BOSL2/joiners.scad
2021-01-06 20:45:11 -05:00

1023 lines
48 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: joiners.scad
// Snap-together joiners.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/joiners.scad>
//////////////////////////////////////////////////////////////////////
include <rounding.scad>
// Section: Half Joiners
// Module: half_joiner_clear()
// Description:
// Creates a mask to clear an area so that a half_joiner can be placed there.
// Usage:
// half_joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// half_joiner_clear();
module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
union() {
ycopies(overlap, n=overlap>0? 2 : 1) {
difference() {
// Diamonds.
scale([w+clearance, dmnd_width/2, dmnd_height/2]) {
xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true);
}
// Blunt point of tab.
ycopies(guide_width+4) {
cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true);
}
}
}
if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true);
}
children();
}
}
// Module: half_joiner()
// Usage:
// half_joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a half_joiner object that can be attached to half_joiner2 object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples(FlatSpin):
// half_joiner(screwsize=3);
// half_joiner(h=20,w=10,l=10);
module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
render(convexity=12)
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
difference() {
union() {
// Make base.
difference() {
// Solid backing base.
fwd(l/2) cube(size=[w, l, h], center=true);
// Clear diamond for tab
xcopies(2*w*2/3) {
half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a);
}
}
difference() {
// Make tab
scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45)
cube(size=[1,sqrt(2),sqrt(2)], center=true);
// Blunt point of tab.
back(guide_width/2+2)
cube(size=[w*0.99,4,guide_size*2], center=true);
}
// Guide ridges.
if (guides == true) {
xcopies(w/3-$slop*2) {
// Guide ridge.
fwd(0.05/2) {
scale([0.75, 1, 2]) yrot(45)
cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true);
}
// Snap ridge.
scale([0.25, 0.5, 1]) zrot(45)
cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true);
}
}
}
// Make screwholes, if needed.
if (screwsize != undef) {
yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12);
}
}
children();
}
}
// Module: half_joiner2()
// Usage:
// half_joiner2(h, w, l, [a], [screwsize], [guides])
// Description:
// Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples(FlatSpin):
// half_joiner2(screwsize=3);
// half_joiner2(h=20,w=10,l=10);
module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
render(convexity=12)
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
difference() {
union () {
fwd(l/2) cube(size=[w, l, h], center=true);
cube([w, guide_width, h], center=true);
}
// Subtract mated half_joiner.
zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0);
// Make screwholes, if needed.
if (screwsize != undef) {
xcyl(r=screwsize*1.1/2, l=w+1, $fn=12);
}
}
children();
}
}
// Section: Full Joiners
// Module: joiner_clear()
// Description:
// Creates a mask to clear an area so that a joiner can be placed there.
// Usage:
// joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// joiner_clear();
module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
union() {
up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance);
down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01);
}
children();
}
}
// Module: joiner()
// Usage:
// joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner object that can be attached to another joiner object.
// Arguments:
// h = Height of the joiner.
// w = Width of the joiner.
// l = Length of the backing to the joiner.
// a = Overhang angle of the joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples(FlatSpin):
// joiner(screwsize=3);
// joiner(w=10, l=10, h=40);
module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
union() {
up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
children();
}
}
// Section: Full Joiners Pairs/Sets
// Module: joiner_pair_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners (2 by default) to clear for.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_pair_clear(spacing=50, n=2);
// joiner_pair_clear(spacing=50, n=3);
module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[spacing+w, guide_width, h]) {
xcopies(spacing, n=n) {
joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap);
}
children();
}
}
// Module: joiner_pair()
// Usage:
// joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_pair object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Example(FlatSpin):
// joiner_pair(spacing=50, l=10);
// Examples:
// joiner_pair(spacing=50, l=10, n=3, alternate=false);
// joiner_pair(spacing=50, l=10, n=3, alternate=true);
// joiner_pair(spacing=50, l=10, n=3, alternate="alt");
module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) {
left((n-1)*spacing/2) {
for (i=[0:1:n-1]) {
right(i*spacing) {
yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) {
joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
}
}
}
children();
}
}
// Section: Full Joiners Quads/Sets
// Module: joiner_quad_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing1 = Spacing between joiner centers.
// spacing2 = Spacing between back-to-back pairs/sets of joiners.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners in a row. Default: 2
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_quad_clear(spacing1=50, spacing2=50, n=2);
// joiner_quad_clear(spacing1=50, spacing2=50, n=3);
module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
zrot_copies(n=2) {
back(spacing2/2) {
joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap);
}
}
children();
}
}
// Module: joiner_quad()
// Usage:
// joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_quad object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), joiners on each side alternate orientations. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// $slop = Printer specific slop value to make parts fit more closely.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example(FlatSpin):
// joiner_quad(spacing1=50, spacing2=50, l=10);
// Examples:
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt");
module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
zrot_copies(n=2) {
back(spacing2/2) {
joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides, alternate=alternate);
}
}
children();
}
}
// Section: Dovetails
// Module: dovetail()
//
// Usage:
// dovetail(gender, l|length, w|width, slide, [slope|angle], [taper|back_width], [chamfer], [r|radius], [round], [$slop])
//
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the positive Y direction. The gender determines whether the shape is meant to be added to your model or
// differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM;
// the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN.
//
// Arguments:
// gender = A string, "male" or "female", to specify the gender of the dovetail.
// l / length = Length of the dovetail (the amount it projects from its base)
// w / width = Width (at the wider, top end) of the dovetail before tapering
// slide = Distance the dovetail slides when you assemble it
// ---
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
// r / radius = amount to round over the corners of the joint (Default: no rounding)
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
// dovetail("male", length=8, width=15, slide=30);
// right(20) dovetail("female", length=8, width=15, slide=30);
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
// dovetail("male", l=8, w=15, slide=30, taper=6);
// right(20) dovetail("female", 8, 15, 30, taper=6); // Same as above
// Example: A block that can link to itself
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, length=8);
// attach(FRONT) dovetail("female", slide=10, width=15, length=8,$tags="remove");
// }
// Example: Setting the dovetail angle. This is too extreme to be useful.
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, length=8, angle=30);
// attach(FRONT) dovetail("female", slide=10, width=15, length=8, angle=30,$tags="remove");
// }
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, length=8, chamfer=1);
// attach(FRONT) dovetail("female", slide=10, width=15, length=8,chamfer=1,$tags="remove");
// }
// Example: Rounding the outside corners is another option
// diff("remove")
// cuboid([50,30,10]) {
// attach(BACK) dovetail("male", slide=10, width=15, length=8, radius=1, $fn=32);
// attach(FRONT, overlap=-0.1) dovetail("female", slide=10, width=15, length=8, radius=1, $tags="remove", $fn=32);
// }
// Example: Or you can make a fully rounded joint
// $fn=32;
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, length=8, radius=1.5, round=true);
// attach(FRONT,overlap=-0.1) dovetail("female", slide=10, width=15, length=8, radius=1.5, round=true, $tags="remove");
// }
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle. Note that "length" refers to the amount the joint projects from its base, which is a little counter-intuitive when the joint has a very long slide like these sliding dovetails.
// cuboid([50,30,10])
// attach(TOP) dovetail("male", slide=50, width=18, length=4, back_width=15, spin=90);
// fwd(35)
// diff("remove")
// cuboid([50,30,10])
// attach(TOP) dovetail("female", slide=50, width=18, length=4, back_width=15, spin=90,$tags="remove");
// Example: A series of dovtails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper.
// cuboid([50,30,10])
// attach(BACK) xcopies(10,5) dovetail("male", slide=10, width=7, taper=4, length=4);
// Example: Mating pin board for a half-blind right angle joint, where the joint only shows on the side but not the front. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
// diff("remove")
// cuboid([50,30,10])
// position(TOP+BACK) xcopies(10,5) dovetail("female", slide=10, width=7, taper=4, length=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180);
module dovetail(gender, length, width, slide, l, w, angle, slope, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
{
radius = get_radius(r1=radius,r2=r);
lcount = num_defined([l,length]);
wcount = num_defined([w,width]);
assert(is_def(slide), "Must define slide");
assert(lcount==1, "Must define exactly one of l and length");
assert(wcount==1, "Must define exactly one of w and width");
l = first_defined([l,length]);
w = first_defined([w,width]);
orient = is_def(orient) ? orient :
gender == "female" ? DOWN : UP;
count = num_defined([angle,slope]);
assert(count<=1, "Do not specify both angle and slope");
count2 = num_defined([taper,back_width]);
assert(count2<=1, "Do not specify both taper and back_width");
count3 = num_defined([chamfer, radius]);
assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
slope = is_def(slope) ? slope :
is_def(angle) ? 1/tan(angle) : 6;
extra_slop = gender == "female" ? 2*$slop : 0;
width = w + extra_slop;
length = l + extra_slop;
back_width = u_add(back_width, extra_slop);
front_offset = is_def(taper) ? -extra * tan(taper) :
is_def(back_width) ? extra * (back_width-width)/slide/2 : 0;
size = is_def(chamfer) && chamfer>0 ? chamfer :
is_def(radius) && radius>0 ? radius : 0;
type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
fullsize = round ? [size,size] :
gender == "male" ? [size,0] : [0,size];
smallend_half = round_corners(
move(
[0,-slide/2-extra,0],
p=[
[0 , 0, length],
[width/2-front_offset , 0, length],
[width/2 - length/slope - front_offset, 0, 0 ],
[width/2 - front_offset + length, 0, 0]
]
),
method=type, cut = fullsize, closed=false
);
smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
offset = is_def(taper) ? -(slide+extra) * tan(taper) :
is_def(back_width) ? (back_width-width) / 2 : 0;
bigend_points = move([offset,slide+2*extra,0], p=smallend_points);
adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach()
attachable(anchor,spin,orient, size=[width+2*offset, slide, length]) {
down(length/2+adjustment) {
skin(
[
reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))),
reverse(concat(bigend_points, xflip(p=reverse(bigend_points))))
],
slices=0, convexity=4
);
}
children();
}
}
// Section: Tension Clips
// h is total height above 0 of the nub
// nub extends below xy plane by distance nub/2
module _pin_nub(r, nub, h)
{
L = h / 4;
rotate_extrude(){
polygon(
[[ 0,-nub/2],
[-r,-nub/2],
[-r-nub, nub/2],
[-r-nub, nub/2+L],
[-r, h],
[0, h]]);
}
}
module _pin_slot(l, r, t, d, nub, depth, stretch) {
yscale(4)
intersection() {
translate([t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
translate([-t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
}
cube([2 * r, depth, 2 * l], center = true);
up(l)
zscale(stretch)
ycyl(r = r, h = depth);
}
module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed)
{
extra = 0.02;
rPoint = r / sqrt(2);
down(extra) cylinder(r = r, h = lStraight + extra);
up(lStraight) {
zscale(stretch) {
sphere(r = r);
if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint);
}
}
up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d);
}
function _pin_size(size) =
is_undef(size) ? [] :
let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"]))
assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"")
size=="standard" || size=="large" ?
struct_set([], ["length", 10.8,
"diameter", 7,
"snap", 0.5,
"nub_depth", 1.8,
"thickness", 1.8,
"preload", 0.2]):
size=="medium" ?
struct_set([], ["length", 8,
"diameter", 4.6,
"snap", 0.45,
"nub_depth", 1.5,
"thickness", 1.4,
"preload", 0.2]) :
size=="small" ?
struct_set([], ["length", 6,
"diameter", 3.2,
"snap", 0.4,
"nub_depth", 1.2,
"thickness", 1.0,
"preload", 0.16]) :
size=="tiny" ?
struct_set([], ["length", 4,
"diameter", 2.5,
"snap", 0.25,
"nub_depth", 0.9,
"thickness", 0.8,
"preload", 0.1]):
undef;
// Module: snap_pin()
// Usage:
// snap_pin(size, [pointed], [anchor], [spin], [orient])
// snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient])
// Description:
// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
// override the standard parameters by specifying other ones. The pins have flat sides so they can
// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
// .
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// .
// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
// and distributed under the Creative Commons - Attribution - Share Alike License
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// thickness = thickness of the pin walls
// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
// Example: Pin in native orientation
// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
// Example: Pins oriented for printing
// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) {
preload_default = 0.2;
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
thickness = first_defined([thickness, struct_val(sizedat,"thickness")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]);
nubscale = 0.9; // Mysterious arbitrary parameter
// The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
// If the point is enabled the cap length is instead 2*r
// preload shrinks the length, bringing the nubs closer together
rInner = radius - clearance;
stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced.
lStraight = length - sqrt(2) * radius - clearance;
lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius);
attachable(anchor=anchor,spin=spin, orient=orient,
size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){
zflip_copy()
difference() {
intersection() {
cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true);
_pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed);
}
_pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch);
}
children();
}
}
// Module: snap_pin_socket()
// Usage:
// snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]);
// snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient])
// Description:
// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
// .
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// fixed = if true the pin cannot rotate, if false it can. Default: true
// pointed = if true the socket has a pointed tip. Default: true
// fins = if true supporting fins are included. Default: false
// Example: The socket shape itself in native orientation.
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
// Example: A spinning socket with fins:
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
// $fn=40;
// diff("socket") cuboid([20,20,20]) {
// attach(TOP) snap_pin_socket("standard", $tags="socket");
// position(TOP+FRONT)snap_pin_socket("standard", $tags="socket");
// }
module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) {
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
tip = pointed ? sqrt(2) * radius : radius;
lPin = length + (pointed?(2-sqrt(2))*radius:0);
lStraight = lPin - (pointed?sqrt(2)*radius:radius);
attachable(anchor=anchor,spin=spin,orient=orient,
size=[2*(radius+snap),radius*sqrt(2),lPin])
{
down(lPin/2)
intersection() {
cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true);
union() {
_pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
if (fins)
up(lStraight){
cube([2 * radius, 0.01, 2 * tip], center = true);
cube([0.01, 2 * radius, 2 * tip], center = true);
}
}
}
children();
}
}
// Module: rabbit_clip()
// Usage:
// rabbit_clip(type, length, width, snap, thickness, depth, [compression], [clearance], [lock], [lock_clearance], [splineteps], [anchor], [orient], [spin])
// Description:
// Creates a clip with two flexible ears to lock into a mating socket, or create a mask to produce the appropriate
// mating socket. The clip can be made to insert and release easily, or to hold much better, or it can be
// created with locking flanges that will make it very hard or impossible to remove. Unlike the snap pin, this clip
// is rectangular and can be made at any height, so a suitable clip could be very thin. It's also possible to get a
// solid connection with a short pin.
// .
// The type parameters specifies whether to make a clip, a socket mask, or a double clip. The length is the
// total nominal length of the clip. (The actual length will be very close, but not equal to this.) The width
// gives the nominal width of the clip, which is the actual width of the clip at its base. The snap parameter
// gives the depth of the clip sides, which controls how easy the clip is to insert and remove. The clip "ears" are
// made over-wide by the compression value. A nonzero compression helps make the clip secure in its socket.
// The socket's width and length are increased by the clearance value which creates some space and can compensate
// for printing inaccuracy. The socket will be slightly longer than the nominal width. The thickness is the thickness
// curved line that forms the clip. The clip depth is the amount the basic clip shape is extruded. Be sure that you
// make the socket with a larger depth than the clip (try 0.4 mm) to allow ease of insertion of the clip. The clearance
// value does not apply to the depth. The splinesteps parameter increases the sampling of the clip curves.
// .
// By default clips appear with orient=UP and sockets with orient=DOWN.
// .
// The first figure shows the dimensions of the rabbit clip. The second figure shows the clip in red overlayed on
// its socket in yellow. The left clip has a nonzero clearance, so its socket is bigger than the clip all around.
// The right hand locking clip has no clearance, but it has a lock clearance, which provides some space behind
// the lock to allow the clip to fit. (Note that depending on your printer, this can be set to zero.)
//
// Figure(2DMed):
// snap=1.5;
// comp=0.75;
// mid = 8.053; // computed in rabbit_clip
// tip = [-4.58,18.03];
// translate([9,3]){
// back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK);
// color("blue"){
// stroke([[6,0],[6,18]],width=0.1);
// stroke([[6+comp, 12], [6+comp, 18]], width=.1);
// }
// color("red"){
// stroke([[6-snap,mid], [6,mid]], endcaps="arrow2",width=0.15);
// translate([6+.4,mid-.15])text("snap",size=1,valign="center");
// translate([6+comp/2,19.5])text("compression", size=1, halign="center");
// stroke([[6+comp/2,19.3], [6+comp/2,17.7]], endcap2="arrow2", width=.15);
// fwd(1.1)text("width",size=1,halign="center");
// xflip_copy()stroke([[2,-.7], [6,-.7]], endcap2="arrow2", width=.15);
// move([-6.7,mid])rot(90)text("length", size=1, halign="center");
// stroke([[-7,10.3], [-7,18]], width=.15, endcap2="arrow2");
// stroke([[-7,0], [-7,5.8]], width=.15,endcap1="arrow2");
// stroke([tip, tip-[0,1]], width=.15);
// move([tip.x+2,19.5])text("thickness", halign="center",size=1);
// stroke([[tip.x+2, 19.3], tip+[.1,.1]], width=.15, endcap2="arrow2");
// }
// }
//
// Figure(2DMed):
// snap=1.5;
// comp=0;
// translate([29,3]){
// back_half()
// rabbit_clip("socket", width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK,lock=true);
// color("red")back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
// orient=BACK,lock=true,lock_clearance=1);
// }
// translate([9,3]){
// back_half()
// rabbit_clip("socket", clearance=.5,width=12, length=18, depth=1, thickness = 1,
// compression=comp, snap=snap, orient=BACK,lock=false);
// color("red")back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
// orient=BACK,lock=false,lock_clearance=1);
// }
// Arguments:
// type = One of "pin", "socket", "male", "female" or "double" to specify what to make.
// length = nominal clip length
// width = nominal clip width
// snap = depth of hollow on the side of the clip
// thickness = thickness of the clip "line"
// depth = amount to extrude clip (give extra room for the socket, about 0.4mm)
// compression = excess width at the "ears" to lock more tightly. Default: 0.1
// clearance = extra space in the socket for easier insertion. Default: 0.1
// lock = set to true to make a locking clip that may be irreversible. Default: false
// lock_clearance = give clearance for the lock. Default: 0
// splinesteps = number of samples in the curves of the clip. Default: 8
// anchor = anchor point for clip
// orient = clip orientation. Default: UP for pins, DOWN for sockets
// spin = spin the clip. Default: 0
//
// Example: Here are several sizes that work printed in PLA on a Prusa MK3, with default clearance of 0.1 and a depth of 5
// module test_pair(length, width, snap, thickness, compression, lock=false)
// {
// depth = 5;
// extra_depth = 10;// Change this to 0.4 for closed sockets
// cuboid([max(width+5,12),12, depth], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
// attach(BACK)
// rabbit_clip(type="pin",length=length, width=width,snap=snap,thickness=thickness,depth=depth,
// compression=compression,lock=lock);
// right(width+13)
// diff("remove")
// cuboid([width+8,max(12,length+2),depth+3], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
// attach(BACK)
// rabbit_clip(type="socket",length=length, width=width,snap=snap,thickness=thickness,depth=depth+extra_depth,
// lock=lock,compression=0,$tags="remove");
// }
// left(37)ydistribute(spacing=28){
// test_pair(length=6, width=7, snap=0.25, thickness=0.8, compression=0.1);
// test_pair(length=3.5, width=7, snap=0.1, thickness=0.8, compression=0.1); // snap = 0.2 gives a firmer connection
// test_pair(length=3.5, width=5, snap=0.1, thickness=0.8, compression=0.1); // hard to take apart
// }
// right(17)ydistribute(spacing=28){
// test_pair(length=12, width=10, snap=1, thickness=1.2, compression=0.2);
// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
// }
// Example: Double clip to connect two sockets
// rabbit_clip("double",length=8, width=7, snap=0.75, thickness=0.8, compression=0.2,depth=5);
// Example: A modified version of the clip that acts like a backpack strap clip, where it locks tightly but you can squeeze to release.
// cuboid([25,15,5],anchor=BOTTOM)
// attach(BACK)rabbit_clip("pin", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5, lock_clearance=3);
// left(32)
// diff("remove")
// cuboid([30,30,11],orient=BACK,anchor=BACK){
// attach(BACK)rabbit_clip("socket", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5.5, lock_clearance=3,$tags="remove");
// xflip_copy()
// position(FRONT+LEFT)
// xscale(0.8)
// zcyl(l=20,r=13.5, $tags="remove",$fn=64);
// }
module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0,
splinesteps=8, anchor, orient, spin=0)
{
assert(is_num(width) && width>0,"Width must be a positive value");
assert(is_num(length) && length>0, "Length must be a positive value");
assert(is_num(thickness) && thickness>0, "Thickness must be a positive value");
assert(is_num(snap) && snap>=0, "Snap must be a non-negative value");
assert(is_num(depth) && depth>0, "Depth must be a positive value");
assert(is_num(compression) && compression >= 0, "Compression must be a nonnegative value");
assert(is_bool(lock));
assert(is_num(lock_clearance));
legal_types = ["pin","socket","male","female","double"];
assert(in_list(type,legal_types),str("type must be one of ",legal_types));
if (type=="double") {
attachable(size=[width+2*compression, depth, 2*length], anchor=default(anchor,BACK), spin=spin, orient=default(orient,BACK)){
union(){
rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
lock=lock, anchor=BOTTOM, orient=UP);
rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
lock=lock, anchor=BOTTOM, orient=DOWN);
cuboid([width-thickness, depth, thickness]);
}
children();
}
} else {
anchor = default(anchor,BOTTOM);
is_pin = in_list(type,["pin","male"]);
default_overlap = 0.01 * (is_pin?1:-1); // Shift by this much to undo default overlap
extra = 0.02; // Amount of extension below nominal based position for the socket, must exceed default overlap of 0.01
clearance = is_pin ? 0 : clearance;
compression = is_pin ? compression : 0;
orient = is_def(orient) ? orient
: is_pin ? UP
: DOWN;
earwidth = 2*thickness+snap;
point_length = earwidth/2.15;
// The adjustment is using cos(theta)*earwidth/2 and sin(theta)*point_length, but the computation
// is obscured because theta is atan(length/2/snap)
scaled_len = length - 0.5 * (earwidth * snap + point_length * length) / sqrt(sqr(snap)+sqr(length/2));
bottom_pt = [0,max(scaled_len*0.15+thickness, 2*thickness)];
ctr = [width/2,scaled_len] + line_normal([width/2-snap, scaled_len/2], [width/2, scaled_len]) * earwidth/2;
inside_pt = circle_circle_tangents(bottom_pt, 0, ctr, earwidth/2)[0][1];
sidepath =[
[width/2,0],
[width/2-snap,scaled_len/2],
[width/2+(is_pin?compression:0), scaled_len],
ctr - point_length * line_normal([width/2,scaled_len], inside_pt),
inside_pt
];
fullpath = concat(
sidepath,
[bottom_pt],
reverse(apply(xflip(),sidepath))
);
assert(fullpath[4].y < fullpath[3].y, "Pin is too wide for its length");
snapmargin = -snap + select(sidepath,-1).x;// - compression;
if (is_pin){
if (snapmargin<0) echo("WARNING: The snap is too large for the clip to squeeze to fit its socket")
echo(snapmargin=snapmargin);
}
// Force tangent to be vertical at the outer edge of the clip to avoid overshoot
fulltangent = list_set(path_tangents(fullpath, uniform=false),[2,8], [[0,1],[0,-1]]);
subset = is_pin ? [0:10] : [0,1,2,3, 7,8,9,10]; // Remove internal points from the socket
tangent = select(fulltangent, subset);
path = select(fullpath, subset);
socket_smooth = .04;
pin_smooth = [.075, .075, .15, .12, .06];
smoothing = is_pin
? concat(pin_smooth, reverse(pin_smooth))
: let(side_smooth=select(pin_smooth, 0, 2))
concat(side_smooth, [socket_smooth], reverse(side_smooth));
bez = path_to_bezier(path,relsize=smoothing,tangents=tangent);
rounded = bezier_path(bez,splinesteps=splinesteps);
bounds = pointlist_bounds(rounded);
//kk = search([bounds[1].y], subindex(rounded,1));
//echo(rounded[kk[0]]);
extrapt = is_pin ? [] : [rounded[0] - [0,extra]];
finalpath = is_pin ? rounded
: let(withclearance=offset(rounded, r=-clearance))
concat( [[withclearance[0].x,-extra]],
withclearance,
[[-withclearance[0].x,-extra]]);
attachable(size=[bounds[1].x-bounds[0].x, depth, bounds[1].y-bounds[0].y], anchor=anchor, spin=spin, orient=orient){
xrot(90)
translate([0,-(bounds[1].y-bounds[0].y)/2+default_overlap,-depth/2])
linear_extrude(height=depth, convexity=10) {
if (lock)
xflip_copy()
right(clearance)
polygon([sidepath[1]+[-thickness/10,lock_clearance],
sidepath[2],
[sidepath[2].x,sidepath[1].y+lock_clearance]]);
if (is_pin)
offset_stroke(finalpath, width=[thickness,0]);
else
polygon(finalpath);
}
children();
}
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap