mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-22 12:29:36 +00:00
192 lines
9.7 KiB
OpenSCAD
192 lines
9.7 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: partitions.scad
|
|
// Modules to help partition large objects into smaller parts that can be reassembled.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/partitions.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Partitioning
|
|
|
|
|
|
function _partition_subpath(type) =
|
|
type=="flat"? [[0,0],[1,0]] :
|
|
type=="sawtooth"? [[0,-0.5], [0.5,0.5], [1,-0.5]] :
|
|
type=="sinewave"? [for (a=[0:5:360]) [a/360,sin(a)/2]] :
|
|
type=="comb"? let(dx=0.5*sin(2)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
|
|
type=="finger"? let(dx=0.5*sin(20)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
|
|
type=="dovetail"? [[0,-0.5], [0.3,-0.5], [0.2,0.5], [0.8,0.5], [0.7,-0.5], [1,-0.5]] :
|
|
type=="hammerhead"? [[0,-0.5], [0.35,-0.5], [0.35,0], [0.15,0], [0.15,0.5], [0.85,0.5], [0.85,0], [0.65,0], [0.65,-0.5],[1,-0.5]] :
|
|
type=="jigsaw"? concat(
|
|
arc(r=5/16, cp=[0,-3/16], start=270, angle=125),
|
|
arc(r=5/16, cp=[1/2,3/16], start=215, angle=-250),
|
|
arc(r=5/16, cp=[1,-3/16], start=145, angle=125)
|
|
) :
|
|
assert(false, str("Unsupported cutpath type: ", type));
|
|
|
|
|
|
function _partition_cutpath(l, h, cutsize, cutpath, gap) =
|
|
let(
|
|
check = assert(is_finite(l))
|
|
assert(is_finite(h))
|
|
assert(is_finite(gap))
|
|
assert(is_finite(cutsize) || is_vector(cutsize,2))
|
|
assert(is_string(cutpath) || is_path(cutpath,2)),
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize],
|
|
cutpath = is_path(cutpath)? cutpath :
|
|
_partition_subpath(cutpath),
|
|
reps = ceil(l/(cutsize.x+gap)),
|
|
cplen = (cutsize.x+gap) * reps,
|
|
path = deduplicate(concat(
|
|
[[-l/2, cutpath[0].y*cutsize.y]],
|
|
[for (i=[0:1:reps-1], pt=cutpath) v_mul(pt,cutsize)+[i*(cutsize.x+gap)+gap/2-cplen/2,0]],
|
|
[[ l/2, cutpath[len(cutpath)-1].y*cutsize.y]]
|
|
)),
|
|
stidxs = [for (i = idx(path)) if (path[i].x < -l/2) i],
|
|
enidxs = [for (i = idx(path)) if (path[i].x > +l/2) i],
|
|
stidx = stidxs? last(stidxs) : 0,
|
|
enidx = enidxs? enidxs[0] : -1,
|
|
trunc = select(path, stidx, enidx)
|
|
) trunc;
|
|
|
|
|
|
// Module: partition_mask()
|
|
// Usage:
|
|
// partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient],);
|
|
// Description:
|
|
// Creates a mask that you can use to difference or intersect with an object to remove half of it, leaving behind a side designed to allow assembly of the sub-parts.
|
|
// Arguments:
|
|
// l = The length of the cut axis.
|
|
// w = The width of the part to be masked, back from the cut plane.
|
|
// h = The height of the part to be masked.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// inverse = If true, create a cutpath that is meant to mate to a non-inverted cutpath.
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
|
|
// $slop = The amount to shrink the mask by, to correct for printer-specific fitting.
|
|
// Examples:
|
|
// partition_mask(w=50, gap=0, cutpath="jigsaw");
|
|
// partition_mask(w=50, gap=30, cutpath="jigsaw");
|
|
// partition_mask(w=50, gap=30, cutpath="jigsaw", inverse=true);
|
|
// partition_mask(w=50, gap=30, cutsize=15, cutpath="jigsaw");
|
|
// partition_mask(w=50, cutsize=[20,20], gap=30, cutpath="jigsaw");
|
|
// Examples(2D):
|
|
// partition_mask(w=20, cutpath="sawtooth");
|
|
// partition_mask(w=20, cutpath="sinewave");
|
|
// partition_mask(w=20, cutpath="comb");
|
|
// partition_mask(w=20, cutpath="finger");
|
|
// partition_mask(w=20, cutpath="dovetail");
|
|
// partition_mask(w=20, cutpath="hammerhead");
|
|
// partition_mask(w=20, cutpath="jigsaw");
|
|
module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, inverse=false, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
cutsize = is_vector(cutsize)? point2d(cutsize) : [cutsize*2, cutsize];
|
|
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
|
|
midpath = select(path,1,-2);
|
|
sizepath = concat([path[0]+[-$slop,0]], midpath, [last(path)+[$slop,0]], [[+(l/2+$slop), (w+$slop)*(inverse?-1:1)], [-(l/2+$slop), (w+$slop)*(inverse?-1:1)]]);
|
|
bnds = pointlist_bounds(sizepath);
|
|
fullpath = concat(path, [[last(path).x, w*(inverse?-1:1)], [path[0].x, w*(inverse?-1:1)]]);
|
|
attachable(anchor,spin,orient, size=point3d(bnds[1]-bnds[0],h)) {
|
|
linear_extrude(height=h, center=true, convexity=10) {
|
|
intersection() {
|
|
offset(delta=-$slop) polygon(fullpath);
|
|
square([l, w*2], center=true);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: partition_cut_mask()
|
|
// Usage:
|
|
// partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient]);
|
|
// Description:
|
|
// Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled.
|
|
// Arguments:
|
|
// l = The length of the cut axis.
|
|
// w = The width of the part to be masked, back from the cut plane.
|
|
// h = The height of the part to be masked.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5. Default: "jigsaw"
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
|
|
// $slop = The width of the cut mask, to correct for printer-specific fitting. Min: 0.1.
|
|
// Examples:
|
|
// partition_cut_mask(gap=0, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutsize=15, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutsize=[20,20], cutpath="dovetail");
|
|
// Examples(2DMed):
|
|
// partition_cut_mask(cutpath="sawtooth");
|
|
// partition_cut_mask(cutpath="sinewave");
|
|
// partition_cut_mask(cutpath="comb");
|
|
// partition_cut_mask(cutpath="finger");
|
|
// partition_cut_mask(cutpath="dovetail");
|
|
// partition_cut_mask(cutpath="hammerhead");
|
|
// partition_cut_mask(cutpath="jigsaw");
|
|
module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
|
|
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
|
|
attachable(anchor,spin,orient, size=[l,cutsize.y,h]) {
|
|
linear_extrude(height=h, center=true, convexity=10) {
|
|
stroke(path, width=max(0.1, $slop*2));
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: partition()
|
|
// Usage:
|
|
// partition(size, [spread], [cutsize], [cutpath], [gap], [spin]) ...
|
|
// Description:
|
|
// Partitions an object into two parts, spread apart a small distance, with matched joining edges.
|
|
// Arguments:
|
|
// size = The [X,Y,Z] size of the object to partition.
|
|
// spread = The distance to spread the two parts by.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
|
|
// Examples(Med):
|
|
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=20, gap=20, cutsize=15, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=25, gap=15, cutsize=[20,20], cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// Examples(2DMed):
|
|
// partition(cutpath="sawtooth") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="sinewave") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="comb") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="finger") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, cutpath="hammerhead") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="jigsaw") cylinder(h=50, d=80, center=false);
|
|
module partition(size=100, spread=10, cutsize=10, cutpath="jigsaw", gap=0, spin=0)
|
|
{
|
|
size = is_vector(size)? size : [size,size,size];
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
|
|
rsize = v_abs(rot(spin,p=size));
|
|
vec = rot(spin,p=BACK)*spread/2;
|
|
move(vec) {
|
|
intersection() {
|
|
children();
|
|
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, spin=spin);
|
|
}
|
|
}
|
|
move(-vec) {
|
|
intersection() {
|
|
children();
|
|
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, inverse=true, spin=spin);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|