=v, p=l)]
);
// Function&Module: xflip()
//
// Usage: As Module
// xflip([x]) ...
// Usage: As Function
// pt = xflip([x], p);
// Usage: Get Affine Matrix
// pt = xflip([x]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the X axis. If `x` is given, reflects across [x,0,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// x = The X coordinate of the plane of reflection. Default: 0
//
// Example:
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children();
function xflip(x=0,p) =
x==0? mirror([1,0,0],p=p) :
move([x,0,0],p=mirror([1,0,0],p=move([-x,0,0],p=p)));
// Module: Function&yflip()
//
// Usage: As Module
// yflip([y]) ...
// Usage: As Function
// pt = yflip([y], p);
// Usage: Get Affine Matrix
// pt = yflip([y]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Y axis. If `y` is given, reflects across [0,y,0] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// y = The Y coordinate of the plane of reflection. Default: 0
//
// Example:
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
//
// Example:
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children();
function yflip(y=0,p) =
y==0? mirror([0,1,0],p=p) :
move([0,y,0],p=mirror([0,1,0],p=move([0,-y,0],p=p)));
// Function&Module: zflip()
//
// Usage: As Module
// zflip([z]) ...
// Usage: As Function
// pt = zflip([z], p);
// Usage: Get Affine Matrix
// pt = zflip([z]);
//
// Description:
// Mirrors/reflects across the origin [0,0,0], along the Z axis. If `z` is given, reflects across [0,0,z] instead.
// * Called as the built-in module, mirrors all children across the line/plane.
// * Called as a function with a point in the `p` argument, returns the point mirrored across the line/plane.
// * Called as a function with a list of points in the `p` argument, returns the list of points, with each one mirrored across the line/plane.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the mirrored patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the mirrored VNF.
// * Called as a function without a `p` argument, and with a 2D normal vector `v`, returns the affine2d 3x3 mirror matrix.
// * Called as a function without a `p` argument, and with a 3D normal vector `v`, returns the affine3d 4x4 mirror matrix.
//
// Arguments:
// z = The Z coordinate of the plane of reflection. Default: 0
//
// Example:
// zflip() cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
//
// Example:
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children();
function zflip(z=0,p) =
z==0? mirror([0,0,1],p=p) :
move([0,0,z],p=mirror([0,0,1],p=move([0,0,-z],p=p)));
//////////////////////////////////////////////////////////////////////
// Section: Skewing
//////////////////////////////////////////////////////////////////////
// Function&Module: skew_xy()
//
// Usage: As Module
// skew_xy([xa], [ya], [planar]) ...
// Usage: As Function
// pt = skew_xy([xa], [ya], [planar], p);
// Usage: Get Affine Matrix
// mat = skew_xy([xa], [ya], [planar]);
//
// Description:
// Skews geometry on the X-Y plane, keeping constant in Z.
// The argument `xa` is the angle in degrees to skew towards the X+ direction.
// The argument `ya` is the angle in degrees to skew towards the Y+ direction.
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, and with `planar` true, returns the affine2d 3x3 skew matrix.
// * Called as a function without a `p` argument, and with `planar` false, returns the affine3d 4x4 skew matrix.
//
// Arguments:
// xa = skew angle towards the X+ direction.
// ya = skew angle towards the Y+ direction.
// planar = If true, this becomes a 2D operation.
//
// Example(FlatSpin):
// #cube(size=10);
// skew_xy(xa=30, ya=15) cube(size=10);
// Example(2D):
// skew_xy(xa=15,ya=30,planar=true) square(30);
// Example(2D):
// path = square([50,30], center=true);
// #stroke(path, closed=true);
// stroke(skew_xy(15,30,planar=true,p=path), closed=true);
module skew_xy(xa=0, ya=0, planar=false) multmatrix(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya)) children();
function skew_xy(xa=0, ya=0, planar=false, p) =
let(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? (
planar?
point2d(m*concat(point2d(p),[1])) :
point3d(m*concat(point3d(p),[1]))
) :
is_vnf(p)? [skew_xy(xa=xa, ya=ya, planar=planar, p=p.x), p.y] :
[for (l=p) skew_xy(xa=xa, ya=ya, planar=planar, p=l)];
// Function&Module: skew_yz()
//
// Usage: As Module
// skew_yz([ya], [za]) ...
// Usage: As Function
// pt = skew_yz([ya], [za], p);
// Usage: Get Affine Matrix
// mat = skew_yz([ya], [za]);
//
// Description:
// Skews geometry on the Y-Z plane, keeping constant in X.
// The argument `ya` is the angle in degrees to skew towards the Y+ direction.
// The argument `za` is the angle in degrees to skew towards the Z+ direction.
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, returns the affine3d 4x4 skew matrix.
//
// Arguments:
// ya = skew angle towards the Y direction.
// za = skew angle towards the Z direction.
//
// Example(FlatSpin):
// #cube(size=10);
// skew_yz(ya=30, za=15) cube(size=10);
module skew_yz(ya=0, za=0) multmatrix(m = affine3d_skew_yz(ya, za)) children();
function skew_yz(ya=0, za=0, p) =
let(m = affine3d_skew_yz(ya, za))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? point3d(m*concat(point3d(p),[1])) :
is_vnf(p)? [skew_yz(ya=ya, za=za, p=p.x), p.y] :
[for (l=p) skew_yz(ya=ya, za=za, p=l)];
// Function&Module: skew_xz()
//
// Usage: As Module
// skew_xz([xa], [za]) ...
// Usage: As Function
// pt = skew_xz([xa], [za], p);
// Usage: Get Affime Matrix
// mat = skew_xz([xa], [za]);
//
// Description:
// Skews geometry on the X-Z plane, keeping constant in Y.
// The argument `xa` is the angle in degrees to skew towards the X+ direction.
// The argument `za` is the angle in degrees to skew towards the Z+ direction.
// * Called as the built-in module, skews all children.
// * Called as a function with a point in the `p` argument, returns the skewed point.
// * Called as a function with a list of points in the `p` argument, returns the list of skewed points.
// * Called as a function with a [bezier patch](beziers.scad) in the `p` argument, returns the skewed patch.
// * Called as a function with a [VNF structure](vnf.scad) in the `p` argument, returns the skewed VNF.
// * Called as a function without a `p` argument, returns the affine3d 4x4 skew matrix.
//
// Arguments:
// xa = skew angle towards the X direction.
// za = skew angle towards the Z direction.
//
// Example(FlatSpin):
// #cube(size=10);
// skew_xz(xa=15, za=-10) cube(size=10);
module skew_xz(xa=0, za=0) multmatrix(m = affine3d_skew_xz(xa, za)) children();
function skew_xz(xa=0, za=0, p) =
let(m = affine3d_skew_xz(xa, za))
is_undef(p)? m :
assert(is_list(p))
is_num(p.x)? point3d(m*concat(point3d(p),[1])) :
is_vnf(p)? [skew_xz(xa=xa, za=za, p=p.x), p.y] :
[for (l=p) skew_xz(xa=xa, za=za, p=l)];
//////////////////////////////////////////////////////////////////////
// Section: Translational Distributors
//////////////////////////////////////////////////////////////////////
// Module: place_copies()
//
// Description:
// Makes copies of the given children at each of the given offsets.
//
// Usage:
// place_copies(a) ...
//
// Arguments:
// a = array of XYZ offset vectors. Default [[0,0,0]]
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// #sphere(r=10);
// place_copies([[-25,-25,0], [25,-25,0], [0,0,50], [0,25,0]]) sphere(r=10);
module place_copies(a=[[0,0,0]])
{
assert(is_list(a));
for ($idx = idx(a)) {
$pos = a[$idx];
assert(is_vector($pos));
translate($pos) children();
}
}
// Module: spread()
//
// Description:
// Evenly distributes `n` copies of all children along a line.
// Copies every child at each position.
//
// Usage:
// spread(l, [n], [p1]) ...
// spread(l, spacing, [p1]) ...
// spread(spacing, [n], [p1]) ...
// spread(p1, p2, [n]) ...
// spread(p1, p2, spacing) ...
//
// Arguments:
// p1 = Starting point of line.
// p2 = Ending point of line.
// l = Length to spread copies over.
// spacing = A 3D vector indicating which direction and distance to place each subsequent copy at.
// n = Number of copies to distribute along the line. (Default: 2)
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example(FlatSpin):
// spread([0,0,0], [5,5,20], n=6) cube(size=[3,2,1],center=true);
// Examples:
// spread(l=40, n=6) cube(size=[3,2,1],center=true);
// spread(l=[15,30], n=6) cube(size=[3,2,1],center=true);
// spread(l=40, spacing=10) cube(size=[3,2,1],center=true);
// spread(spacing=[5,5,0], n=5) cube(size=[3,2,1],center=true);
// Example:
// spread(l=20, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module spread(p1=undef, p2=undef, spacing=undef, l=undef, n=undef)
{
ll = (
!is_undef(l)? scalar_vec3(l, 0) :
(!is_undef(spacing) && !is_undef(n))? (n * scalar_vec3(spacing, 0)) :
(!is_undef(p1) && !is_undef(p2))? point3d(p2-p1) :
undef
);
cnt = (
!is_undef(n)? n :
(!is_undef(spacing) && !is_undef(ll))? floor(norm(ll) / norm(scalar_vec3(spacing, 0)) + 1.000001) :
2
);
spc = (
is_undef(spacing)? (ll/(cnt-1)) :
is_num(spacing) && !is_undef(ll)? (ll/(cnt-1)) :
scalar_vec3(spacing, 0)
);
assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `spread()`.");
spos = !is_undef(p1)? point3d(p1) : -(cnt-1)/2 * spc;
for (i=[0:1:cnt-1]) {
pos = i * spc + spos;
$pos = pos;
$idx = i;
translate(pos) children();
}
}
// Module: xspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the X axis.
//
// Usage:
// xspread(spacing, [n], [sp]) ...
// xspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line to the right of starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// xspread(20) sphere(3);
// xspread(20, n=3) sphere(3);
// xspread(spacing=15, l=50) sphere(3);
// xspread(n=4, l=30, sp=[0,10,0]) sphere(3);
// Example:
// xspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module xspread(spacing=undef, n=undef, l=undef, sp=undef)
{
spread(l=l*RIGHT, spacing=spacing*RIGHT, n=n, p1=sp) children();
}
// Module: yspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the Y axis.
//
// Usage:
// yspread(spacing, [n], [sp]) ...
// yspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line back from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// yspread(20) sphere(3);
// yspread(20, n=3) sphere(3);
// yspread(spacing=15, l=50) sphere(3);
// yspread(n=4, l=30, sp=[10,0,0]) sphere(3);
// Example:
// yspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module yspread(spacing=undef, n=undef, l=undef, sp=undef)
{
spread(l=l*BACK, spacing=spacing*BACK, n=n, p1=sp) children();
}
// Module: zspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the Z axis.
//
// Usage:
// zspread(spacing, [n], [sp]) ...
// zspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line up from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// zspread(20) sphere(3);
// zspread(20, n=3) sphere(3);
// zspread(spacing=15, l=50) sphere(3);
// zspread(n=4, l=30, sp=[10,0,0]) sphere(3);
// Example:
// zspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module zspread(spacing=undef, n=undef, l=undef, sp=undef)
{
spread(l=l*UP, spacing=spacing*UP, n=n, p1=sp) children();
}
// Module: distribute()
//
// Description:
// Spreads out each individual child along the direction `dir`.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, dir, [sizes]) ...
// distribute(l, dir, [sizes]) ...
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// dir = Vector direction to distribute copies along.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// distribute(sizes=[100, 30, 50], dir=UP) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module distribute(spacing=undef, sizes=undef, dir=RIGHT, l=undef)
{
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
for (i=[0:1:$children-1]) {
totspc = sum(concat([0], slice(gaps2, 0, i)));
$pos = spos + totspc * dir;
$idx = i;
translate($pos) children(i);
}
}
// Module: xdistribute()
//
// Description:
// Spreads out each individual child along the X axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// xdistribute(spacing, [sizes]) ...
// xdistribute(l, [sizes]) ...
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// xdistribute(sizes=[100, 10, 30], spacing=40) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module xdistribute(spacing=10, sizes=undef, l=undef)
{
dir = RIGHT;
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
for (i=[0:1:$children-1]) {
totspc = sum(concat([0], slice(gaps2, 0, i)));
$pos = spos + totspc * dir;
$idx = i;
translate($pos) children(i);
}
}
// Module: ydistribute()
//
// Description:
// Spreads out each individual child along the Y axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// ydistribute(spacing, [sizes])
// ydistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// ydistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module ydistribute(spacing=10, sizes=undef, l=undef)
{
dir = BACK;
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
for (i=[0:1:$children-1]) {
totspc = sum(concat([0], slice(gaps2, 0, i)));
$pos = spos + totspc * dir;
$idx = i;
translate($pos) children(i);
}
}
// Module: zdistribute()
//
// Description:
// Spreads out each individual child along the Z axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// zdistribute(spacing, [sizes])
// zdistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// zdistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module zdistribute(spacing=10, sizes=undef, l=undef)
{
dir = UP;
gaps = ($children < 2)? [0] :
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
[for (i=[0:1:$children-2]) 0];
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
gaps2 = [for (gap = gaps) gap+spc];
spos = dir * -sum(gaps2)/2;
for (i=[0:1:$children-1]) {
totspc = sum(concat([0], slice(gaps2, 0, i)));
$pos = spos + totspc * dir;
$idx = i;
translate($pos) children(i);
}
}
// Module: grid2d()
//
// Description:
// Makes a square or hexagonal grid of copies of children.
//
// Usage:
// grid2d(size, spacing, [stagger], [scale], [in_poly]) ...
// grid2d(size, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, in_poly, [stagger], [scale]) ...
// grid2d(cols, rows, in_poly, [stagger], [scale]) ...
//
// Arguments:
// size = The [X,Y] size to spread the copies over.
// spacing = Distance between copies in [X,Y] or scalar distance.
// cols = How many columns of copies to make. If staggered, count both staggered and unstaggered columns.
// rows = How many rows of copies to make. If staggered, count both staggered and unstaggered rows.
// stagger = If true, make a staggered (hexagonal) grid. If false, make square grid. If `"alt"`, makes alternate staggered pattern. Default: false
// scale = [X,Y] scaling factors to reshape grid.
// in_poly = If given a list of polygon points, only creates copies whose center would be inside the polygon. Polygon can be concave and/or self crossing.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$col` is set to the integer column number for each child.
// `$row` is set to the integer row number for each child.
//
// Examples:
// grid2d(size=50, spacing=10, stagger=false) cylinder(d=10, h=1);
// grid2d(spacing=10, rows=7, cols=13, stagger=true) cylinder(d=6, h=5);
// grid2d(spacing=10, rows=7, cols=13, stagger="alt") cylinder(d=6, h=5);
// grid2d(size=50, rows=11, cols=11, stagger=true) cylinder(d=5, h=1);
//
// Example:
// poly = [[-25,-25], [25,25], [-25,25], [25,-25]];
// grid2d(spacing=5, stagger=true, in_poly=poly)
// zrot(180/6) cylinder(d=5, h=1, $fn=6);
// %polygon(poly);
//
// Example: Using `$row` and `$col`
// grid2d(spacing=[8,8], cols=8, rows=8, anchor=LEFT+FRONT)
// color(($row+$col)%2?"black":"red")
// cube([8,8,0.01], center=false);
//
// Example:
// // Makes a grid of hexagon pillars whose tops are all
// // angled to reflect light at [0,0,50], if they were shiny.
// hexregion = [for (a = [0:60:359.9]) 50.01*[cos(a), sin(a)]];
// grid2d(spacing=10, stagger=true, in_poly=hexregion) {
// // Note: You must use for(var=[val]) or let(var=val)
// // to set vars from $pos or other special vars in this scope.
// let (ref_v = (normalize([0,0,50]-point3d($pos)) + UP)/2)
// half_of(v=-ref_v, cp=[0,0,5])
// zrot(180/6)
// cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6);
// }
module grid2d(size=undef, spacing=undef, cols=undef, rows=undef, stagger=false, scale=[1,1,1], in_poly=undef, anchor=CENTER, spin=0, orient=UP)
{
assert(in_list(stagger, [false, true, "alt"]));
scl = vmul(scalar_vec3(scale, 1), (stagger!=false? [0.5, sin(60), 1] : [1,1,1]));
if (!is_undef(size)) {
siz = scalar_vec3(size);
if (!is_undef(spacing)) {
spc = vmul(scalar_vec3(spacing), scl);
maxcols = ceil(siz.x/spc.x);
maxrows = ceil(siz.y/spc.y);
grid2d(spacing=spacing, cols=maxcols, rows=maxrows, stagger=stagger, scale=scale, in_poly=in_poly, anchor=anchor, spin=spin, orient=orient) children();
} else {
spc = [siz.x/cols, siz.y/rows];
grid2d(spacing=spc, cols=cols, rows=rows, stagger=stagger, scale=scale, in_poly=in_poly, anchor=anchor, spin=spin, orient=orient) children();
}
} else {
spc = is_list(spacing)? point3d(spacing) : vmul(scalar_vec3(spacing), scl);
bounds = !is_undef(in_poly)? pointlist_bounds(in_poly) : undef;
bnds = !is_undef(bounds)? [for (a=[0,1]) 2*max(vabs([ for (i=[0,1]) bounds[i][a] ]))+1 ] : undef;
mcols = !is_undef(cols)? cols : (!is_undef(spc) && !is_undef(bnds))? quantup(ceil(bnds[0]/spc[0])-1, 4)+1 : undef;
mrows = !is_undef(rows)? rows : (!is_undef(spc) && !is_undef(bnds))? quantup(ceil(bnds[1]/spc[1])-1, 4)+1 : undef;
siz = vmul(spc, [mcols-1, mrows-1, 0])+[0,0,0.01];
echo(siz=siz, spc=spc, spacing=spacing, scl=scl, mcols=mcols, mrows=mrows);
staggermod = (stagger == "alt")? 1 : 0;
if (stagger == false) {
orient_and_anchor(siz, orient, anchor, spin=spin) {
for (row = [0:1:mrows-1]) {
for (col = [0:1:mcols-1]) {
pos = [col*spc.x, row*spc.y] - point2d(siz/2);
if (is_undef(in_poly) || point_in_polygon(pos, in_poly)>=0) {
$col = col;
$row = row;
$pos = pos;
translate(pos) children();
}
}
}
}
} else {
// stagger == true or stagger == "alt"
orient_and_anchor(siz, orient, anchor, spin=spin) {
cols1 = ceil(mcols/2);
cols2 = mcols - cols1;
for (row = [0:1:mrows-1]) {
rowcols = ((row%2) == staggermod)? cols1 : cols2;
if (rowcols > 0) {
for (col = [0:1:rowcols-1]) {
rowdx = (row%2 != staggermod)? spc[0] : 0;
pos = [2*col*spc[0]+rowdx, row*spc[1]] - point2d(siz/2);
if (is_undef(in_poly) || point_in_polygon(pos, in_poly)>=0) {
$col = col * 2 + ((row%2!=staggermod)? 1 : 0);
$row = row;
$pos = pos;
translate(pos) children();
}
}
}
}
}
}
}
}
// Module: grid3d()
//
// Description:
// Makes a 3D grid of duplicate children.
//
// Usage:
// grid3d(n, spacing) ...
// grid3d(n=[Xn,Yn,Zn], spacing=[dX,dY,dZ]) ...
// grid3d([xa], [ya], [za]) ...
//
// Arguments:
// xa = array or range of X-axis values to offset by. (Default: [0])
// ya = array or range of Y-axis values to offset by. (Default: [0])
// za = array or range of Z-axis values to offset by. (Default: [0])
// n = Optional number of copies to have per axis.
// spacing = spacing of copies per axis. Use with `n`.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the [Xidx,Yidx,Zidx] index values of each child copy, when using `count` and `n`.
//
// Examples(FlatSpin):
// grid3d(xa=[0:25:50],ya=[0,40],za=[-20:40:20]) sphere(r=5);
// grid3d(n=[3, 4, 2], spacing=[60, 50, 40]) sphere(r=10);
// Examples:
// grid3d(ya=[-60:40:60],za=[0,70]) sphere(r=10);
// grid3d(n=3, spacing=30) sphere(r=10);
// grid3d(n=[3, 1, 2], spacing=30) sphere(r=10);
// grid3d(n=[3, 4], spacing=[80, 60]) sphere(r=10);
// Examples:
// grid3d(n=[10, 10, 10], spacing=50) color($idx/9) cube(50, center=true);
module grid3d(xa=[0], ya=[0], za=[0], n=undef, spacing=undef)
{
n = scalar_vec3(n, 1);
spacing = scalar_vec3(spacing, undef);
if (!is_undef(n) && !is_undef(spacing)) {
for (xi = [0:1:n.x-1]) {
for (yi = [0:1:n.y-1]) {
for (zi = [0:1:n.z-1]) {
$idx = [xi,yi,zi];
$pos = vmul(spacing, $idx - (n-[1,1,1])/2);
translate($pos) children();
}
}
}
} else {
for (xoff = xa, yoff = ya, zoff = za) {
$pos = [xoff, yoff, zoff];
translate($pos) children();
}
}
}
//////////////////////////////////////////////////////////////////////
// Section: Rotational Distributors
//////////////////////////////////////////////////////////////////////
// Module: rot_copies()
//
// Description:
// Given a list of [X,Y,Z] rotation angles in `rots`, rotates copies of the children to each of those angles, regardless of axis of rotation.
// Given a list of scalar angles in `rots`, rotates copies of the children to each of those angles around the axis of rotation.
// If given a vector `v`, that becomes the axis of rotation. Default axis of rotation is UP.
// If given a count `n`, makes that many copies, rotated evenly around the axis.
// If given an offset `delta`, translates each child by that amount before rotating them into place. This makes rings.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Usage:
// rot_copies(rots, [cp], [sa], [delta], [subrot]) ...
// rot_copies(rots, v, [cp], [sa], [delta], [subrot]) ...
// rot_copies(n, [v], [cp], [sa], [delta], [subrot]) ...
//
// Arguments:
// rots = A list of [X,Y,Z] rotation angles in degrees. If `v` is given, this will be a list of scalar angles in degrees to rotate around `v`.
// v = If given, this is the vector of the axis to rotate around.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies, rotated around the axis.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise.
// delta = [X,Y,Z] amount to move away from cp before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$ang` is set to the rotation angle (or XYZ rotation triplet) of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
// `$axis` is set to the axis to rotate around, if `rots` was given as a list of angles instead of a list of [X,Y,Z] rotation angles.
//
// Example:
// #cylinder(h=20, r1=5, r2=0);
// rot_copies([[45,0,0],[0,45,90],[90,-45,270]]) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies([45, 90, 135], v=DOWN+BACK)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK, delta=[10,0,0])
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=UP+FWD, delta=[10,0,0], sa=45)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
module rot_copies(rots=[], v=undef, cp=[0,0,0], n=undef, sa=0, offset=0, delta=[0,0,0], subrot=true)
{
sang = sa + offset;
angs = !is_undef(n)?
(n<=0? [] : [for (i=[0:1:n-1]) i/n*360+sang]) :
assert(is_vector(rots)) rots;
for ($idx = idx(angs)) {
$ang = angs[$idx];
$axis = v;
translate(cp) {
rotate(a=$ang, v=v) {
translate(delta) {
rot(a=(subrot? sang : $ang), v=v, reverse=true) {
children();
}
}
}
}
}
}
// Module: xrot_copies()
//
// Usage:
// xrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// xrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the X axis.
// If given a count `n`, makes that many copies, rotated evenly around the X axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// xrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10, sa=45)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=20, subrot=false)
// xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module xrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
{
rot_copies(rots=rots, v=RIGHT, cp=cp, n=n, sa=sa, delta=[0, r, 0], subrot=subrot) children();
}
// Module: yrot_copies()
//
// Usage:
// yrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// yrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Y axis.
// If given a count `n`, makes that many copies, rotated evenly around the Y axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// yrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10, sa=45)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module yrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
{
rot_copies(rots=rots, v=BACK, cp=cp, n=n, sa=sa, delta=[-r, 0, 0], subrot=subrot) children();
}
// Module: zrot_copies()
//
// Usage:
// zrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// zrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Z axis.
// If given a count `n`, makes that many copies, rotated evenly around the Z axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around. Default: [0,0,0]
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies. Default: 0
// subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// zrot_copies([180, 270, 315])
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=10)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=20, sa=45)
// yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
//
// Example:
// zrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module zrot_copies(rots=[], cp=[0,0,0], n=undef, sa=0, r=0, subrot=true)
{
rot_copies(rots=rots, v=UP, cp=cp, n=n, sa=sa, delta=[r, 0, 0], subrot=subrot) children();
}
// Module: arc_of()
//
// Description:
// Evenly distributes n duplicate children around an ovoid arc on the XY plane.
//
// Usage:
// arc_of(r|d, n, [sa], [ea], [rot]
// arc_of(rx|dx, ry|dy, n, [sa], [ea], [rot]
//
// Arguments:
// n = number of copies to distribute around the circle. (Default: 6)
// r = radius of circle (Default: 1)
// rx = radius of ellipse on X axis. Used instead of r.
// ry = radius of ellipse on Y axis. Used instead of r.
// d = diameter of circle. (Default: 2)
// dx = diameter of ellipse on X axis. Used instead of d.
// dy = diameter of ellipse on Y axis. Used instead of d.
// rot = whether to rotate the copied children. (Default: false)
// sa = starting angle. (Default: 0.0)
// ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0)
//
// Side Effects:
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
module arc_of(
n=6,
r=undef, rx=undef, ry=undef,
d=undef, dx=undef, dy=undef,
sa=0, ea=360,
rot=true
) {
rx = get_radius(r1=rx, r=r, d1=dx, d=d, dflt=1);
ry = get_radius(r1=ry, r=r, d1=dy, d=d, dflt=1);
sa = posmod(sa, 360);
ea = posmod(ea, 360);
n = (abs(ea-sa)<0.01)?(n+1):n;
delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1);
for ($idx = [0:1:n-1]) {
$ang = sa + ($idx * delt);
$pos =[rx*cos($ang), ry*sin($ang), 0];
translate($pos) {
zrot(rot? atan2(ry*sin($ang), rx*cos($ang)) : 0) {
children();
}
}
}
}
// Module: ovoid_spread()
//
// Description:
// Spreads children semi-evenly over the surface of a sphere.
//
// Usage:
// ovoid_spread(r|d, n, [cone_ang], [scale], [perp]) ...
//
// Arguments:
// r = Radius of the sphere to distribute over
// d = Diameter of the sphere to distribute over
// n = How many copies to evenly spread over the surface.
// cone_ang = Angle of the cone, in degrees, to limit how much of the sphere gets covered. For full sphere coverage, use 180. Measured pre-scaling. Default: 180
// scale = The [X,Y,Z] scaling factors to reshape the sphere being covered.
// perp = If true, rotate children to be perpendicular to the sphere surface. Default: true
//
// Side Effects:
// `$pos` is set to the relative post-scaled centerpoint of each child copy, and can be used to modify each child individually.
// `$theta` is set to the theta angle of the child from the center of the sphere.
// `$phi` is set to the pre-scaled phi angle of the child from the center of the sphere.
// `$rad` is set to the pre-scaled radial distance of the child from the center of the sphere.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// ovoid_spread(n=250, d=100, cone_ang=45, scale=[3,3,1])
// cylinder(d=10, h=10, center=false);
//
// Example:
// ovoid_spread(n=500, d=100, cone_ang=180)
// color(normalize(point3d(vabs($pos))))
// cylinder(d=8, h=10, center=false);
module ovoid_spread(r=undef, d=undef, n=100, cone_ang=90, scale=[1,1,1], perp=true)
{
r = get_radius(r=r, d=d, dflt=50);
cnt = ceil(n / (cone_ang/180));
// Calculate an array of [theta,phi] angles for `n` number of
// points, almost evenly spaced across the surface of a sphere.
// This approximation is based on the golden spiral method.
theta_phis = [for (x=[0:1:n-1]) [180*(1+sqrt(5))*(x+0.5)%360, acos(1-2*(x+0.5)/cnt)]];
for ($idx = idx(theta_phis)) {
tp = theta_phis[$idx];
xyz = spherical_to_xyz(r, tp[0], tp[1]);
$pos = vmul(xyz,scale);
$theta = tp[0];
$phi = tp[1];
$rad = r;
translate($pos) {
if (perp) {
rot(from=UP, to=xyz) children();
} else {
children();
}
}
}
}
//////////////////////////////////////////////////////////////////////
// Section: Reflectional Distributors
//////////////////////////////////////////////////////////////////////
// Module: mirror_copy()
//
// Description:
// Makes a copy of the children, mirrored across the given plane.
//
// Usage:
// mirror_copy(v, [cp], [offset]) ...
//
// Arguments:
// v = The normal vector of the plane to mirror across.
// offset = distance to offset away from the plane.
// cp = A point that lies on the mirroring plane.
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
module mirror_copy(v=[0,0,1], offset=0, cp=[0,0,0])
{
nv = v/norm(v);
off = nv*offset;
if (cp == [0,0,0]) {
translate(off) {
$orig = true;
$idx = 0;
children();
}
mirror(nv) translate(off) {
$orig = false;
$idx = 1;
children();
}
} else {
translate(off) children();
translate(cp) mirror(nv) translate(-cp) translate(off) children();
}
}
// Module: xflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the X axis.
//
// Usage:
// xflip_copy([x], [offset]) ...
//
// Arguments:
// offset = Distance to offset children right, before copying.
// x = The X coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// xflip_copy() yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
// xflip_copy(offset=5) yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
// xflip_copy(x=-5) yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) left(5) cube([0.01,15,15], center=true);
module xflip_copy(offset=0, x=0)
{
mirror_copy(v=[1,0,0], offset=offset, cp=[x,0,0]) children();
}
// Module: yflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Y axis.
//
// Usage:
// yflip_copy([y], [offset]) ...
//
// Arguments:
// offset = Distance to offset children back, before copying.
// y = The Y coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// yflip_copy() xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
// yflip_copy(offset=5) xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
// yflip_copy(y=-5) xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) fwd(5) cube([15,0.01,15], center=true);
module yflip_copy(offset=0, y=0)
{
mirror_copy(v=[0,1,0], offset=offset, cp=[0,y,0]) children();
}
// Module: zflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Z axis.
//
// Usage:
// zflip_copy([z], [offset]) ...
//
// Arguments:
// offset = Distance to offset children up, before copying.
// z = The Z coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// zflip_copy() cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
// zflip_copy(offset=5) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
// zflip_copy(z=-5) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) down(5) cube([15,15,0.01], center=true);
module zflip_copy(offset=0, z=0)
{
mirror_copy(v=[0,0,1], offset=offset, cp=[0,0,z]) children();
}
//////////////////////////////////////////////////////////////////////
// Section: Mutators
//////////////////////////////////////////////////////////////////////
// Module: half_of()
//
// Usage:
// half_of(v, [cp], [s]) ...
//
// Description:
// Slices an object at a cut plane, and masks away everything that is on one side.
//
// Arguments:
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0]
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
//
// Examples:
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
// half_of(DOWN+LEFT, s=200) sphere(d=150);
// Example(2D):
// half_of([1,1], planar=true) circle(d=50);
module half_of(v=UP, cp=[0,0,0], s=100, planar=false)
{
cp = is_num(cp)? cp*normalize(v) : cp;
if (cp != [0,0,0]) {
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
} else if (planar) {
v = (v==UP)? BACK : (v==DOWN)? FWD : v;
ang = atan2(v.y, v.x);
difference() {
children();
rotate(ang+90) {
back(s/2) square(s, center=true);
}
}
} else {
difference() {
children();
rot(from=UP, to=-v) {
up(s/2) cube(s, center=true);
}
}
}
}
// Module: left_half()
//
// Usage:
// left_half([s], [x]) ...
// left_half(planar=true, [s], [x]) ...
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// x = The X coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples:
// left_half() sphere(r=20);
// left_half(x=-8) sphere(r=20);
// Example(2D):
// left_half(planar=true) circle(r=20);
module left_half(s=100, x=0, planar=false)
{
dir = LEFT;
difference() {
children();
translate([x,0,0]-dir*s/2) {
if (planar) {
square(s, center=true);
} else {
cube(s, center=true);
}
}
}
}
// Module: right_half()
//
// Usage:
// right_half([s], [x]) ...
// right_half(planar=true, [s], [x]) ...
//
// Description:
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// x = The X coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples(FlatSpin):
// right_half() sphere(r=20);
// right_half(x=-5) sphere(r=20);
// Example(2D):
// right_half(planar=true) circle(r=20);
module right_half(s=100, x=0, planar=false)
{
dir = RIGHT;
difference() {
children();
translate([x,0,0]-dir*s/2) {
if (planar) {
square(s, center=true);
} else {
cube(s, center=true);
}
}
}
}
// Module: front_half()
//
// Usage:
// front_half([s], [y]) ...
// front_half(planar=true, [s], [y]) ...
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// y = The Y coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples(FlatSpin):
// front_half() sphere(r=20);
// front_half(y=5) sphere(r=20);
// Example(2D):
// front_half(planar=true) circle(r=20);
module front_half(s=100, y=0, planar=false)
{
dir = FWD;
difference() {
children();
translate([0,y,0]-dir*s/2) {
if (planar) {
square(s, center=true);
} else {
cube(s, center=true);
}
}
}
}
// Module: back_half()
//
// Usage:
// back_half([s], [y]) ...
// back_half(planar=true, [s], [y]) ...
//
// Description:
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// y = The Y coordinate of the cut-plane. Default: 0
// planar = If true, this becomes a 2D operation.
//
// Examples:
// back_half() sphere(r=20);
// back_half(y=8) sphere(r=20);
// Example(2D):
// back_half(planar=true) circle(r=20);
module back_half(s=100, y=0, planar=false)
{
dir = BACK;
difference() {
children();
translate([0,y,0]-dir*s/2) {
if (planar) {
square(s, center=true);
} else {
cube(s, center=true);
}
}
}
}
// Module: bottom_half()
//
// Usage:
// bottom_half([s], [z]) ...
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// z = The Z coordinate of the cut-plane. Default: 0
//
// Examples:
// bottom_half() sphere(r=20);
// bottom_half(z=-10) sphere(r=20);
module bottom_half(s=100, z=0)
{
dir = DOWN;
difference() {
children();
translate([0,0,z]-dir*s/2) {
cube(s, center=true);
}
}
}
// Module: top_half()
//
// Usage:
// top_half([s], [z]) ...
//
// Description:
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
//
// Arguments:
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
// z = The Z coordinate of the cut-plane. Default: 0
//
// Examples(Spin):
// top_half() sphere(r=20);
// top_half(z=5) sphere(r=20);
module top_half(s=100, z=0)
{
dir = UP;
difference() {
children();
translate([0,0,z]-dir*s/2) {
cube(s, center=true);
}
}
}
// Module: chain_hull()
//
// Usage:
// chain_hull() ...
//
// Description:
// Performs hull operations between consecutive pairs of children,
// then unions all of the hull results. This can be a very slow
// operation, but it can provide results that are hard to get
// otherwise.
//
// Side Effects:
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
// `$primary` is set to true when the child is the first in a chain pair.
//
// Example:
// chain_hull() {
// cube(5, center=true);
// translate([30, 0, 0]) sphere(d=15);
// translate([60, 30, 0]) cylinder(d=10, h=20);
// translate([60, 60, 0]) cube([10,1,20], center=false);
// }
// Example: Using `$idx` and `$primary`
// chain_hull() {
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
// }
module chain_hull()
{
union() {
if ($children == 1) {
children();
} else if ($children > 1) {
for (i =[1:1:$children-1]) {
$idx = i;
hull() {
let($primary=true) children(i-1);
let($primary=false) children(i);
}
}
}
}
}
// Module: round3d()
// Usage:
// round3d(r) ...
// round3d(or) ...
// round3d(ir) ...
// round3d(or, ir) ...
// Description:
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 3D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
// Use this as a last resort. This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
module round3d(r, or, ir, size=100)
{
or = get_radius(r1=or, r=r, dflt=0);
ir = get_radius(r1=ir, r=r, dflt=0);
offset3d(or, size=size)
offset3d(-ir-or, size=size)
offset3d(ir, size=size)
children();
}
// Module: offset3d()
// Usage:
// offset3d(r, [size], [convexity]);
// Description:
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
// This is so slow that no example images will be rendered.
// Arguments:
// r = Radius to expand object by. Negative numbers contract the object.
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
module offset3d(r=1, size=100, convexity=10) {
n = quant(max(8,segs(abs(r))),4);
if (r==0) {
children();
} else if (r>0) {
render(convexity=convexity)
minkowski() {
children();
sphere(r, $fn=n);
}
} else {
size2 = size * [1,1,1];
size1 = size2 * 1.02;
render(convexity=convexity)
difference() {
cube(size2, center=true);
minkowski() {
difference() {
cube(size1, center=true);
children();
}
sphere(-r, $fn=n);
}
}
}
}
//////////////////////////////////////////////////////////////////////
// Section: 2D Mutators
//////////////////////////////////////////////////////////////////////
// Module: round2d()
// Usage:
// round2d(r) ...
// round2d(or) ...
// round2d(ir) ...
// round2d(or, ir) ...
// Description:
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
// can let you round to different radii for concave and convex corners. The 2D object must not have
// any parts narrower than twice the `or` radius. Such parts will disappear.
// Arguments:
// r = Radius to round all concave and convex corners to.
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
// Examples(2D):
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
module round2d(r, or, ir)
{
or = get_radius(r1=or, r=r, dflt=0);
ir = get_radius(r1=ir, r=r, dflt=0);
offset(or) offset(-ir-or) offset(delta=ir) children();
}
// Module: shell2d()
// Usage:
// shell2d(thickness, [or], [ir], [fill], [round])
// Description:
// Creates a hollow shell from 2D children, with optional rounding.
// Arguments:
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
// or = Radius to round convex corners/pointy bits on the outside of the shell.
// ir = Radius to round concave corners on the outside of the shell.
// round = Radius to round convex corners/pointy bits on the inside of the shell.
// fill = Radius to round concave corners on the inside of the shell.
// Examples(2D):
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,round=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(10,fill=10) {square([40,100], center=true); square([100,40], center=true);}
// shell2d(8,or=16,ir=8,round=16,fill=8) {square([40,100], center=true); square([100,40], center=true);}
module shell2d(thickness, or=0, ir=0, fill=0, round=0)
{
thickness = is_num(thickness)? (
thickness<0? [thickness,0] : [0,thickness]
) : (thickness[0]>thickness[1])? (
[thickness[1],thickness[0]]
) : thickness;
difference() {
round2d(or=or,ir=ir)
offset(delta=thickness[1])
children();
round2d(or=fill,ir=round)
offset(delta=thickness[0])
children();
}
}
//////////////////////////////////////////////////////////////////////
// Section: Colors
//////////////////////////////////////////////////////////////////////
// Function&Module: HSL()
// Usage:
// HSL(h,[s],[l],[a]) ...
// rgb = HSL(h,[s],[l]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
// Example:
// HSL(h=120,s=1,l=0.5) sphere(d=60);
// Example:
// rgb = HSL(h=270,s=0.75,l=0.6);
// color(rgb) cube(60, center=true);
function HSL(h,s=1,l=0.5) =
let(
h=posmod(h,360)
) [
for (n=[0,8,4]) let(
k=(n+h/30)%12
) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1)
];
module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children();
// Function&Module: HSV()
// Usage:
// HSV(h,[s],[v],[a]) ...
// rgb = HSV(h,[s],[v]);
// Description:
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
// Arguments:
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
// Example:
// HSV(h=120,s=1,v=1) sphere(d=60);
// Example:
// rgb = HSV(h=270,s=0.75,v=0.9);
// color(rgb) cube(60, center=true);
function HSV(h,s=1,v=1) =
let(
h=posmod(h,360),
v2=v*(1-s),
r=lookup(h,[[0,v], [60,v], [120,v2], [240,v2], [300,v], [360,v]]),
g=lookup(h,[[0,v2], [60,v], [180,v], [240,v2], [360,v2]]),
b=lookup(h,[[0,v2], [120,v2], [180,v], [300,v], [360,v2]])
) [r,g,b];
module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
// Module: rainbow()
// Usage:
// rainbow(list) ...
// Description:
// Iterates the list, displaying children in different colors for each list item.
// This is useful for debugging lists of paths and such.
// Arguments:
// list = The list of items to iterate through.
// stride = Consecutive colors stride around the color wheel divided into this many parts.
// Side Effects:
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
// Sets `$idx` to the index of the current item in `list` that we want to show.
// Sets `$item` to the current item in `list` that we want to show.
// Example(2D):
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
// Example(2D):
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
// rainbow(rgn) stroke($item, closed=true);
module rainbow(list, stride=1)
{
ll = len(list);
huestep = 360 / ll;
hues = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
for($idx=idx(list)) {
$item = list[$idx];
HSV(h=hues[$idx]) children();
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap