BOSL2/regions.scad
Adrian Mariano 3c6e9804a8 phillips_drive bugfix:
wing angle corrected from ~70 deg to 92 deg
   adjusted cutouts so length "b" in the spec is correct
      (this causes the cutout to not align with the end so it
       doesn't look as pretty, but the spec wins, right?)
   Changed construction method to avoid z-fighting which gave
       rise to failed render

doc fixes and shifting in paths.scad
decompose_path -> polygon_parts
2021-09-21 19:19:02 -04:00

1121 lines
47 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: regions.scad
// Regions and 2D boolean geometry
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
// CommonCode:
// include <BOSL2/rounding.scad>
// Section: Regions
// Function: is_region()
// Usage:
// is_region(x);
// Description:
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
function is_region(x) = is_list(x) && is_path(x.x);
// Function: close_region()
// Usage:
// close_region(region);
// Description:
// Closes all paths within a given region.
function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)];
// Module: region()
// Usage:
// region(r);
// Description:
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
// path is inside another path, it will be effectively subtracted from it.
// Example(2D):
// region([circle(d=50), square(25,center=true)]);
// Example(2D):
// rgn = concat(
// [for (d=[50:-10:10]) circle(d=d-5)],
// [square([60,10], center=true)]
// );
// region(rgn);
module region(r)
{
points = flatten(r);
paths = [
for (i=[0:1:len(r)-1]) let(
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
) [for (k=[0:1:len(r[i])-1]) start+k]
];
polygon(points=points, paths=paths);
}
// Function: check_and_fix_path()
// Usage:
// check_and_fix_path(path, [valid_dim], [closed], [name])
// Description:
// Checks that the input is a path. If it is a region with one component, converts it to a path.
// Note that arbitrary paths must have at least two points, but closed paths need at least 3 points.
// valid_dim specfies the allowed dimension of the points in the path.
// If the path is closed, removes duplicate endpoint if present.
// Arguments:
// path = path to process
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
// closed = set to true if the path is closed, which enables a check for endpoint duplication
// name = parameter name to use for reporting errors. Default: "path"
function check_and_fix_path(path, valid_dim=undef, closed=false, name="path") =
let(
path =
is_region(path)?
assert(len(path)==1,str("Region ",name," supplied as path does not have exactly one component"))
path[0]
:
assert(is_path(path), str("Input ",name," is not a path"))
path
)
assert(len(path)>(closed?2:1),closed?str("Closed path ",name," must have at least 3 points")
:str("Path ",name," must have at least 2 points"))
let(valid=is_undef(valid_dim) || in_list(len(path[0]),force_list(valid_dim)))
assert(
valid, str(
"Input ",name," must has dimension ", len(path[0])," but dimension must be ",
is_list(valid_dim) ? str("one of ",valid_dim) : valid_dim
)
)
closed && approx(path[0], last(path))? list_head(path) : path;
// Function: cleanup_region()
// Usage:
// cleanup_region(region);
// Description:
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
// Arguments:
// region = The region to clean up. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function cleanup_region(region, eps=EPSILON) =
[for (path=region) cleanup_path(path, eps=eps)];
// Function: point_in_region()
// Usage:
// point_in_region(point, region);
// Description:
// Tests if a point is inside, outside, or on the border of a region.
// Returns -1 if the point is outside the region.
// Returns 0 if the point is on the boundary.
// Returns 1 if the point lies inside the region.
// Arguments:
// point = The point to test.
// region = The region to test against. Given as a list of polygon paths.
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
(_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let(
pip = point_in_polygon(point, region[_i], eps=eps)
) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0));
// Function: polygons_equal()
// Usage:
// b = polygons_equal(poly1, poly2, [eps])
// Description:
// Returns true if poly1 and poly2 are the same polongs
// within given epsilon tolerance.
// Arguments:
// poly1 = first polygon
// poly2 = second polygon
// eps = tolerance for comparison
// Example(NORENDER):
// polygons_equal(pentagon(r=4),
// rot(360/5, p=pentagon(r=4))); // returns true
// polygons_equal(pentagon(r=4),
// rot(90, p=pentagon(r=4))); // returns false
function polygons_equal(poly1, poly2, eps=EPSILON) =
let(
poly1 = cleanup_path(poly1),
poly2 = cleanup_path(poly2),
l1 = len(poly1),
l2 = len(poly2)
) l1 != l2 ? false :
let( maybes = find_first_match(poly1[0], poly2, eps=eps, all=true) )
maybes == []? false :
[for (i=maybes) if (__polygons_equal(poly1, poly2, eps, i)) 1] != [];
function __polygons_equal(poly1, poly2, eps, st) =
max([for(d=poly1-select(poly2,st,st-1)) d*d])<eps*eps;
// Function: poly_in_polygons()
// Topics: Polygons, Comparators
// See Also: polygons_equal(), regions_equal()
// Usage:
// bool = poly_in_polygons(poly, polys);
// Description:
// Returns true if one of the polygons in `polys` is equivalent to the polygon `poly`.
// Arguments:
// poly = The polygon to search for.
// polys = The list of polygons to look for the polygon in.
function poly_in_polygons(poly, polys) =
__poly_in_polygons(poly, polys, 0);
function __poly_in_polygons(poly, polys, i) =
i >= len(polys)? false :
polygons_equal(poly, polys[i])? true :
__poly_in_polygons(poly, polys, i+1);
// Function: regions_equal()
// Usage:
// b = regions_equal(region1, region2, [eps])
// Description:
// Returns true if the components of region1 and region2 are the same polygons (in any order)
// within given epsilon tolerance.
// Arguments:
// region1 = first region
// region2 = second region
// eps = tolerance for comparison
function regions_equal(region1, region2) =
assert(is_region(region1) && is_region(region2))
len(region1) != len(region2)? false :
__regions_equal(region1, region2, 0);
function __regions_equal(region1, region2, i) =
i >= len(region1)? true :
!poly_in_polygons(region1[i], region2)? false :
__regions_equal(region1, region2, i+1);
// Function: region_path_crossings()
// Usage:
// region_path_crossings(path, region);
// Description:
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
// Arguments:
// path = The path to find crossings on.
// region = Region to test for crossings of.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
function region_path_crossings(path, region, closed=true, eps=EPSILON) = sort([
let(
segs = pair(closed? close_path(path) : cleanup_path(path))
) for (
si = idx(segs),
p = close_region(region),
s2 = pair(p)
) let (
isect = _general_line_intersection(segs[si], s2, eps=eps)
) if (
!is_undef(isect[0]) &&
isect[1] >= 0-eps && isect[1] < 1+eps &&
isect[2] >= 0-eps && isect[2] < 1+eps
)
[si, isect[1]]
]);
// Function: split_path_at_region_crossings()
// Usage:
// paths = split_path_at_region_crossings(path, region, [eps]);
// Description:
// Splits a path into sub-paths wherever the path crosses the perimeter of a region.
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
// Arguments:
// path = The path to split up.
// region = The region to check for perimeter crossings of.
// closed = If true, treat path as a closed polygon. Default: true
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
// Example(2D):
// path = square(50,center=false);
// region = [circle(d=80), circle(d=40)];
// paths = split_path_at_region_crossings(path, region);
// color("#aaa") region(region);
// rainbow(paths) stroke($item, closed=false, width=2);
function split_path_at_region_crossings(path, region, closed=true, eps=EPSILON) =
let(
path = deduplicate(path, eps=eps),
region = [for (path=region) deduplicate(path, eps=eps)],
xings = region_path_crossings(path, region, closed=closed, eps=eps),
crossings = deduplicate(
concat([[0,0]], xings, [[len(path)-1,1]]),
eps=eps
),
subpaths = [
for (p = pair(crossings))
deduplicate(
_path_select(path, p[0][0], p[0][1], p[1][0], p[1][1], closed=closed),
eps=eps
)
]
)
subpaths;
// Function: split_nested_region()
// Usage:
// rgns = split_nested_region(region);
// Description:
// Separates the distinct (possibly nested) positive subregions of a larger compound region.
// Returns a list of regions, such that each returned region has exactly one positive outline
// and zero or more void outlines.
function split_nested_region(region) =
let(
paths = sort(idx=0, [
for(i = idx(region)) let(
cnt = sum([
for (j = idx(region)) if (i!=j)
let(pt = lerp(region[i][0],region[i][1],0.5))
point_in_polygon(pt, region[j]) >=0 ? 1 : 0
])
) [cnt, region[i]]
]),
outs = [
for (candout = paths) let(
lev = candout[0],
parent = candout[1]
) if (lev % 2 == 0) [
clockwise_polygon(parent),
for (path = paths) if (
path[0] == lev+1 &&
point_in_polygon(
lerp(path[1][0], path[1][1], 0.5),
parent
) >= 0
) ccw_polygon(path[1])
]
]
) outs;
// Section: Region Extrusion and VNFs
function _path_path_closest_vertices(path1,path2) =
let(
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
i1 = min_index(subindex(dists,1)),
i2 = dists[i1][0]
) [dists[i1][1], i1, i2];
function _join_paths_at_vertices(path1,path2,seg1,seg2) =
let(
path1 = close_path(clockwise_polygon(polygon_shift(path1, seg1))),
path2 = close_path(ccw_polygon(polygon_shift(path2, seg2)))
) cleanup_path(deduplicate([each path1, each path2]));
function _cleave_simple_region(region) =
len(region)==0? [] :
len(region)<=1? clockwise_polygon(region[0]) :
let(
dists = [
for (i=[1:1:len(region)-1])
_path_path_closest_vertices(region[0],region[i])
],
idxi = min_index(subindex(dists,0)),
newoline = _join_paths_at_vertices(
region[0], region[idxi+1],
dists[idxi][1], dists[idxi][2]
)
) len(region)==2? clockwise_polygon(newoline) :
let(
orgn = [
newoline,
for (i=idx(region))
if (i>0 && i!=idxi+1)
region[i]
]
)
assert(len(orgn)<len(region))
_cleave_simple_region(orgn);
// Function: region_faces()
// Usage:
// vnf = region_faces(region, [transform], [reverse], [vnf]);
// Description:
// Given a region, applies the given transformation matrix to it and makes a VNF of
// faces for that region, reversed if necessary.
// Arguments:
// region = The region to make faces for.
// transform = If given, a transformation matrix to apply to the faces generated from the region. Default: No transformation applied.
// reverse = If true, reverse the normals of the faces generated from the region. An untransformed region will have face normals pointing `UP`. Default: false
// vnf = If given, the faces are added to this VNF. Default: `EMPTY_VNF`
function region_faces(region, transform, reverse=false, vnf=EMPTY_VNF) =
let (
regions = split_nested_region(region),
vnfs = [
if (vnf != EMPTY_VNF) vnf,
for (rgn = regions) let(
cleaved = path3d(_cleave_simple_region(rgn)),
face = is_undef(transform)? cleaved : apply(transform,cleaved),
faceidxs = reverse? [for (i=[len(face)-1:-1:0]) i] : [for (i=[0:1:len(face)-1]) i]
) [face, [faceidxs]]
],
outvnf = vnf_merge(vnfs)
) outvnf;
// Function&Module: linear_sweep()
// Usage:
// linear_sweep(region, height, [center], [slices], [twist], [scale], [style], [convexity]);
// Description:
// If called as a module, creates a polyhedron that is the linear extrusion of the given 2D region or path.
// If called as a function, returns a VNF that can be used to generate a polyhedron of the linear extrusion
// of the given 2D region or path. The benefit of using this, over using `linear_extrude region(rgn)` is
// that you can use `anchor`, `spin`, `orient` and attachments with it. Also, you can make more refined
// twisted extrusions by using `maxseg` to subsample flat faces.
// Arguments:
// region = The 2D [Region](regions.scad) or path that is to be extruded.
// height = The height to extrude the region. Default: 1
// center = If true, the created polyhedron will be vertically centered. If false, it will be extruded upwards from the origin. Default: `false`
// slices = The number of slices to divide the shape into along the Z axis, to allow refinement of detail, especially when working with a twist. Default: `twist/5`
// maxseg = If given, then any long segments of the region will be subdivided to be shorter than this length. This can refine twisting flat faces a lot. Default: `undef` (no subsampling)
// twist = The number of degrees to rotate the shape clockwise around the Z axis, as it rises from bottom to top. Default: 0
// scale = The amount to scale the shape, from bottom to top. Default: 1
// style = The style to use when triangulating the surface of the object. Valid values are `"default"`, `"alt"`, or `"quincunx"`.
// convexity = Max number of surfaces any single ray could pass through. Module use only.
// anchor_isect = If true, anchoring it performed by finding where the anchor vector intersects the swept shape. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: Extruding a Compound Region.
// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)];
// rgn2 = [square(30,center=false)];
// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))];
// mrgn = union(rgn1,rgn2);
// orgn = difference(mrgn,rgn3);
// linear_sweep(orgn,height=20,convexity=16);
// Example: With Twist, Scale, Slices and Maxseg.
// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)];
// rgn2 = [square(30,center=false)];
// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))];
// mrgn = union(rgn1,rgn2);
// orgn = difference(mrgn,rgn3);
// linear_sweep(orgn,height=50,maxseg=2,slices=40,twist=180,scale=0.5,convexity=16);
// Example: Anchors on an Extruded Region
// rgn1 = [for (d=[10:10:60]) circle(d=d,$fn=8)];
// rgn2 = [square(30,center=false)];
// rgn3 = [for (size=[10:10:20]) move([15,15],p=square(size=size, center=true))];
// mrgn = union(rgn1,rgn2);
// orgn = difference(mrgn,rgn3);
// linear_sweep(orgn,height=20,convexity=16) show_anchors();
module linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", convexity, anchor_isect=false, anchor, spin=0, orient=UP) {
region = is_path(region)? [region] : region;
cp = mean(pointlist_bounds(flatten(region)));
anchor = get_anchor(anchor, center, "origin", "origin");
vnf = linear_sweep(
region, height=height,
twist=twist, scale=scale,
slices=slices, maxseg=maxseg,
style=style
);
attachable(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect) {
vnf_polyhedron(vnf, convexity=convexity);
children();
}
}
function linear_sweep(region, height=1, center, twist=0, scale=1, slices, maxseg, style="default", anchor_isect=false, anchor, spin=0, orient=UP) =
let(
anchor = get_anchor(anchor,center,BOT,BOT),
region = is_path(region)? [region] : region,
cp = mean(pointlist_bounds(flatten(region))),
regions = split_nested_region(region),
slices = default(slices, floor(twist/5+1)),
step = twist/slices,
hstep = height/slices,
trgns = [
for (rgn=regions) [
for (path=rgn) let(
p = cleanup_path(path),
path = is_undef(maxseg)? p : [
for (seg=pair(p,true)) each
let(steps=ceil(norm(seg.y-seg.x)/maxseg))
lerpn(seg.x, seg.y, steps, false)
]
)
rot(twist, p=scale([scale,scale],p=path))
]
],
vnf = vnf_merge([
for (rgn = regions)
for (pathnum = idx(rgn)) let(
p = cleanup_path(rgn[pathnum]),
path = is_undef(maxseg)? p : [
for (seg=pair(p,true)) each
let(steps=ceil(norm(seg.y-seg.x)/maxseg))
lerpn(seg.x, seg.y, steps, false)
],
verts = [
for (i=[0:1:slices]) let(
sc = lerp(1, scale, i/slices),
ang = i * step,
h = i * hstep - height/2
) scale([sc,sc,1], p=rot(ang, p=path3d(path,h)))
]
) vnf_vertex_array(verts, caps=false, col_wrap=true, style=style),
for (rgn = regions) region_faces(rgn, move([0,0,-height/2]), reverse=true),
for (rgn = trgns) region_faces(rgn, move([0,0, height/2]), reverse=false)
])
) reorient(anchor,spin,orient, cp=cp, vnf=vnf, extent=!anchor_isect, p=vnf);
// Section: Offsets and Boolean 2D Geometry
function _offset_chamfer(center, points, delta) =
let(
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
endline = _shift_segment(select(points,[0,2]), delta-dist)
) [
line_intersection(endline, select(points,[0,1])),
line_intersection(endline, select(points,[1,2]))
];
function _shift_segment(segment, d) =
assert(!approx(segment[0],segment[1]),"Path has repeated points")
move(d*line_normal(segment),segment);
// Extend to segments to their intersection point. First check if the segments already have a point in common,
// which can happen if two colinear segments are input to the path variant of `offset()`
function _segment_extension(s1,s2) =
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2,LINE,LINE);
function _makefaces(direction, startind, good, pointcount, closed) =
let(
lenlist = list_bset(good, pointcount),
numfirst = len(lenlist),
numsecond = sum(lenlist),
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
)
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
_makefaces_recurse(
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
lenlist[firstind]==0? (
// point in original path has been deleted in offset path, so it has no match. We therefore
// make a triangular face using the current point from the offset (second) path
// (The current point in the second path can be equal to numsecond if firstind is the last point)
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
// in this case a point or points exist in the offset path corresponding to the original path
) : (
concat(faces,
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
// Finish (unconditionally) with a quadrilateral face
[
[
firstind+startind1,
(firstind+1)%numfirst+startind1,
(secondind+lenlist[firstind])%numsecond+startind2,
(secondind+lenlist[firstind]-1)%numsecond+startind2
]
]
)
)
);
// Determine which of the shifted segments are good
function _good_segments(path, d, shiftsegs, closed, quality) =
let(
maxind = len(path)-(closed ? 1 : 2),
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
pathseg_len = [for(seg=pathseg) norm(seg)],
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
// Order matters because as soon as a valid point is found, the test stops
// This order works better for circular paths because they succeed in the center
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
) [
for (i=[0:len(shiftsegs)-1])
(i>maxind)? true :
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-7, shiftsegs[i], alpha)
];
// Determine if a segment is good (approximately)
// Input is the path, the path segments normalized to unit length, the length of each path segment
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
// The last parameter, index, gives the current alpha index.
//
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
//
// This test is approximate because it only samples the points listed in alpha. Listing more points
// will make the test more accurate, but slower.
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
index == len(alpha) ? false :
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
// Input is the path, the path segments normalized to unit length, the length of each path segment
// and a test point. Computes the (minimum) distance from the path to the point, taking into
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
min([
for(i=[0:len(pathseg_unit)-1]) let(
v = pt-path[i],
projection = v*pathseg_unit[i],
segdist = projection < 0? norm(pt-path[i]) :
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
norm(v-projection*pathseg_unit[i])
) segdist
]);
function _offset_region(
paths, r, delta, chamfer, closed,
check_valid, quality,
return_faces, firstface_index,
flip_faces, _acc=[], _i=0
) =
_i>=len(paths)? _acc :
_offset_region(
paths, _i=_i+1,
_acc = (paths[_i].x % 2 == 0)? (
union(_acc, [
offset(
paths[_i].y,
r=r, delta=delta, chamfer=chamfer, closed=closed,
check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
])
) : (
difference(_acc, [
offset(
paths[_i].y,
r=u_mul(-1,r), delta=u_mul(-1,delta), chamfer=chamfer, closed=closed,
check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
])
),
r=r, delta=delta, chamfer=chamfer, closed=closed,
check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces
);
// Function: offset()
// Usage:
// offsetpath = offset(path, [r|delta], [chamfer], [closed], [check_valid], [quality])
// path_faces = offset(path, return_faces=true, [r|delta], [chamfer], [closed], [check_valid], [quality], [firstface_index], [flip_faces])
// Description:
// Takes an input path and returns a path offset by the specified amount. As with the built-in
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
// corners. If you used `delta` you can set `chamfer` to true to get chamfers.
// Positive offsets shift the path to the left (relative to the direction of the path).
// .
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
// for this situation. To test validity the code checks that segments have distance larger than (r
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
// segments you wanted included in various situations, so you can disable it if you wish by setting
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
// increases the number of samples on the segment that are checked.) Run time will increase. In
// some situations you may be able to decrease run time by setting quality to 0, which causes only
// segment ends to be checked.
// .
// For construction of polyhedra `offset()` can also return face lists. These list faces between
// the original path and the offset path where the vertices are ordered with the original path
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
// value is a list: [offset_path, face_list].
// Arguments:
// path = the path to process. A list of 2d points.
// ---
// r = offset radius. Distance to offset. Will round over corners.
// delta = offset distance. Distance to offset with pointed corners.
// chamfer = chamfer corners when you specify `delta`. Default: false
// closed = path is a closed curve. Default: False.
// check_valid = perform segment validity check. Default: True.
// quality = validity check quality parameter, a small integer. Default: 1.
// return_faces = return face list. Default: False.
// firstface_index = starting index for face list. Default: 0.
// flip_faces = flip face direction. Default: false
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
// Example(2D):
// star = star(5, r=100, ir=30);
// #stroke(closed=true, star);
// stroke(closed=true, offset(star, r=-10, closed=true, $fn=20));
// Example(2D): This case needs `quality=2` for success
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
// polygon(offset(test,r=-1.9, closed=true, quality=2));
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
// %down(.1)polygon(test);
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
// star = star(5, r=22, ir=13);
// stroke(star,width=.2,closed=true);
// color("green")
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
// color("red")
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
// width=.2,closed=true);
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
// star = star(5, r=22, ir=13);
// color("green")
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
// color("red")
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
// Example(2D): The triangles are removed by the validity check
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
// stroke(ellipse, closed=true, width=0.3);
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
// #stroke(sinpath);
// stroke(offset(sinpath, r=17.5));
// Example(2D): Region
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
// region(offset(rgn, r=-5));
function offset(
path, r=undef, delta=undef, chamfer=false,
closed=false, check_valid=true,
quality=1, return_faces=false, firstface_index=0,
flip_faces=false
) =
is_region(path)? (
assert(!return_faces, "return_faces not supported for regions.")
let(
path = [for (p=path) clockwise_polygon(p)],
rgn = exclusive_or([for (p = path) [p]]),
pathlist = sort(idx=0,[
for (i=[0:1:len(rgn)-1]) [
sum(concat([0],[
for (j=[0:1:len(rgn)-1]) if (i!=j)
point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0
])),
rgn[i]
]
])
) _offset_region(
pathlist, r=r, delta=delta, chamfer=chamfer, closed=true,
check_valid=check_valid, quality=quality,
return_faces=return_faces, firstface_index=firstface_index,
flip_faces=flip_faces
)
) : let(rcount = num_defined([r,delta]))
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
let(
chamfer = is_def(r) ? false : chamfer,
quality = max(0,round(quality)),
flip_dir = closed && !is_polygon_clockwise(path)? -1 : 1,
d = flip_dir * (is_def(r) ? r : delta),
// shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)],
shiftsegs = [for(i=[0:len(path)-2]) _shift_segment([path[i],path[i+1]], d),
if (closed) _shift_segment([last(path),path[0]],d)
else [path[0],path[1]] // dummy segment, not used
],
// good segments are ones where no point on the segment is less than distance d from any point on the path
good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : repeat(true,len(shiftsegs)),
goodsegs = bselect(shiftsegs, good),
goodpath = bselect(path,good)
)
assert(len(goodsegs)>0,"Offset of path is degenerate")
let(
// Extend the shifted segments to their intersection points
sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))],
// If some segments are parallel then the extended segments are undefined. This case is not handled
// Note if !closed the last corner doesn't matter, so exclude it
parallelcheck =
(len(sharpcorners)==2 && !closed) ||
all_defined(closed? sharpcorners : list_tail(sharpcorners))
)
assert(parallelcheck, "Path contains sequential parallel segments (either 180 deg turn or 0 deg turn")
let(
// This is a boolean array that indicates whether a corner is an outside or inside corner
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
// If either side turns back it is an inside corner---must check both.
// Outside corners can get rounded (if r is specified and there is space to round them)
outsidecorner = len(sharpcorners)==2 ? [false,false]
:
[for(i=[0:len(goodsegs)-1])
let(prevseg=select(goodsegs,i-1))
i==0 && !closed ? false // In open case first entry is bogus
:
(goodsegs[i][1]-goodsegs[i][0]) * (goodsegs[i][0]-sharpcorners[i]) > 0
&& (prevseg[1]-prevseg[0]) * (sharpcorners[i]-prevseg[1]) > 0
],
steps = is_def(delta) ? [] : [
for(i=[0:len(goodsegs)-1])
r==0 ? 0
// floor is important here to ensure we don't generate extra segments when nearly straight paths expand outward
: 1+floor(segs(r)*vector_angle(
select(goodsegs,i-1)[1]-goodpath[i],
goodsegs[i][0]-goodpath[i])
/360)
],
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
// Otherwise it's the same as sharpcorners
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
// plain sharpcorners back.
newcorners = is_def(delta) && !chamfer ? [sharpcorners]
: [for(i=[0:len(goodsegs)-1])
(!chamfer && steps[i] <=1) // Don't round if steps is smaller than 2
|| !outsidecorner[i] // Don't round inside corners
|| (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path
? [sharpcorners[i]]
: chamfer ? _offset_chamfer(
goodpath[i], [
select(goodsegs,i-1)[1],
sharpcorners[i],
goodsegs[i][0]
], d
)
: // rounded case
arc(cp=goodpath[i],
points=[
select(goodsegs,i-1)[1],
goodsegs[i][0]
],
N=steps[i])
],
pointcount = (is_def(delta) && !chamfer)?
repeat(1,len(sharpcorners)) :
[for(i=[0:len(goodsegs)-1]) len(newcorners[i])],
start = [goodsegs[0][0]],
end = [goodsegs[len(goodsegs)-2][1]],
edges = closed?
flatten(newcorners) :
concat(start,slice(flatten(newcorners),1,-2),end),
faces = !return_faces? [] :
_makefaces(
flip_faces, firstface_index, good,
pointcount, closed
)
) return_faces? [edges,faces] : edges;
function _tag_subpaths(path, region, eps=EPSILON) =
let(
subpaths = split_path_at_region_crossings(path, region, eps=eps),
tagged = [
for (sub = subpaths) let(
subpath = deduplicate(sub)
) if (len(sub)>1) let(
midpt = lerp(subpath[0], subpath[1], 0.5),
rel = point_in_region(midpt,region,eps=eps)
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
vec = unit(subpath[1]-subpath[0]),
perp = rot(90, planar=true, p=vec),
sidept = midpt + perp*0.01,
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
rel2 = point_in_region(sidept,region,eps=eps)>0
) rel1==rel2? ["S", subpath] : ["U", subpath]
]
) tagged;
function _tag_region_subpaths(region1, region2, eps=EPSILON) =
[for (path=region1) each _tag_subpaths(path, region2, eps=eps)];
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
let(
region1 = close_region(region1, eps=eps),
region2 = close_region(region2, eps=eps),
tagged1 = _tag_region_subpaths(region1, region2, eps=eps),
tagged2 = _tag_region_subpaths(region2, region1, eps=eps),
tagged = concat(
[for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]],
[for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]]
),
outregion = _assemble_path_fragments(tagged, eps=eps)
) outregion;
// Function&Module: union()
// Usage:
// union() {...}
// region = union(regions);
// region = union(REGION1,REGION2);
// region = union(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean union of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean union of the given children.
// Arguments:
// regions = List of regions to union. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(union(shape1,shape2));
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
union(
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
concat(
[_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: difference()
// Usage:
// difference() {...}
// region = difference(regions);
// region = difference(REGION1,REGION2);
// region = difference(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, takes the first region and differences away all other regions from it. The resulting
// region is returned.
// When called as the built-in module, makes the boolean difference of the given children.
// Arguments:
// regions = List of regions to difference. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(difference(shape1,shape2));
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
len(regions)<=1? regions[0] :
difference(
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
concat(
[_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: intersection()
// Usage:
// intersection() {...}
// region = intersection(regions);
// region = intersection(REGION1,REGION2);
// region = intersection(REGION1,REGION2,REGION3);
// Description:
// When called as a function, and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
// When called as the built-in module, makes the boolean intersection of all the given children.
// Arguments:
// regions = List of regions to intersection. Each region is a list of closed paths.
// Example(2D):
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(intersection(shape1,shape2));
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
intersection(
let(regions=[for (r=regions) quant(is_path(r)? [r] : r, 1/65536)])
concat(
[_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
// Function&Module: exclusive_or()
// Usage:
// exclusive_or() {...}
// region = exclusive_or(regions);
// region = exclusive_or(REGION1,REGION2);
// region = exclusive_or(REGION1,REGION2,REGION3);
// Description:
// When called as a function and given a list of regions, where each region is a list of closed
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
// When called as a module, performs a boolean exclusive-or of up to 10 children.
// Arguments:
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
// Example(2D): As Function
// shape1 = move([-8,-8,0], p=circle(d=50));
// shape2 = move([ 8, 8,0], p=circle(d=50));
// for (shape = [shape1,shape2])
// color("red") stroke(shape, width=0.5, closed=true);
// color("green") region(exclusive_or(shape1,shape2));
// Example(2D): As Module
// exclusive_or() {
// square(40,center=false);
// circle(d=40);
// }
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
len(regions)<=1? regions[0] :
exclusive_or(
let(regions=[for (r=regions) is_path(r)? [r] : r])
concat(
[union([
difference([regions[0],regions[1]], eps=eps),
difference([regions[1],regions[0]], eps=eps)
], eps=eps)],
[for (i=[2:1:len(regions)-1]) regions[i]]
),
eps=eps
);
module exclusive_or() {
if ($children==1) {
children();
} else if ($children==2) {
difference() {
children(0);
children(1);
}
difference() {
children(1);
children(0);
}
} else if ($children==3) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
children(2);
}
} else if ($children==4) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
}
exclusive_or() {
children(2);
children(3);
}
}
} else if ($children==5) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
}
} else if ($children==6) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
}
} else if ($children==7) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
children(4);
children(5);
children(6);
}
} else if ($children==8) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
}
} else if ($children==9) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
}
} else if ($children==10) {
exclusive_or() {
exclusive_or() {
children(0);
children(1);
children(2);
children(3);
}
exclusive_or() {
children(4);
children(5);
children(6);
children(7);
}
children(8);
children(9);
}
} else {
assert($children<=10, "exclusive_or() can only handle up to 10 children.");
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap