mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
377 lines
11 KiB
OpenSCAD
377 lines
11 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: screw_drive.scad
|
|
// Masks for Phillips, Torx and square (Robertson) driver holes.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/screw_drive.scad>
|
|
// FileGroup: Threaded Parts
|
|
// FileSummary: Masks for Phillips, Torx and square (Robertson) driver holes.
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Phillips Drive
|
|
|
|
// Module: phillips_mask()
|
|
// Usage: phillips_mask(size) [ATTACHMENTS];
|
|
// Description:
|
|
// Creates a mask for creating a Phillips drive recess given the Phillips size. Each mask can
|
|
// be lowered to different depths to create different sizes of recess.
|
|
// Arguments:
|
|
// size = The size of the bit as an integer or string. "#0", "#1", "#2", "#3", or "#4"
|
|
// ---
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
|
// Example:
|
|
// xdistribute(10) {
|
|
// phillips_mask(size="#1");
|
|
// phillips_mask(size="#2");
|
|
// phillips_mask(size=3);
|
|
// phillips_mask(size=4);
|
|
// }
|
|
|
|
// Specs for phillips recess here:
|
|
// https://www.fasteners.eu/tech-info/ISO/4757/
|
|
|
|
function _phillips_shaft(x) = [3,4.5,6,8,10][x];
|
|
function _ph_bot_angle() = 28.0;
|
|
function _ph_side_angle() = 26.5;
|
|
|
|
module phillips_mask(size="#2", $fn=36, anchor=BOTTOM, spin=0, orient=UP) {
|
|
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]));
|
|
num = is_num(size) ? size : ord(size[1]) - ord("0");
|
|
shaft = _phillips_shaft(num);
|
|
b = [0.61, 0.97, 1.47, 2.41, 3.48][num];
|
|
e = [0.31, 0.435, 0.815, 2.005, 2.415][num];
|
|
g = [0.81, 1.27, 2.29, 3.81, 5.08][num];
|
|
alpha = [ 136, 138, 140, 146, 153][num];
|
|
beta = [7.00, 7.00, 5.75, 5.75, 7.00][num];
|
|
gamma = 92.0;
|
|
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()); // height of the small conical tip
|
|
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()); // height of larger cone
|
|
l = h1+h2;
|
|
h3 = adj_ang_to_opp(b/2, _ph_bot_angle()); // height where cutout starts
|
|
p0 = [0,0];
|
|
p1 = [adj_ang_to_opp(e/2, 90-alpha/2), -e/2];
|
|
p2 = p1 + [adj_ang_to_opp((shaft-e)/2, 90-gamma/2),-(shaft-e)/2];
|
|
attachable(anchor,spin,orient, d=shaft, l=l) {
|
|
down(l/2) {
|
|
difference() {
|
|
rotate_extrude()
|
|
polygon([[0,0],[g/2,h1],[shaft/2,l],[0,l]]);
|
|
zrot(45)
|
|
zrot_copies(n=4, r=b/2) {
|
|
up(h3) {
|
|
yrot(beta) {
|
|
down(1)
|
|
linear_extrude(height=l+2, convexity=4, center=false) {
|
|
path = [p0, p1, p2, [p2.x,-p2.y], [p1.x,-p1.y]];
|
|
polygon(path);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Function: phillips_depth()
|
|
// Usage:
|
|
// depth = phillips_depth(size, d);
|
|
// Description:
|
|
// Returns the depth of the Phillips recess required to produce the specified diameter, or
|
|
// undef if not possible.
|
|
// Arguments:
|
|
// size = size as a number or text string like "#2"
|
|
// d = desired diameter
|
|
function phillips_depth(size, d) =
|
|
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
|
|
let(
|
|
num = is_num(size) ? size : ord(size[1]) - ord("0"),
|
|
shaft = [3,4.5,6,8,10][num],
|
|
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
|
|
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()), // height of the small conical tip
|
|
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()) // height of larger cone
|
|
)
|
|
d>=shaft || d<g ? undef :
|
|
(d-g) / 2 / tan(_ph_side_angle()) + h1;
|
|
|
|
|
|
// Function: phillips_diam()
|
|
// Usage:
|
|
// diam = phillips_diam(size, depth);
|
|
// Description:
|
|
// Returns the diameter at the top of the Phillips recess when constructed at the specified depth,
|
|
// or undef if that depth is not valid.
|
|
// Arguments:
|
|
// size = size as number or text string like "#2"
|
|
// depth = depth of recess to find the diameter of
|
|
function phillips_diam(size, depth) =
|
|
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
|
|
let(
|
|
num = is_num(size) ? size : ord(size[1]) - ord("0"),
|
|
shaft = _phillips_shaft(num),
|
|
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
|
|
h1 = adj_ang_to_opp(g/2, _ph_bot_angle()), // height of the small conical tip
|
|
h2 = adj_ang_to_opp((shaft-g)/2, 90-_ph_side_angle()) // height of larger cone
|
|
)
|
|
depth<h1 || depth>= h1+h2 ? undef :
|
|
2 * tan(_ph_side_angle())*(depth-h1) + g;
|
|
|
|
|
|
|
|
// Section: Torx Drive
|
|
|
|
|
|
|
|
// Module: torx_mask()
|
|
// Usage:
|
|
// torx_mask(size, l, [center]) [ATTACHMENTS];
|
|
// Description: Creates a torx bit tip.
|
|
// Arguments:
|
|
// size = Torx size.
|
|
// l = Length of bit.
|
|
// center = If true, centers bit vertically.
|
|
// ---
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
|
// Examples:
|
|
// torx_mask(size=30, l=10, $fa=1, $fs=1);
|
|
module torx_mask(size, l=5, center, anchor, spin=0, orient=UP) {
|
|
anchor = get_anchor(anchor, center, BOT, BOT);
|
|
od = torx_diam(size);
|
|
attachable(anchor,spin,orient, d=od, l=l) {
|
|
linear_extrude(height=l, convexity=4, center=true) {
|
|
torx_mask2d(size);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: torx_mask2d()
|
|
// Usage:
|
|
// torx_mask2d(size);
|
|
// Description: Creates a torx bit 2D profile.
|
|
// Arguments:
|
|
// size = Torx size.
|
|
// Example(2D):
|
|
// torx_mask2d(size=30, $fa=1, $fs=1);
|
|
module torx_mask2d(size) {
|
|
no_children($children);
|
|
od = torx_diam(size);
|
|
id = _torx_inner_diam(size);
|
|
tip = _torx_tip_radius(size);
|
|
rounding = _torx_rounding_radius(size);
|
|
base = od - 2*tip;
|
|
$fn = quantup(segs(od/2),12);
|
|
difference() {
|
|
union() {
|
|
circle(d=base);
|
|
zrot_copies(n=2) {
|
|
hull() {
|
|
zrot_copies(n=3) {
|
|
translate([base/2,0,0]) {
|
|
circle(r=tip, $fn=$fn/2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
zrot_copies(n=6) {
|
|
zrot(180/6) {
|
|
translate([id/2+rounding,0,0]) {
|
|
circle(r=rounding);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Function: torx_diam()
|
|
// Usage:
|
|
// diam = torx_diam(size);
|
|
// Description: Get the typical outer diameter of Torx profile.
|
|
// Arguments:
|
|
// size = Torx size.
|
|
function torx_diam(size) = lookup(size, [
|
|
[ 6, 1.75],
|
|
[ 8, 2.40],
|
|
[ 10, 2.80],
|
|
[ 15, 3.35],
|
|
[ 20, 3.95],
|
|
[ 25, 4.50],
|
|
[ 30, 5.60],
|
|
[ 40, 6.75],
|
|
[ 45, 7.93],
|
|
[ 50, 8.95],
|
|
[ 55, 11.35],
|
|
[ 60, 13.45],
|
|
[ 70, 15.70],
|
|
[ 80, 17.75],
|
|
[ 90, 20.20],
|
|
[100, 22.40]
|
|
]);
|
|
|
|
|
|
/// Internal Function: torx_inner_diam()
|
|
/// Usage:
|
|
/// diam = torx_inner_diam(size);
|
|
/// Description: Get typical inner diameter of Torx profile.
|
|
/// Arguments:
|
|
/// size = Torx size.
|
|
function _torx_inner_diam(size) = lookup(size, [
|
|
[ 6, 1.27],
|
|
[ 8, 1.75],
|
|
[ 10, 2.05],
|
|
[ 15, 2.40],
|
|
[ 20, 2.85],
|
|
[ 25, 3.25],
|
|
[ 30, 4.05],
|
|
[ 40, 4.85],
|
|
[ 45, 5.64],
|
|
[ 50, 6.45],
|
|
[ 55, 8.05],
|
|
[ 60, 9.60],
|
|
[ 70, 11.20],
|
|
[ 80, 12.80],
|
|
[ 90, 14.40],
|
|
[100, 16.00]
|
|
]);
|
|
|
|
|
|
// Function: torx_depth()
|
|
// Usage:
|
|
// depth = torx_depth(size);
|
|
// Description: Gets typical drive hole depth.
|
|
// Arguments:
|
|
// size = Torx size.
|
|
function torx_depth(size) = lookup(size, [
|
|
[ 6, 1.82],
|
|
[ 8, 3.05],
|
|
[ 10, 3.56],
|
|
[ 15, 3.81],
|
|
[ 20, 4.07],
|
|
[ 25, 4.45],
|
|
[ 30, 4.95],
|
|
[ 40, 5.59],
|
|
[ 45, 6.22],
|
|
[ 50, 6.48],
|
|
[ 55, 6.73],
|
|
[ 60, 8.17],
|
|
[ 70, 8.96],
|
|
[ 80, 9.90],
|
|
[ 90, 10.56],
|
|
[100, 11.35]
|
|
]);
|
|
|
|
|
|
/// Internal Function: torx_tip_radius()
|
|
/// Usage:
|
|
/// rad = torx_tip_radius(size);
|
|
/// Description: Gets minor rounding radius of Torx profile.
|
|
/// Arguments:
|
|
/// size = Torx size.
|
|
function _torx_tip_radius(size) = lookup(size, [
|
|
[ 6, 0.132],
|
|
[ 8, 0.190],
|
|
[ 10, 0.229],
|
|
[ 15, 0.267],
|
|
[ 20, 0.305],
|
|
[ 25, 0.375],
|
|
[ 30, 0.451],
|
|
[ 40, 0.546],
|
|
[ 45, 0.574],
|
|
[ 50, 0.775],
|
|
[ 55, 0.867],
|
|
[ 60, 1.067],
|
|
[ 70, 1.194],
|
|
[ 80, 1.526],
|
|
[ 90, 1.530],
|
|
[100, 1.720]
|
|
]);
|
|
|
|
|
|
/// Internal Function: torx_rounding_radius()
|
|
/// Usage:
|
|
/// rad = torx_rounding_radius(size);
|
|
/// Description: Gets major rounding radius of Torx profile.
|
|
/// Arguments:
|
|
/// size = Torx size.
|
|
function _torx_rounding_radius(size) = lookup(size, [
|
|
[ 6, 0.383],
|
|
[ 8, 0.510],
|
|
[ 10, 0.598],
|
|
[ 15, 0.716],
|
|
[ 20, 0.859],
|
|
[ 25, 0.920],
|
|
[ 30, 1.194],
|
|
[ 40, 1.428],
|
|
[ 45, 1.796],
|
|
[ 50, 1.816],
|
|
[ 55, 2.667],
|
|
[ 60, 2.883],
|
|
[ 70, 3.477],
|
|
[ 80, 3.627],
|
|
[ 90, 4.468],
|
|
[100, 4.925]
|
|
]);
|
|
|
|
|
|
|
|
|
|
// Section: Robertson/Square Drives
|
|
|
|
// Module: robertson_mask()
|
|
// Usage:
|
|
// robertson_mask(size, [extra]);
|
|
// Description:
|
|
// Creates a mask for creating a Robertson/Square drive recess given the drive size as an integer.
|
|
// The width of the recess will be oversized by `2 * $slop`. Note that this model is based
|
|
// on an incomplete spec. https://www.aspenfasteners.com/content/pdf/square_drive_specification.pdf
|
|
// We determined the angle by doing print tests on a Prusa MK3S with $slop set to 0.05.
|
|
// Arguments:
|
|
// size = The size of the square drive, as an integer from 0 to 4.
|
|
// extra = Extra length of drive mask to create.
|
|
// ang = taper angle of each face. Default: 2.5
|
|
// $slop = enlarge recess by this twice amount. Default: 0
|
|
// Example:
|
|
// robertson_mask(size=2);
|
|
// Example:
|
|
// difference() {
|
|
// cyl(d1=2, d2=8, h=4, anchor=TOP);
|
|
// robertson_mask(size=2);
|
|
// }
|
|
module robertson_mask(size, extra=1, ang=2.5) {
|
|
assert(is_int(size) && size>=0 && size<=4);
|
|
Mmin = [0.0696, 0.0900, 0.1110, 0.1315, 0.1895][size];
|
|
Mmax = [0.0710, 0.0910, 0.1126, 0.1330, 0.1910][size];
|
|
M = (Mmin + Mmax) / 2 * INCH;
|
|
Tmin = [0.063, 0.105, 0.119, 0.155, 0.191][size];
|
|
Tmax = [0.073, 0.113, 0.140, 0.165, 0.201][size];
|
|
T = (Tmin + Tmax) / 2 * INCH;
|
|
Fmin = [0.032, 0.057, 0.065, 0.085, 0.090][size];
|
|
Fmax = [0.038, 0.065, 0.075, 0.095, 0.100][size];
|
|
F = (Fmin + Fmax) / 2 * INCH;
|
|
h = T + extra;
|
|
Mslop=M+2*get_slop();
|
|
down(T) {
|
|
intersection(){
|
|
Mtop = Mslop + 2*adj_ang_to_opp(F+extra,ang);
|
|
Mbot = Mslop - 2*adj_ang_to_opp(T-F,ang);
|
|
prismoid([Mbot,Mbot],[Mtop,Mtop],h=h,anchor=BOT);
|
|
cyl(d1=0, d2=Mslop/(T-F)*sqrt(2)*h, h=h, anchor=BOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|