BOSL2/joiners.scad
2020-01-10 19:30:20 -08:00

587 lines
23 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: joiners.scad
// Snap-together joiners.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/joiners.scad>
// ```
//////////////////////////////////////////////////////////////////////
include <BOSL2/rounding.scad>
include <BOSL2/skin.scad>
// Section: Half Joiners
// Module: half_joiner_clear()
// Description:
// Creates a mask to clear an area so that a half_joiner can be placed there.
// Usage:
// half_joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// half_joiner_clear(spin=-90);
module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
orient_and_anchor([w, guide_width, h], orient, anchor, spin=spin) {
union() {
yspread(overlap, n=overlap>0? 2 : 1) {
difference() {
// Diamonds.
scale([w+clearance, dmnd_width/2, dmnd_height/2]) {
xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true);
}
// Blunt point of tab.
yspread(guide_width+4) {
cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true);
}
}
}
if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true);
}
}
}
// Module: half_joiner()
// Usage:
// half_joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a half_joiner object that can be attached to half_joiner2 object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Example:
// half_joiner(screwsize=3, spin=-90);
module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
if ($children > 0) {
difference() {
children();
half_joiner_clear(h=h, w=w, a=a, clearance=0.1, overlap=0.01, anchor=anchor, spin=spin, orient=orient);
}
}
render(convexity=12)
orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) {
difference() {
union() {
// Make base.
difference() {
// Solid backing base.
fwd(l/2) cube(size=[w, l, h], center=true);
// Clear diamond for tab
grid3d(xa=[-(w*2/3), (w*2/3)]) {
half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a);
}
}
difference() {
// Make tab
scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45)
cube(size=[1,sqrt(2),sqrt(2)], center=true);
// Blunt point of tab.
back(guide_width/2+2)
cube(size=[w*0.99,4,guide_size*2], center=true);
}
// Guide ridges.
if (guides == true) {
xspread(w/3-$slop*2) {
// Guide ridge.
fwd(0.05/2) {
scale([0.75, 1, 2]) yrot(45)
cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true);
}
// Snap ridge.
scale([0.25, 0.5, 1]) zrot(45)
cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true);
}
}
}
// Make screwholes, if needed.
if (screwsize != undef) {
yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12);
}
}
}
}
//half_joiner(screwsize=3);
// Module: half_joiner2()
// Usage:
// half_joiner2(h, w, l, [a], [screwsize], [guides])
// Description:
// Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// half_joiner2(screwsize=3, spin=-90);
module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
if ($children > 0) {
difference() {
children();
half_joiner_clear(h=h, w=w, a=a, clearance=0.1, overlap=0.01, orient=orient, spin=spin, anchor=anchor);
}
}
render(convexity=12)
orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) {
difference() {
union () {
fwd(l/2) cube(size=[w, l, h], center=true);
cube([w, guide_width, h], center=true);
}
// Subtract mated half_joiner.
zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0);
// Make screwholes, if needed.
if (screwsize != undef) {
xcyl(r=screwsize*1.1/2, l=w+1, $fn=12);
}
}
}
}
// Section: Full Joiners
// Module: joiner_clear()
// Description:
// Creates a mask to clear an area so that a joiner can be placed there.
// Usage:
// joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// joiner_clear(spin=-90);
module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
orient_and_anchor([w, guide_width, h], orient, anchor, spin=spin) {
union() {
up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance);
down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01);
}
}
}
// Module: joiner()
// Usage:
// joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner object that can be attached to another joiner object.
// Arguments:
// h = Height of the joiner.
// w = Width of the joiner.
// l = Length of the backing to the joiner.
// a = Overhang angle of the joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples:
// joiner(screwsize=3, spin=-90);
// joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT);
module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
if ($children > 0) {
difference() {
children();
joiner_clear(h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor);
}
}
orient_and_anchor([w, 2*l, h], orient, anchor, spin=spin) {
union() {
up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
}
}
// Section: Full Joiners Pairs/Sets
// Module: joiner_pair_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners (2 by default) to clear for.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_pair_clear(spacing=50, n=2);
// joiner_pair_clear(spacing=50, n=3);
module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
orient_and_anchor([spacing+w, guide_width, h], orient, anchor, spin=spin) {
xspread(spacing, n=n) {
joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap);
}
}
}
// Module: joiner_pair()
// Usage:
// joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_pair object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples:
// joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT);
// joiner_pair(spacing=50, l=10, n=2, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90);
module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
if ($children > 0) {
difference() {
children();
joiner_pair_clear(spacing=spacing, h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor);
}
}
orient_and_anchor([spacing+w, 2*l, h], orient, anchor, spin=spin) {
left((n-1)*spacing/2) {
for (i=[0:1:n-1]) {
right(i*spacing) {
yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) {
joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
}
}
}
}
}
// Section: Full Joiners Quads/Sets
// Module: joiner_quad_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing1 = Spacing between joiner centers.
// spacing2 = Spacing between back-to-back pairs/sets of joiners.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners in a row. Default: 2
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_quad_clear(spacing1=50, spacing2=50, n=2);
// joiner_quad_clear(spacing1=50, spacing2=50, n=3);
module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
orient_and_anchor([w+spacing1, spacing2, h], orient, anchor, spin=spin) {
zrot_copies(n=2) {
back(spacing2/2) {
joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap);
}
}
}
}
// Module: joiner_quad()
// Usage:
// joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_quad object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
// $slop = Printer specific slop value to make parts fit more closely.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90);
module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
if ($children > 0) {
difference() {
children();
joiner_quad_clear(spacing1=spacing1, spacing2=spacing2, h=h, w=w, a=a, clearance=0.1, orient=orient, spin=spin, anchor=anchor);
}
}
orient_and_anchor([w+spacing1, spacing2, h], orient, anchor, spin=spin) {
zrot_copies(n=2) {
back(spacing2/2) {
joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
}
}
}
// Section: Dovetails
// Module: dovetail()
//
// Usage:
// dovetail(l|length, h|height, w|width, slope|angle, taper|width2, [chamfer], [r|radius], [round], [$slop])
//
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the X axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the X direction.
//
// Arguments:
// l / length = Length of the dovetail (amount the joint slides during assembly)
// h / height = Height of the dovetail
// w / width = Width (at the wider, top end) of the dovetail before tapering
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
// taper = taper angle (in degrees). Dovetail gets wider by this angle. Default: no taper
// width2 = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of taper and width2.
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
// r / radius = amount to round over the corners of the joint (Default: no rounding)
// round =
// Example: Ordinary straight dovetail, male version (sticking up) and female verison (below the xy plane)
// dovetail("male", length=30, width=15, height=8);
// fwd(25) dovetail("female", length=30, width=15, height=8);
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
// dovetail("male", length=30, width=15, height=8, taper=6);
// fwd(25) dovetail("female", length=30, width=15, height=8, taper=6);
// Example: A block that can link to itself
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,$tags="remove");
// }
// Example: Setting the dovetail angle. This is too extreme to be useful.
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30,spin=90);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,spin=90,$tags="remove");
// }
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,chamfer=1);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,chamfer=1,$tags="remove");
// }
// Example: Rounding the outside corners is another option
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,radius=1);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,radius=1,$tags="remove");
// }
// Example: Or you can make a fully rounded joint
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,spin=90,radius=1.5, round=true);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,spin=90,radius=1.5, round=true, $tags="remove");
// }
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `width2` may be easier than using a taper angle.
// cuboid([50,30,10])
// attach(TOP) dovetail("male", length=50, width=15, height=4, width2=18);
// fwd(35)
// diff("remove")
// cuboid([50,30,10])
// attach(TOP) dovetail("female", length=50, width=15, height=4, width2=18, $tags="remove");
// Example: A series of dovtails
// cuboid([50,30,10])
// attach(BACK) xspread(10,5) dovetail("male", length=10, width=7, height=4, spin=90);
// Example: Mating pin board for a right angle joint
// diff("remove")
// cuboid([50,30,10])
// position(TOP+BACK) xspread(10,5) dovetail("female", length=10, width=7, height=4, spin=90,$tags="remove",anchor=BOTTOM+RIGHT);
module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, width2, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
{
radius = get_radius(r1=radius,r2=r);
lcount = num_defined([l,length]);
hcount = num_defined([h,height]);
wcount = num_defined([w,width]);
assert(lcount==1, "Must define exactly one of l and length");
assert(wcount==1, "Must define exactly one of w and width");
assert(hcount==1, "Must define exactly one of h and height");
h = first_defined([h,height]);
w = first_defined([w,width]);
length = first_defined([l,length]);
orient = is_def(orient) ? orient :
gender == "female" ? DOWN : UP;
count = num_defined([angle,slope]);
assert(count<=1, "Do not specify both angle and slope");
count2 = num_defined([taper,width2]);
assert(count2<=1, "Do not specify both taper and width2");
count3 = num_defined([chamfer, radius]);
assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
slope = is_def(slope) ? slope :
is_def(angle) ? 1/tan(angle) : 6;
width = gender == "male" ? w : w + 2*$slop;
height = h + (gender == "female" ? 2*$slop : 0);
front_offset = is_def(taper) ? extra * tan(taper) :
is_def(width2) ? extra * (width2-width)/length/2 : 0;
size = is_def(chamfer) && chamfer>0 ? chamfer :
is_def(radius) && radius>0 ? radius : 0;
type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
fullsize = round ? [0,size,size] :
gender == "male" ? [0,size,0] : [0,0,size];
smallend_half = round_corners(
move(
[-length/2-extra,0,0],
p=[
[0,0 , height],
[0,width/2-front_offset , height],
[0,width/2 - height/slope - front_offset, 0 ],
[0,width/2 - front_offset + height, 0]
]
),
curve=type, size=fullsize, closed=false
);
smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
offset = is_def(taper) ? (length+extra) * tan(taper) :
is_def(width2) ? (width2-width) / 2 : 0;
bigend_points = move([length+2*extra,offset,0], p=smallend_points);
adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach()
orient_and_anchor([length, width+2*offset, height],anchor=anchor,orient=orient,spin=spin, chain=true) {
down(height/2+adjustment) {
skin(
[
concat(smallend_points, yflip(p=reverse(smallend_points))),
concat(bigend_points, yflip(p=reverse(bigend_points)))
],
convexity=4
);
}
children();
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap