mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
222 lines
9.2 KiB
OpenSCAD
222 lines
9.2 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vectors.scad
|
|
// Vector math functions.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Vector Manipulation
|
|
|
|
|
|
// Function: is_vector()
|
|
// Usage:
|
|
// is_vector(v, [length]);
|
|
// Description:
|
|
// Returns true if v is a list of finite numbers.
|
|
// Arguments:
|
|
// v = The value to test to see if it is a vector.
|
|
// length = If given, make sure the vector is `length` items long.
|
|
// zero = If false, require that the length/`norm()` of the vector is not approximately zero. If true, require the length/`norm()` of the vector to be approximately zero-length. Default: `undef` (don't check vector length/`norm()`.)
|
|
// all_nonzero = If true, requires all elements of the vector to be more than `eps` different from zero. Default: `false`
|
|
// eps = The minimum vector length that is considered non-zero. Default: `EPSILON` (`1e-9`)
|
|
// Example:
|
|
// is_vector(4); // Returns false
|
|
// is_vector([4,true,false]); // Returns false
|
|
// is_vector([3,4,INF,5]); // Returns false
|
|
// is_vector([3,4,5,6]); // Returns true
|
|
// is_vector([3,4,undef,5]); // Returns false
|
|
// is_vector([3,4,5],3); // Returns true
|
|
// is_vector([3,4,5],4); // Returns true
|
|
// is_vector([]); // Returns false
|
|
// is_vector([0,4,0],3,zero=false); // Returns true
|
|
// is_vector([0,0,0],zero=false); // Returns false
|
|
// is_vector([0,0,1e-12],zero=false); // Returns false
|
|
// is_vector([0,1,0],all_nonzero=false); // Returns false
|
|
// is_vector([1,1,1],all_nonzero=false); // Returns true
|
|
// is_vector([],zero=false); // Returns false
|
|
function is_vector(v, length, zero, all_nonzero=false, eps=EPSILON) =
|
|
is_list(v) && len(v)>0 && []==[for(vi=v) if(!is_num(vi)) 0]
|
|
&& (is_undef(length) || len(v)==length)
|
|
&& (is_undef(zero) || ((norm(v) >= eps) == !zero))
|
|
&& (!all_nonzero || all_nonzero(v)) ;
|
|
|
|
|
|
// Function: vang()
|
|
// Usage:
|
|
// theta = vang([X,Y]);
|
|
// theta_phi = vang([X,Y,Z]);
|
|
// Description:
|
|
// Given a 2D vector, returns the angle in degrees counter-clockwise from X+ on the XY plane.
|
|
// Given a 3D vector, returns [THETA,PHI] where THETA is the number of degrees counter-clockwise from X+ on the XY plane, and PHI is the number of degrees up from the X+ axis along the XZ plane.
|
|
function vang(v) =
|
|
assert( is_vector(v,2) || is_vector(v,3) , "Invalid vector")
|
|
len(v)==2? atan2(v.y,v.x) :
|
|
let(res=xyz_to_spherical(v)) [res[1], 90-res[2]];
|
|
|
|
|
|
// Function: vmul()
|
|
// Description:
|
|
// Element-wise multiplication. Multiplies each element of `v1` by the corresponding element of `v2`.
|
|
// Both `v1` and `v2` must be the same length. Returns a vector of the products.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vmul([3,4,5], [8,7,6]); // Returns [24, 28, 30]
|
|
function vmul(v1, v2) =
|
|
assert( is_list(v1) && is_list(v2) && len(v1)==len(v2), "Incompatible input")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]*v2[i]];
|
|
|
|
|
|
// Function: vdiv()
|
|
// Description:
|
|
// Element-wise vector division. Divides each element of vector `v1` by
|
|
// the corresponding element of vector `v2`. Returns a vector of the quotients.
|
|
// Arguments:
|
|
// v1 = The first vector.
|
|
// v2 = The second vector.
|
|
// Example:
|
|
// vdiv([24,28,30], [8,7,6]); // Returns [3, 4, 5]
|
|
function vdiv(v1, v2) =
|
|
assert( is_vector(v1) && is_vector(v2,len(v1)), "Incompatible vectors")
|
|
[for (i = [0:1:len(v1)-1]) v1[i]/v2[i]];
|
|
|
|
|
|
// Function: vabs()
|
|
// Description: Returns a vector of the absolute value of each element of vector `v`.
|
|
// Arguments:
|
|
// v = The vector to get the absolute values of.
|
|
// Example:
|
|
// vabs([-1,3,-9]); // Returns: [1,3,9]
|
|
function vabs(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) abs(x)];
|
|
|
|
|
|
// Function: vfloor()
|
|
// Description:
|
|
// Returns the given vector after performing a `floor()` on all items.
|
|
function vfloor(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) floor(x)];
|
|
|
|
|
|
// Function: vceil()
|
|
// Description:
|
|
// Returns the given vector after performing a `ceil()` on all items.
|
|
function vceil(v) =
|
|
assert( is_vector(v), "Invalid vector" )
|
|
[for (x=v) ceil(x)];
|
|
|
|
|
|
// Function: unit()
|
|
// Usage:
|
|
// unit(v, [error]);
|
|
// Description:
|
|
// Returns the unit length normalized version of vector v. If passed a zero-length vector,
|
|
// asserts an error unless `error` is given, in which case the value of `error` is returned.
|
|
// Arguments:
|
|
// v = The vector to normalize.
|
|
// error = If given, and input is a zero-length vector, this value is returned. Default: Assert error on zero-length vector.
|
|
// Examples:
|
|
// unit([10,0,0]); // Returns: [1,0,0]
|
|
// unit([0,10,0]); // Returns: [0,1,0]
|
|
// unit([0,0,10]); // Returns: [0,0,1]
|
|
// unit([0,-10,0]); // Returns: [0,-1,0]
|
|
// unit([0,0,0],[1,2,3]); // Returns: [1,2,3]
|
|
// unit([0,0,0]); // Asserts an error.
|
|
function unit(v, error=[[["ASSERT"]]]) =
|
|
assert(is_vector(v), str("Expected a vector. Got: ",v))
|
|
norm(v)<EPSILON? (error==[[["ASSERT"]]]? assert(norm(v)>=EPSILON,"Tried to normalize a zero vector") : error) :
|
|
v/norm(v);
|
|
|
|
|
|
// Function: vector_angle()
|
|
// Usage:
|
|
// vector_angle(v1,v2);
|
|
// vector_angle([v1,v2]);
|
|
// vector_angle(PT1,PT2,PT3);
|
|
// vector_angle([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_angle([V1,V2])`, returns the angle between the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_angle([A,B,C])`, returns the angle between the line segments AB and BC.
|
|
// If given two vectors, like `vector_angle(V1,V2)`, returns the angle between the two vectors V1 and V2.
|
|
// If given three points, like `vector_angle(A,B,C)`, returns the angle between the line segments AB and BC.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_angle(UP,LEFT); // Returns: 90
|
|
// vector_angle(RIGHT,LEFT); // Returns: 180
|
|
// vector_angle(UP+RIGHT,RIGHT); // Returns: 45
|
|
// vector_angle([10,10], [0,0], [10,-10]); // Returns: 90
|
|
// vector_angle([10,0,10], [0,0,0], [-10,10,0]); // Returns: 120
|
|
// vector_angle([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: 120
|
|
function vector_angle(v1,v2,v3) =
|
|
assert( ( is_undef(v3) && ( is_undef(v2) || same_shape(v1,v2) ) )
|
|
|| is_consistent([v1,v2,v3]) ,
|
|
"Bad arguments.")
|
|
assert( is_vector(v1) || is_consistent(v1), "Bad arguments.")
|
|
let( vecs = ! is_undef(v3) ? [v1-v2,v3-v2] :
|
|
! is_undef(v2) ? [v1,v2] :
|
|
len(v1) == 3 ? [v1[0]-v1[1], v1[2]-v1[1]]
|
|
: v1
|
|
)
|
|
assert(is_vector(vecs[0],2) || is_vector(vecs[0],3), "Bad arguments.")
|
|
let(
|
|
norm0 = norm(vecs[0]),
|
|
norm1 = norm(vecs[1])
|
|
)
|
|
assert(norm0>0 && norm1>0, "Zero length vector.")
|
|
// NOTE: constrain() corrects crazy FP rounding errors that exceed acos()'s domain.
|
|
acos(constrain((vecs[0]*vecs[1])/(norm0*norm1), -1, 1));
|
|
|
|
|
|
// Function: vector_axis()
|
|
// Usage:
|
|
// vector_axis(v1,v2);
|
|
// vector_axis([v1,v2]);
|
|
// vector_axis(PT1,PT2,PT3);
|
|
// vector_axis([PT1,PT2,PT3]);
|
|
// Description:
|
|
// If given a single list of two vectors, like `vector_axis([V1,V2])`, returns the vector perpendicular the two vectors V1 and V2.
|
|
// If given a single list of three points, like `vector_axis([A,B,C])`, returns the vector perpendicular to the plane through a, B and C.
|
|
// If given two vectors, like `vector_axis(V1,V2)`, returns the vector perpendicular to the two vectors V1 and V2.
|
|
// If given three points, like `vector_axis(A,B,C)`, returns the vector perpendicular to the plane through a, B and C.
|
|
// Arguments:
|
|
// v1 = First vector or point.
|
|
// v2 = Second vector or point.
|
|
// v3 = Third point in three point mode.
|
|
// Examples:
|
|
// vector_axis(UP,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(RIGHT,LEFT); // Returns: [0,-1,0] (FWD)
|
|
// vector_axis(UP+RIGHT,RIGHT); // Returns: [0,1,0] (BACK)
|
|
// vector_axis([10,10], [0,0], [10,-10]); // Returns: [0,0,-1] (DOWN)
|
|
// vector_axis([10,0,10], [0,0,0], [-10,10,0]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
// vector_axis([[10,0,10], [0,0,0], [-10,10,0]]); // Returns: [-0.57735, -0.57735, 0.57735]
|
|
function vector_axis(v1,v2=undef,v3=undef) =
|
|
is_vector(v3)
|
|
? assert(is_consistent([v3,v2,v1]), "Bad arguments.")
|
|
vector_axis(v1-v2, v3-v2)
|
|
: assert( is_undef(v3), "Bad arguments.")
|
|
is_undef(v2)
|
|
? assert( is_list(v1), "Bad arguments.")
|
|
len(v1) == 2
|
|
? vector_axis(v1[0],v1[1])
|
|
: vector_axis(v1[0],v1[1],v1[2])
|
|
: assert( is_vector(v1,zero=false) && is_vector(v2,zero=false) && is_consistent([v1,v2])
|
|
, "Bad arguments.")
|
|
let(
|
|
eps = 1e-6,
|
|
w1 = point3d(v1/norm(v1)),
|
|
w2 = point3d(v2/norm(v2)),
|
|
w3 = (norm(w1-w2) > eps && norm(w1+w2) > eps) ? w2
|
|
: (norm(vabs(w2)-UP) > eps)? UP
|
|
: RIGHT
|
|
) unit(cross(w1,w3));
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|