mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
1222 lines
50 KiB
OpenSCAD
1222 lines
50 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: paths.scad
|
|
// Support for polygons and paths.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Functions
|
|
|
|
|
|
// Function: is_path()
|
|
// Usage:
|
|
// is_path(list, [dim], [fast])
|
|
// Description:
|
|
// Returns true if `list` is a path. A path is a list of two or more numeric vectors (AKA points).
|
|
// All vectors must of the same size, and may only contain numbers that are not inf or nan.
|
|
// By default the vectors in a path must be 2d or 3d. Set the `dim` parameter to specify a list
|
|
// of allowed dimensions, or set it to `undef` to allow any dimension.
|
|
// Example:
|
|
// bool1 = is_path([[3,4],[5,6]]); // Returns true
|
|
// bool2 = is_path([[3,4]]); // Returns false
|
|
// bool3 = is_path([[3,4],[4,5]],2); // Returns true
|
|
// bool4 = is_path([[3,4,3],[5,4,5]],2); // Returns false
|
|
// bool5 = is_path([[3,4,3],[5,4,5]],2); // Returns false
|
|
// bool6 = is_path([[3,4,5],undef,[4,5,6]]); // Returns false
|
|
// bool7 = is_path([[3,5],[undef,undef],[4,5]]); // Returns false
|
|
// bool8 = is_path([[3,4],[5,6],[5,3]]); // Returns true
|
|
// bool9 = is_path([3,4,5,6,7,8]); // Returns false
|
|
// bool10 = is_path([[3,4],[5,6]], dim=[2,3]);// Returns true
|
|
// bool11 = is_path([[3,4],[5,6]], dim=[1,3]);// Returns false
|
|
// bool12 = is_path([[3,4],"hello"], fast=true); // Returns true
|
|
// bool13 = is_path([[3,4],[3,4,5]]); // Returns false
|
|
// bool14 = is_path([[1,2,3,4],[2,3,4,5]]); // Returns false
|
|
// bool15 = is_path([[1,2,3,4],[2,3,4,5]],undef);// Returns true
|
|
// Arguments:
|
|
// list = list to check
|
|
// dim = list of allowed dimensions of the vectors in the path. Default: [2,3]
|
|
// fast = set to true for fast check that only looks at first entry. Default: false
|
|
function is_path(list, dim=[2,3], fast=false) =
|
|
fast
|
|
? is_list(list) && is_vector(list[0])
|
|
: is_matrix(list)
|
|
&& len(list)>1
|
|
&& len(list[0])>0
|
|
&& (is_undef(dim) || in_list(len(list[0]), force_list(dim)));
|
|
|
|
|
|
// Function: is_closed_path()
|
|
// Usage:
|
|
// is_closed_path(path, [eps]);
|
|
// Description:
|
|
// Returns true if the first and last points in the given path are coincident.
|
|
function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps);
|
|
|
|
|
|
// Function: close_path()
|
|
// Usage:
|
|
// close_path(path);
|
|
// Description:
|
|
// If a path's last point does not coincide with its first point, closes the path so it does.
|
|
function close_path(path, eps=EPSILON) =
|
|
is_closed_path(path,eps=eps)? path : concat(path,[path[0]]);
|
|
|
|
|
|
// Function: cleanup_path()
|
|
// Usage:
|
|
// cleanup_path(path);
|
|
// Description:
|
|
// If a path's last point coincides with its first point, deletes the last point in the path.
|
|
function cleanup_path(path, eps=EPSILON) =
|
|
is_closed_path(path,eps=eps)? [for (i=[0:1:len(path)-2]) path[i]] : path;
|
|
|
|
|
|
// Function: path_subselect()
|
|
// Usage:
|
|
// path_subselect(path,s1,u1,s2,u2,[closed]):
|
|
// Description:
|
|
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
|
|
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
|
|
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
|
|
// Arguments:
|
|
// path = The path to get a section of.
|
|
// s1 = The number of the starting segment.
|
|
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
|
|
// s2 = The number of the ending segment.
|
|
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
|
|
// closed = If true, treat path as a closed polygon.
|
|
function path_subselect(path, s1, u1, s2, u2, closed=false) =
|
|
let(
|
|
lp = len(path),
|
|
l = lp-(closed?0:1),
|
|
u1 = s1<0? 0 : s1>l? 1 : u1,
|
|
u2 = s2<0? 0 : s2>l? 1 : u2,
|
|
s1 = constrain(s1,0,l),
|
|
s2 = constrain(s2,0,l),
|
|
pathout = concat(
|
|
(s1<l && u1<1)? [lerp(path[s1],path[(s1+1)%lp],u1)] : [],
|
|
[for (i=[s1+1:1:s2]) path[i]],
|
|
(s2<l && u2>0)? [lerp(path[s2],path[(s2+1)%lp],u2)] : []
|
|
)
|
|
) pathout;
|
|
|
|
|
|
// Function: simplify_path()
|
|
// Description:
|
|
// Takes a path and removes unnecessary subsequent collinear points.
|
|
// Usage:
|
|
// simplify_path(path, [eps])
|
|
// Arguments:
|
|
// path = A list of path points of any dimension.
|
|
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
|
function simplify_path(path, eps=EPSILON) =
|
|
assert( is_path(path), "Invalid path." )
|
|
assert( is_undef(eps) || (is_finite(eps) && (eps>=0) ), "Invalid tolerance." )
|
|
len(path)<=2 ? path :
|
|
let(
|
|
indices = [
|
|
0,
|
|
for (i=[1:1:len(path)-2])
|
|
if (!is_collinear(path[i-1], path[i], path[i+1], eps=eps)) i,
|
|
len(path)-1
|
|
]
|
|
) [for (i=indices) path[i]];
|
|
|
|
|
|
// Function: simplify_path_indexed()
|
|
// Description:
|
|
// Takes a list of points, and a list of indices into `points`,
|
|
// and removes from the list all indices of subsequent indexed points that are unecessarily collinear.
|
|
// Returns the list of the remained indices.
|
|
// Usage:
|
|
// simplify_path_indexed(points,indices, eps)
|
|
// Arguments:
|
|
// points = A list of points.
|
|
// indices = A list of indices into `points` that forms a path.
|
|
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
|
function simplify_path_indexed(points, indices, eps=EPSILON) =
|
|
len(indices)<=2? indices :
|
|
let(
|
|
indices = concat(
|
|
indices[0],
|
|
[
|
|
for (i=[1:1:len(indices)-2]) let(
|
|
i1 = indices[i-1],
|
|
i2 = indices[i],
|
|
i3 = indices[i+1]
|
|
) if (!is_collinear(points[i1], points[i2], points[i3], eps=eps))
|
|
indices[i]
|
|
],
|
|
indices[len(indices)-1]
|
|
)
|
|
) indices;
|
|
|
|
|
|
// Function: path_length()
|
|
// Usage:
|
|
// path_length(path,[closed])
|
|
// Description:
|
|
// Returns the length of the path.
|
|
// Arguments:
|
|
// path = The list of points of the path to measure.
|
|
// closed = true if the path is closed. Default: false
|
|
// Example:
|
|
// path = [[0,0], [5,35], [60,-25], [80,0]];
|
|
// echo(path_length(path));
|
|
function path_length(path,closed=false) =
|
|
len(path)<2? 0 :
|
|
sum([for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i])])+(closed?norm(path[len(path)-1]-path[0]):0);
|
|
|
|
|
|
// Function: path_segment_lengths()
|
|
// Usage:
|
|
// path_segment_lengths(path,[closed])
|
|
// Description:
|
|
// Returns list of the length of each segment in a path
|
|
// Arguments:
|
|
// path = path to measure
|
|
// closed = true if the path is closed. Default: false
|
|
function path_segment_lengths(path, closed=false) =
|
|
[
|
|
for (i=[0:1:len(path)-2]) norm(path[i+1]-path[i]),
|
|
if (closed) norm(path[0]-last(path))
|
|
];
|
|
|
|
|
|
// Function: path_pos_from_start()
|
|
// Usage:
|
|
// pos = path_pos_from_start(path,length,[closed]);
|
|
// Description:
|
|
// Finds the segment and relative position along that segment that is `length` distance from the
|
|
// front of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
|
|
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
|
|
// asked for length, this returns `undef`.
|
|
// Arguments:
|
|
// path = The path to find the position on.
|
|
// length = The length from the start of the path to find the segment and position of.
|
|
// Example(2D):
|
|
// path = circle(d=50,$fn=18);
|
|
// pos = path_pos_from_start(path,20,closed=false);
|
|
// stroke(path,width=1,endcaps=false);
|
|
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
|
|
// color("red") translate(pt) circle(d=2,$fn=12);
|
|
function path_pos_from_start(path,length,closed=false,_d=0,_i=0) =
|
|
let (lp = len(path))
|
|
_i >= lp - (closed?0:1)? undef :
|
|
let (l = norm(path[(_i+1)%lp]-path[_i]))
|
|
_d+l <= length? path_pos_from_start(path,length,closed,_d+l,_i+1) :
|
|
[_i, (length-_d)/l];
|
|
|
|
|
|
// Function: path_pos_from_end()
|
|
// Usage:
|
|
// pos = path_pos_from_end(path,length,[closed]);
|
|
// Description:
|
|
// Finds the segment and relative position along that segment that is `length` distance from the
|
|
// end of the given `path`. Returned as [SEGNUM, U] where SEGNUM is the segment number, and U is
|
|
// the relative distance along that segment, a number from 0 to 1. If the path is shorter than the
|
|
// asked for length, this returns `undef`.
|
|
// Arguments:
|
|
// path = The path to find the position on.
|
|
// length = The length from the end of the path to find the segment and position of.
|
|
// Example(2D):
|
|
// path = circle(d=50,$fn=18);
|
|
// pos = path_pos_from_end(path,20,closed=false);
|
|
// stroke(path,width=1,endcaps=false);
|
|
// pt = lerp(path[pos[0]], path[(pos[0]+1)%len(path)], pos[1]);
|
|
// color("red") translate(pt) circle(d=2,$fn=12);
|
|
function path_pos_from_end(path,length,closed=false,_d=0,_i=undef) =
|
|
let (
|
|
lp = len(path),
|
|
_i = _i!=undef? _i : lp - (closed?1:2)
|
|
)
|
|
_i < 0? undef :
|
|
let (l = norm(path[(_i+1)%lp]-path[_i]))
|
|
_d+l <= length? path_pos_from_end(path,length,closed,_d+l,_i-1) :
|
|
[_i, 1-(length-_d)/l];
|
|
|
|
|
|
// Function: path_trim_start()
|
|
// Usage:
|
|
// path_trim_start(path,trim);
|
|
// Description:
|
|
// Returns the `path`, with the start shortened by the length `trim`.
|
|
// Arguments:
|
|
// path = The path to trim.
|
|
// trim = The length to trim from the start.
|
|
// Example(2D):
|
|
// path = circle(d=50,$fn=18);
|
|
// path2 = path_trim_start(path,5);
|
|
// path3 = path_trim_start(path,20);
|
|
// color("blue") stroke(path3,width=5,endcaps=false);
|
|
// color("cyan") stroke(path2,width=3,endcaps=false);
|
|
// color("red") stroke(path,width=1,endcaps=false);
|
|
function path_trim_start(path,trim,_d=0,_i=0) =
|
|
_i >= len(path)-1? [] :
|
|
let (l = norm(path[_i+1]-path[_i]))
|
|
_d+l <= trim? path_trim_start(path,trim,_d+l,_i+1) :
|
|
let (v = unit(path[_i+1]-path[_i]))
|
|
concat(
|
|
[path[_i+1]-v*(l-(trim-_d))],
|
|
[for (i=[_i+1:1:len(path)-1]) path[i]]
|
|
);
|
|
|
|
|
|
// Function: path_trim_end()
|
|
// Usage:
|
|
// path_trim_end(path,trim);
|
|
// Description:
|
|
// Returns the `path`, with the end shortened by the length `trim`.
|
|
// Arguments:
|
|
// path = The path to trim.
|
|
// trim = The length to trim from the end.
|
|
// Example(2D):
|
|
// path = circle(d=50,$fn=18);
|
|
// path2 = path_trim_end(path,5);
|
|
// path3 = path_trim_end(path,20);
|
|
// color("blue") stroke(path3,width=5,endcaps=false);
|
|
// color("cyan") stroke(path2,width=3,endcaps=false);
|
|
// color("red") stroke(path,width=1,endcaps=false);
|
|
function path_trim_end(path,trim,_d=0,_i=undef) =
|
|
let (_i = _i!=undef? _i : len(path)-1)
|
|
_i <= 0? [] :
|
|
let (l = norm(path[_i]-path[_i-1]))
|
|
_d+l <= trim? path_trim_end(path,trim,_d+l,_i-1) :
|
|
let (v = unit(path[_i]-path[_i-1]))
|
|
concat(
|
|
[for (i=[0:1:_i-1]) path[i]],
|
|
[path[_i-1]+v*(l-(trim-_d))]
|
|
);
|
|
|
|
|
|
// Function: path_closest_point()
|
|
// Usage:
|
|
// path_closest_point(path, pt);
|
|
// Description:
|
|
// Finds the closest path segment, and point on that segment to the given point.
|
|
// Returns `[SEGNUM, POINT]`
|
|
// Arguments:
|
|
// path = The path to find the closest point on.
|
|
// pt = the point to find the closest point to.
|
|
// Example(2D):
|
|
// path = circle(d=100,$fn=6);
|
|
// pt = [20,10];
|
|
// closest = path_closest_point(path, pt);
|
|
// stroke(path, closed=true);
|
|
// color("blue") translate(pt) circle(d=3, $fn=12);
|
|
// color("red") translate(closest[1]) circle(d=3, $fn=12);
|
|
function path_closest_point(path, pt) =
|
|
let(
|
|
pts = [for (seg=idx(path)) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
|
|
dists = [for (p=pts) norm(p-pt)],
|
|
min_seg = min_index(dists)
|
|
) [min_seg, pts[min_seg]];
|
|
|
|
|
|
// Function: path_tangents()
|
|
// Usage:
|
|
// tangs = path_tangents(path, [closed], [uniform]);
|
|
// Description:
|
|
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
|
|
// The returns vectors will be normalized to length 1. If any derivatives are zero then
|
|
// the function fails with an error. If you set `uniform` to false then the sampling is
|
|
// assumed to be non-uniform and the derivative is computed with adjustments to produce corrected
|
|
// values.
|
|
// Arguments:
|
|
// path = path to find the tagent vectors for
|
|
// closed = set to true of the path is closed. Default: false
|
|
// uniform = set to false to correct for non-uniform sampling. Default: true
|
|
// Example(3D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable
|
|
// rect = square([10,3]);
|
|
// tangents = path_tangents(rect,closed=true);
|
|
// stroke(rect,closed=true, width=0.1);
|
|
// color("purple")
|
|
// for(i=[0:len(tangents)-1])
|
|
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.1, endcap2="arrow2");
|
|
// Example(3D): A shape with non-uniform sampling gives distorted derivatives that may be undesirable
|
|
// rect = square([10,3]);
|
|
// tangents = path_tangents(rect,closed=true,uniform=false);
|
|
// stroke(rect,closed=true, width=0.1);
|
|
// color("purple")
|
|
// for(i=[0:len(tangents)-1])
|
|
// stroke([rect[i]-tangents[i], rect[i]+tangents[i]],width=.1, endcap2="arrow2");
|
|
function path_tangents(path, closed=false, uniform=true) =
|
|
assert(is_path(path))
|
|
!uniform ? [for(t=deriv(path,closed=closed, h=path_segment_lengths(path,closed))) unit(t)]
|
|
: [for(t=deriv(path,closed=closed)) unit(t)];
|
|
|
|
|
|
// Function: path_normals()
|
|
// Usage:
|
|
// norms = path_normals(path, [tangents], [closed]);
|
|
// Description:
|
|
// Compute the normal vector to the input path. This vector is perpendicular to the
|
|
// path tangent and lies in the plane of the curve. For 3d paths we define the plane of the curve
|
|
// at path point i to be the plane defined by point i and its two neighbors. At the endpoints of open paths
|
|
// we use the three end points. For 3d paths the computed normal is the one lying in this plane that points
|
|
// towards the center of curvature at that path point. For 2d paths, which lie in the xy plane, the normal
|
|
// is the path pointing to the right of the direction the path is traveling. If points are collinear then
|
|
// a 3d path has no center of curvature, and hence the
|
|
// normal is not uniquely defined. In this case the function issues an error.
|
|
// For 2d paths the plane is always defined so the normal fails to exist only
|
|
// when the derivative is zero (in the case of repeated points).
|
|
function path_normals(path, tangents, closed=false) =
|
|
assert(is_path(path,[2,3]))
|
|
assert(is_bool(closed))
|
|
let(
|
|
tangents = default(tangents, path_tangents(path,closed)),
|
|
dim=len(path[0])
|
|
)
|
|
assert(is_path(tangents) && len(tangents[0])==dim,"Dimensions of path and tangents must match")
|
|
[
|
|
for(i=idx(path))
|
|
let(
|
|
pts = i==0 ? (closed? select(path,-1,1) : select(path,0,2))
|
|
: i==len(path)-1 ? (closed? select(path,i-1,i+1) : select(path,i-2,i))
|
|
: select(path,i-1,i+1)
|
|
)
|
|
dim == 2 ? [tangents[i].y,-tangents[i].x]
|
|
: let( fff=i==10?echo(pts=pts, tangent=tangents[10],cp=cross(pts[1]-pts[0], pts[2]-pts[0])):0,
|
|
v=cross(cross(pts[1]-pts[0], pts[2]-pts[0]),tangents[i]))
|
|
assert(norm(v)>EPSILON, "3D path contains collinear points")
|
|
unit(v)
|
|
];
|
|
|
|
|
|
// Function: path_curvature()
|
|
// Usage:
|
|
// curvs = path_curvature(path, [closed]);
|
|
// Description:
|
|
// Numerically estimate the curvature of the path (in any dimension).
|
|
function path_curvature(path, closed=false) =
|
|
let(
|
|
d1 = deriv(path, closed=closed),
|
|
d2 = deriv2(path, closed=closed)
|
|
) [
|
|
for(i=idx(path))
|
|
sqrt(
|
|
sqr(norm(d1[i])*norm(d2[i])) -
|
|
sqr(d1[i]*d2[i])
|
|
) / pow(norm(d1[i]),3)
|
|
];
|
|
|
|
|
|
// Function: path_torsion()
|
|
// Usage:
|
|
// tortions = path_torsion(path, [closed]);
|
|
// Description:
|
|
// Numerically estimate the torsion of a 3d path.
|
|
function path_torsion(path, closed=false) =
|
|
let(
|
|
d1 = deriv(path,closed=closed),
|
|
d2 = deriv2(path,closed=closed),
|
|
d3 = deriv3(path,closed=closed)
|
|
) [
|
|
for (i=idx(path)) let(
|
|
crossterm = cross(d1[i],d2[i])
|
|
) crossterm * d3[i] / sqr(norm(crossterm))
|
|
];
|
|
|
|
|
|
// Function: path_chamfer_and_rounding()
|
|
// Usage:
|
|
// path2 = path_chamfer_and_rounding(path, [closed], [chamfer], [rounding]);
|
|
// Description:
|
|
// Rounds or chamfers corners in the given path.
|
|
// Arguments:
|
|
// path = The path to chamfer and/or round.
|
|
// closed = If true, treat path like a closed polygon. Default: true
|
|
// chamfer = The length of the chamfer faces at the corners. If given as a list of numbers, gives individual chamfers for each corner, from first to last. Default: 0 (no chamfer)
|
|
// rounding = The rounding radius for the corners. If given as a list of numbers, gives individual radii for each corner, from first to last. Default: 0 (no rounding)
|
|
// Example(2D): Chamfering a Path
|
|
// path = star(5, step=2, d=100);
|
|
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=5);
|
|
// stroke(path2, closed=true);
|
|
// Example(2D): Per-Corner Chamfering
|
|
// path = star(5, step=2, d=100);
|
|
// chamfs = [for (i=[0:1:4]) each 3*[i,i]];
|
|
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs);
|
|
// stroke(path2, closed=true);
|
|
// Example(2D): Rounding a Path
|
|
// path = star(5, step=2, d=100);
|
|
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=5);
|
|
// stroke(path2, closed=true);
|
|
// Example(2D): Per-Corner Chamfering
|
|
// path = star(5, step=2, d=100);
|
|
// rs = [for (i=[0:1:4]) each 2*[i,i]];
|
|
// path2 = path_chamfer_and_rounding(path, closed=true, rounding=rs);
|
|
// stroke(path2, closed=true);
|
|
// Example(2D): Mixing Chamfers and Roundings
|
|
// path = star(5, step=2, d=100);
|
|
// chamfs = [for (i=[0:4]) each [5,0]];
|
|
// rs = [for (i=[0:4]) each [0,10]];
|
|
// path2 = path_chamfer_and_rounding(path, closed=true, chamfer=chamfs, rounding=rs);
|
|
// stroke(path2, closed=true);
|
|
function path_chamfer_and_rounding(path, closed=true, chamfer, rounding) =
|
|
let (
|
|
path = deduplicate(path,closed=true),
|
|
lp = len(path),
|
|
chamfer = is_undef(chamfer)? repeat(0,lp) :
|
|
is_vector(chamfer)? list_pad(chamfer,lp,0) :
|
|
is_num(chamfer)? repeat(chamfer,lp) :
|
|
assert(false, "Bad chamfer value."),
|
|
rounding = is_undef(rounding)? repeat(0,lp) :
|
|
is_vector(rounding)? list_pad(rounding,lp,0) :
|
|
is_num(rounding)? repeat(rounding,lp) :
|
|
assert(false, "Bad rounding value."),
|
|
corner_paths = [
|
|
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
|
|
p1 = select(path,i-1),
|
|
p2 = select(path,i),
|
|
p3 = select(path,i+1)
|
|
)
|
|
chamfer[i] > 0? _corner_chamfer_path(p1, p2, p3, side=chamfer[i]) :
|
|
rounding[i] > 0? _corner_roundover_path(p1, p2, p3, r=rounding[i]) :
|
|
[p2]
|
|
],
|
|
out = [
|
|
if (!closed) path[0],
|
|
for (i=(closed? [0:1:lp-1] : [1:1:lp-2])) let(
|
|
p1 = select(path,i-1),
|
|
p2 = select(path,i),
|
|
crn1 = select(corner_paths,i-1),
|
|
crn2 = corner_paths[i],
|
|
l1 = norm(last(crn1)-p1),
|
|
l2 = norm(crn2[0]-p2),
|
|
needed = l1 + l2,
|
|
seglen = norm(p2-p1),
|
|
check = assert(seglen >= needed, str("Path segment ",i," is too short to fulfill rounding/chamfering for the adjacent corners."))
|
|
) each crn2,
|
|
if (!closed) last(path)
|
|
]
|
|
) deduplicate(out);
|
|
|
|
|
|
function _corner_chamfer_path(p1, p2, p3, dist1, dist2, side, angle) =
|
|
let(
|
|
v1 = unit(p1 - p2),
|
|
v2 = unit(p3 - p2),
|
|
n = vector_axis(v1,v2),
|
|
ang = vector_angle(v1,v2),
|
|
path = (is_num(dist1) && is_undef(dist2) && is_undef(side))? (
|
|
// dist1 & optional angle
|
|
assert(dist1 > 0)
|
|
let(angle = default(angle,(180-ang)/2))
|
|
assert(is_num(angle))
|
|
assert(angle > 0 && angle < 180)
|
|
let(
|
|
pta = p2 + dist1*v1,
|
|
a3 = 180 - angle - ang
|
|
) assert(a3>0, "Angle too extreme.")
|
|
let(
|
|
side = sin(angle) * dist1/sin(a3),
|
|
ptb = p2 + side*v2
|
|
) [pta, ptb]
|
|
) : (is_undef(dist1) && is_num(dist2) && is_undef(side))? (
|
|
// dist2 & optional angle
|
|
assert(dist2 > 0)
|
|
let(angle = default(angle,(180-ang)/2))
|
|
assert(is_num(angle))
|
|
assert(angle > 0 && angle < 180)
|
|
let(
|
|
ptb = p2 + dist2*v2,
|
|
a3 = 180 - angle - ang
|
|
) assert(a3>0, "Angle too extreme.")
|
|
let(
|
|
side = sin(angle) * dist2/sin(a3),
|
|
pta = p2 + side*v1
|
|
) [pta, ptb]
|
|
) : (is_undef(dist1) && is_undef(dist2) && is_num(side))? (
|
|
// side & optional angle
|
|
assert(side > 0)
|
|
let(angle = default(angle,(180-ang)/2))
|
|
assert(is_num(angle))
|
|
assert(angle > 0 && angle < 180)
|
|
let(
|
|
a3 = 180 - angle - ang
|
|
) assert(a3>0, "Angle too extreme.")
|
|
let(
|
|
dist1 = sin(a3) * side/sin(ang),
|
|
dist2 = sin(angle) * side/sin(ang),
|
|
pta = p2 + dist1*v1,
|
|
ptb = p2 + dist2*v2
|
|
) [pta, ptb]
|
|
) : (is_num(dist1) && is_num(dist2) && is_undef(side) && is_undef(side))? (
|
|
// dist1 & dist2
|
|
assert(dist1 > 0)
|
|
assert(dist2 > 0)
|
|
let(
|
|
pta = p2 + dist1*v1,
|
|
ptb = p2 + dist2*v2
|
|
) [pta, ptb]
|
|
) : (
|
|
assert(false,"Bad arguments.")
|
|
)
|
|
) path;
|
|
|
|
|
|
function _corner_roundover_path(p1, p2, p3, r, d) =
|
|
let(
|
|
r = get_radius(r=r,d=d,dflt=undef),
|
|
res = circle_2tangents(p1, p2, p3, r=r, tangents=true),
|
|
cp = res[0],
|
|
n = res[1],
|
|
tp1 = res[2],
|
|
ang = res[4]+res[5],
|
|
steps = floor(segs(r)*ang/360+0.5),
|
|
step = ang / steps,
|
|
path = [for (i=[0:1:steps]) move(cp, p=rot(a=-i*step, v=n, p=tp1-cp))]
|
|
) path;
|
|
|
|
|
|
|
|
// Function: path_add_jitter()
|
|
// Topics: Paths
|
|
// See Also: jittered_poly(), subdivide_long_segments()
|
|
// Usage:
|
|
// jpath = path_add_jitter(path, [dist], [closed=]);
|
|
// Description:
|
|
// Adds tiny jitter offsets to collinear points in the given path so that they
|
|
// are no longer collinear. This is useful for preserving subdivision on long
|
|
// straight segments, when making geometry with `polygon()`, for use with
|
|
// `linear_exrtrude()` with a `twist()`.
|
|
// Arguments:
|
|
// path = The path to add jitter to.
|
|
// dist = The amount to jitter points by. Default: 1/512 (0.00195)
|
|
// ---
|
|
// closed = If true, treat path like a closed polygon. Default: true
|
|
// Example(3D):
|
|
// d = 100; h = 75; quadsize = 5;
|
|
// path = pentagon(d=d);
|
|
// spath = subdivide_long_segments(path, quadsize, closed=true);
|
|
// jpath = path_add_jitter(spath, closed=true);
|
|
// linear_extrude(height=h, twist=72, slices=h/quadsize)
|
|
// polygon(jpath);
|
|
function path_add_jitter(path, dist=1/512, closed=true) =
|
|
assert(is_path(path))
|
|
assert(is_finite(dist))
|
|
assert(is_bool(closed))
|
|
[
|
|
path[0],
|
|
for (i=idx(path,s=1,e=closed?-1:-2)) let(
|
|
n = line_normal([path[i-1],path[i]])
|
|
) path[i] + n * (is_collinear(select(path,i-1,i+1))? (dist * ((i%2)*2-1)) : 0),
|
|
if (!closed) last(path)
|
|
];
|
|
|
|
|
|
|
|
// Function: path_self_intersections()
|
|
// Usage:
|
|
// isects = path_self_intersections(path, [eps]);
|
|
// Description:
|
|
// Locates all self intersections of the given path. Returns a list of intersections, where
|
|
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
|
|
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
|
|
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
|
|
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
|
|
// of the segment, and a proportion of 1.0 indicates the end of the segment.
|
|
// Arguments:
|
|
// path = The path to find self intersections of.
|
|
// closed = If true, treat path like a closed polygon. Default: true
|
|
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
|
// Example(2D):
|
|
// path = [
|
|
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
|
|
// ];
|
|
// isects = path_self_intersections(path, closed=true);
|
|
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
|
|
// stroke(path, closed=true, width=1);
|
|
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
|
|
function path_self_intersections(path, closed=true, eps=EPSILON) =
|
|
let(
|
|
path = cleanup_path(path, eps=eps),
|
|
plen = len(path)
|
|
) [
|
|
for (i = [0:1:plen-(closed?2:3)], j=[i+2:1:plen-(closed?1:2)]) let(
|
|
a1 = path[i],
|
|
a2 = path[(i+1)%plen],
|
|
b1 = path[j],
|
|
b2 = path[(j+1)%plen],
|
|
isect =
|
|
(max(a1.x, a2.x) < min(b1.x, b2.x))? undef :
|
|
(min(a1.x, a2.x) > max(b1.x, b2.x))? undef :
|
|
(max(a1.y, a2.y) < min(b1.y, b2.y))? undef :
|
|
(min(a1.y, a2.y) > max(b1.y, b2.y))? undef :
|
|
let(
|
|
c = a1-a2,
|
|
d = b1-b2,
|
|
denom = (c.x*d.y)-(c.y*d.x)
|
|
) abs(denom)<eps? undef :
|
|
let(
|
|
e = a1-b1,
|
|
t = ((e.x*d.y)-(e.y*d.x)) / denom,
|
|
u = ((e.x*c.y)-(e.y*c.x)) / denom
|
|
) [a1+t*(a2-a1), t, u]
|
|
) if (
|
|
(!closed || i!=0 || j!=plen-1) &&
|
|
isect != undef &&
|
|
isect[1]>=-eps && isect[1]<=1+eps &&
|
|
isect[2]>=-eps && isect[2]<=1+eps
|
|
) [isect[0], i, isect[1], j, isect[2]]
|
|
];
|
|
|
|
|
|
// Function: split_path_at_self_crossings()
|
|
// Usage:
|
|
// paths = split_path_at_self_crossings(path, [closed], [eps]);
|
|
// Description:
|
|
// Splits a path into sub-paths wherever the original path crosses itself.
|
|
// Splits may occur mid-segment, so new vertices will be created at the intersection points.
|
|
// Arguments:
|
|
// path = The path to split up.
|
|
// closed = If true, treat path as a closed polygon. Default: true
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
// Example(2D):
|
|
// path = [ [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100] ];
|
|
// paths = split_path_at_self_crossings(path);
|
|
// rainbow(paths) stroke($item, closed=false, width=2);
|
|
function split_path_at_self_crossings(path, closed=true, eps=EPSILON) =
|
|
let(
|
|
path = cleanup_path(path, eps=eps),
|
|
isects = deduplicate(
|
|
eps=eps,
|
|
concat(
|
|
[[0, 0]],
|
|
sort([
|
|
for (
|
|
a = path_self_intersections(path, closed=closed, eps=eps),
|
|
ss = [ [a[1],a[2]], [a[3],a[4]] ]
|
|
) if (ss[0] != undef) ss
|
|
]),
|
|
[[len(path)-(closed?1:2), 1]]
|
|
)
|
|
)
|
|
) [
|
|
for (p = pair(isects))
|
|
let(
|
|
s1 = p[0][0],
|
|
u1 = p[0][1],
|
|
s2 = p[1][0],
|
|
u2 = p[1][1],
|
|
section = path_subselect(path, s1, u1, s2, u2, closed=closed),
|
|
outpath = deduplicate(eps=eps, section)
|
|
)
|
|
outpath
|
|
];
|
|
|
|
|
|
function _tag_self_crossing_subpaths(path, closed=true, eps=EPSILON) =
|
|
let(
|
|
subpaths = split_path_at_self_crossings(
|
|
path, closed=closed, eps=eps
|
|
)
|
|
) [
|
|
for (subpath = subpaths) let(
|
|
seg = select(subpath,0,1),
|
|
mp = mean(seg),
|
|
n = line_normal(seg) / 2048,
|
|
p1 = mp + n,
|
|
p2 = mp - n,
|
|
p1in = point_in_polygon(p1, path) >= 0,
|
|
p2in = point_in_polygon(p2, path) >= 0,
|
|
tag = (p1in && p2in)? "I" : "O"
|
|
) [tag, subpath]
|
|
];
|
|
|
|
|
|
// Function: decompose_path()
|
|
// Usage:
|
|
// splitpaths = decompose_path(path, [closed], [eps]);
|
|
// Description:
|
|
// Given a possibly self-crossing path, decompose it into non-crossing paths that are on the perimeter
|
|
// of the areas bounded by that path.
|
|
// Arguments:
|
|
// path = The path to split up.
|
|
// closed = If true, treat path like a closed polygon. Default: true
|
|
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
|
// Example(2D):
|
|
// path = [
|
|
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
|
|
// ];
|
|
// splitpaths = decompose_path(path, closed=true);
|
|
// rainbow(splitpaths) stroke($item, closed=true, width=3);
|
|
function decompose_path(path, closed=true, eps=EPSILON) =
|
|
let(
|
|
path = cleanup_path(path, eps=eps),
|
|
tagged = _tag_self_crossing_subpaths(path, closed=closed, eps=eps),
|
|
kept = [for (sub = tagged) if(sub[0] == "O") sub[1]],
|
|
outregion = assemble_path_fragments(kept, eps=eps)
|
|
) outregion;
|
|
|
|
|
|
function _extreme_angle_fragment(seg, fragments, rightmost=true, eps=EPSILON) =
|
|
!fragments? [undef, []] :
|
|
let(
|
|
delta = seg[1] - seg[0],
|
|
segang = atan2(delta.y,delta.x),
|
|
frags = [
|
|
for (i = idx(fragments)) let(
|
|
fragment = fragments[i],
|
|
fwdmatch = approx(seg[1], fragment[0], eps=eps),
|
|
bakmatch = approx(seg[1], last(fragment), eps=eps)
|
|
) [
|
|
fwdmatch,
|
|
bakmatch,
|
|
bakmatch? reverse(fragment) : fragment
|
|
]
|
|
],
|
|
angs = [
|
|
for (frag = frags)
|
|
(frag[0] || frag[1])? let(
|
|
delta2 = frag[2][1] - frag[2][0],
|
|
segang2 = atan2(delta2.y, delta2.x)
|
|
) modang(segang2 - segang) : (
|
|
rightmost? 999 : -999
|
|
)
|
|
],
|
|
fi = rightmost? min_index(angs) : max_index(angs)
|
|
) abs(angs[fi]) > 360? [undef, fragments] : let(
|
|
remainder = [for (i=idx(fragments)) if (i!=fi) fragments[i]],
|
|
frag = frags[fi],
|
|
foundfrag = frag[2]
|
|
) [foundfrag, remainder];
|
|
|
|
|
|
// Function: assemble_a_path_from_fragments()
|
|
// Usage:
|
|
// assemble_a_path_from_fragments(subpaths);
|
|
// Description:
|
|
// Given a list of paths, assembles them together into one complete closed polygon path, and
|
|
// remainder fragments. Returns [PATH, FRAGMENTS] where FRAGMENTS is the list of remaining
|
|
// unused path fragments.
|
|
// Arguments:
|
|
// fragments = List of paths to be assembled into complete polygons.
|
|
// rightmost = If true, assemble paths using rightmost turns. Leftmost if false.
|
|
// startfrag = The fragment to start with. Default: 0
|
|
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
|
function assemble_a_path_from_fragments(fragments, rightmost=true, startfrag=0, eps=EPSILON) =
|
|
len(fragments)==0? _finished :
|
|
let(
|
|
path = fragments[startfrag],
|
|
newfrags = [for (i=idx(fragments)) if (i!=startfrag) fragments[i]]
|
|
) is_closed_path(path, eps=eps)? (
|
|
// starting fragment is already closed
|
|
[path, newfrags]
|
|
) : let(
|
|
// Find rightmost/leftmost continuation fragment
|
|
seg = select(path,-2,-1),
|
|
extrema = _extreme_angle_fragment(seg=seg, fragments=newfrags, rightmost=rightmost, eps=eps),
|
|
foundfrag = extrema[0],
|
|
remainder = extrema[1]
|
|
) is_undef(foundfrag)? (
|
|
// No remaining fragments connect! INCOMPLETE PATH!
|
|
// Treat it as complete.
|
|
[path, remainder]
|
|
) : is_closed_path(foundfrag, eps=eps)? (
|
|
// Found fragment is already closed
|
|
[foundfrag, concat([path], remainder)]
|
|
) : let(
|
|
fragend = last(foundfrag),
|
|
hits = [for (i = idx(path,e=-2)) if(approx(path[i],fragend,eps=eps)) i]
|
|
) hits? (
|
|
let(
|
|
// Found fragment intersects with initial path
|
|
hitidx = last(hits),
|
|
newpath = list_head(path,hitidx),
|
|
newfrags = concat(len(newpath)>1? [newpath] : [], remainder),
|
|
outpath = concat(slice(path,hitidx,-2), foundfrag)
|
|
)
|
|
[outpath, newfrags]
|
|
) : let(
|
|
// Path still incomplete. Continue building it.
|
|
newpath = concat(path, list_tail(foundfrag)),
|
|
newfrags = concat([newpath], remainder)
|
|
)
|
|
assemble_a_path_from_fragments(
|
|
fragments=newfrags,
|
|
rightmost=rightmost,
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function: assemble_path_fragments()
|
|
// Usage:
|
|
// assemble_path_fragments(subpaths);
|
|
// Description:
|
|
// Given a list of paths, assembles them together into complete closed polygon paths if it can.
|
|
// Arguments:
|
|
// fragments = List of paths to be assembled into complete polygons.
|
|
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
|
|
function assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
|
len(fragments)==0? _finished :
|
|
let(
|
|
minxidx = min_index([
|
|
for (frag=fragments) min(subindex(frag,0))
|
|
]),
|
|
result_l = assemble_a_path_from_fragments(
|
|
fragments=fragments,
|
|
startfrag=minxidx,
|
|
rightmost=false,
|
|
eps=eps
|
|
),
|
|
result_r = assemble_a_path_from_fragments(
|
|
fragments=fragments,
|
|
startfrag=minxidx,
|
|
rightmost=true,
|
|
eps=eps
|
|
),
|
|
l_area = abs(polygon_area(result_l[0])),
|
|
r_area = abs(polygon_area(result_r[0])),
|
|
result = l_area < r_area? result_l : result_r,
|
|
newpath = cleanup_path(result[0]),
|
|
remainder = result[1],
|
|
finished = concat(_finished, [newpath])
|
|
) assemble_path_fragments(
|
|
fragments=remainder,
|
|
eps=eps,
|
|
_finished=finished
|
|
);
|
|
|
|
|
|
|
|
// Function: path_cut_points()
|
|
//
|
|
// Usage:
|
|
// cuts = path_cut_points(path, dists, [closed=], [direction=]);
|
|
//
|
|
// Description:
|
|
// Cuts a path at a list of distances from the first point in the path. Returns a list of the cut
|
|
// points and indices of the next point in the path after that point. So for example, a return
|
|
// value entry of [[2,3], 5] means that the cut point was [2,3] and the next point on the path after
|
|
// this point is path[5]. If the path is too short then path_cut_points returns undef. If you set
|
|
// `direction` to true then `path_cut_points` will also return the tangent vector to the path and a normal
|
|
// vector to the path. It tries to find a normal vector that is coplanar to the path near the cut
|
|
// point. If this fails it will return a normal vector parallel to the xy plane. The output with
|
|
// direction vectors will be `[point, next_index, tangent, normal]`.
|
|
// .
|
|
// If you give the very last point of the path as a cut point then the returned index will be
|
|
// one larger than the last index (so it will not be a valid index). If you use the closed
|
|
// option then the returned index will be equal to the path length for cuts along the closing
|
|
// path segment, and if you give a point equal to the path length you will get an
|
|
// index of len(path)+1 for the index.
|
|
//
|
|
// Arguments:
|
|
// path = path to cut
|
|
// dists = distances where the path should be cut (a list) or a scalar single distance
|
|
// ---
|
|
// closed = set to true if the curve is closed. Default: false
|
|
// direction = set to true to return direction vectors. Default: false
|
|
//
|
|
// Example(NORENDER):
|
|
// square=[[0,0],[1,0],[1,1],[0,1]];
|
|
// path_cut_points(square, [.5,1.5,2.5]); // Returns [[[0.5, 0], 1], [[1, 0.5], 2], [[0.5, 1], 3]]
|
|
// path_cut_points(square, [0,1,2,3]); // Returns [[[0, 0], 1], [[1, 0], 2], [[1, 1], 3], [[0, 1], 4]]
|
|
// path_cut_points(square, [0,0.8,1.6,2.4,3.2], closed=true); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], [[0, 0.8], 4]]
|
|
// path_cut_points(square, [0,0.8,1.6,2.4,3.2]); // Returns [[[0, 0], 1], [[0.8, 0], 1], [[1, 0.6], 2], [[0.6, 1], 3], undef]
|
|
function path_cut_points(path, dists, closed=false, direction=false) =
|
|
let(long_enough = len(path) >= (closed ? 3 : 2))
|
|
assert(long_enough,len(path)<2 ? "Two points needed to define a path" : "Closed path must include three points")
|
|
is_num(dists) ? path_cut_points(path, [dists],closed, direction)[0] :
|
|
assert(is_vector(dists))
|
|
assert(list_increasing(dists), "Cut distances must be an increasing list")
|
|
let(cuts = _path_cut_points(path,dists,closed))
|
|
!direction
|
|
? cuts
|
|
: let(
|
|
dir = _path_cuts_dir(path, cuts, closed),
|
|
normals = _path_cuts_normals(path, cuts, dir, closed)
|
|
)
|
|
hstack(cuts, array_group(dir,1), array_group(normals,1));
|
|
|
|
// Main recursive path cut function
|
|
function _path_cut_points(path, dists, closed=false, pind=0, dtotal=0, dind=0, result=[]) =
|
|
dind == len(dists) ? result :
|
|
let(
|
|
lastpt = len(result)==0? [] : last(result)[0], // location of last cut point
|
|
dpartial = len(result)==0? 0 : norm(lastpt-select(path,pind)), // remaining length in segment
|
|
nextpoint = dists[dind] < dpartial+dtotal // Do we have enough length left on the current segment?
|
|
? [lerp(lastpt,select(path,pind),(dists[dind]-dtotal)/dpartial),pind]
|
|
: _path_cut_single(path, dists[dind]-dtotal-dpartial, closed, pind)
|
|
)
|
|
_path_cut_points(path, dists, closed, nextpoint[1], dists[dind],dind+1, concat(result, [nextpoint]));
|
|
|
|
|
|
// Search for a single cut point in the path
|
|
function _path_cut_single(path, dist, closed=false, ind=0, eps=1e-7) =
|
|
// If we get to the very end of the path (ind is last point or wraparound for closed case) then
|
|
// check if we are within epsilon of the final path point. If not we're out of path, so we fail
|
|
ind==len(path)-(closed?0:1) ?
|
|
assert(dist<eps,"Path is too short for specified cut distance")
|
|
[select(path,ind),ind+1]
|
|
:let(d = norm(path[ind]-select(path,ind+1))) d > dist ?
|
|
[lerp(path[ind],select(path,ind+1),dist/d), ind+1] :
|
|
_path_cut_single(path, dist-d,closed, ind+1, eps);
|
|
|
|
// Find normal directions to the path, coplanar to local part of the path
|
|
// Or return a vector parallel to the x-y plane if the above fails
|
|
function _path_cuts_normals(path, cuts, dirs, closed=false) =
|
|
[for(i=[0:len(cuts)-1])
|
|
len(path[0])==2? [-dirs[i].y, dirs[i].x]
|
|
:
|
|
let(
|
|
plane = len(path)<3 ? undef :
|
|
let(start = max(min(cuts[i][1],len(path)-1),2)) _path_plane(path, start, start-2)
|
|
)
|
|
plane==undef?
|
|
( dirs[i].x==0 && dirs[i].y==0 ? [1,0,0] // If it's z direction return x vector
|
|
: unit([-dirs[i].y, dirs[i].x,0])) // otherwise perpendicular to projection
|
|
: unit(cross(dirs[i],cross(plane[0],plane[1])))
|
|
];
|
|
|
|
// Scan from the specified point (ind) to find a noncoplanar triple to use
|
|
// to define the plane of the path.
|
|
function _path_plane(path, ind, i,closed) =
|
|
i<(closed?-1:0) ? undef :
|
|
!is_collinear(path[ind],path[ind-1], select(path,i))?
|
|
[select(path,i)-path[ind-1],path[ind]-path[ind-1]] :
|
|
_path_plane(path, ind, i-1);
|
|
|
|
// Find the direction of the path at the cut points
|
|
function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
|
|
[for(ind=[0:len(cuts)-1])
|
|
let(
|
|
zeros = path[0]*0,
|
|
nextind = cuts[ind][1],
|
|
nextpath = unit(select(path, nextind+1)-select(path, nextind),zeros),
|
|
thispath = unit(select(path, nextind) - select(path,nextind-1),zeros),
|
|
lastpath = unit(select(path,nextind-1) - select(path, nextind-2),zeros),
|
|
nextdir =
|
|
nextind==len(path) && !closed? lastpath :
|
|
(nextind<=len(path)-2 || closed) && approx(cuts[ind][0], path[nextind],eps)
|
|
? unit(nextpath+thispath)
|
|
: (nextind>1 || closed) && approx(cuts[ind][0],select(path,nextind-1),eps)
|
|
? unit(thispath+lastpath)
|
|
: thispath
|
|
) nextdir
|
|
];
|
|
|
|
|
|
// Function: path_cut()
|
|
// Topics: Paths
|
|
// See Also: path_cut_points()
|
|
// Usage:
|
|
// path_list = path_cut(path, cutdist, [closed=]);
|
|
// Description:
|
|
// Given a list of distances in `cutdist`, cut the path into
|
|
// subpaths at those lengths, returning a list of paths.
|
|
// If the input path is closed then the final path will include the
|
|
// original starting point. The list of cut distances must be
|
|
// in ascending order. If you repeat a distance you will get an
|
|
// empty list in that position in the output.
|
|
// Arguments:
|
|
// path = The original path to split.
|
|
// cutdist = Distance or list of distances where path is cut
|
|
// closed = If true, treat the path as a closed polygon.
|
|
// Example(2D):
|
|
// path = circle(d=100);
|
|
// segs = path_cut(path, [50, 200], closed=true);
|
|
// rainbow(segs) stroke($item);
|
|
function path_cut(path,cutdist,closed) =
|
|
is_num(cutdist) ? path_cut(path,[cutdist],closed) :
|
|
assert(is_vector(cutdist))
|
|
|
|
assert(last(cutdist)<path_length(path,closed=closed),
|
|
approx(last(cutdist),path_length(path,closed=closed)) ?
|
|
"Last cut distance is the full path: don't include the final end as a cut" :
|
|
"Cut distances must be smaller than the path length")
|
|
assert(cutdist[0]>0, "Cut distances must be strictly positive")
|
|
let(
|
|
cutlist = path_cut_points(path,cutdist,closed=closed),
|
|
cuts = len(cutlist)
|
|
)
|
|
[
|
|
[ each list_head(path,cutlist[0][1]-1),
|
|
if (!approx(cutlist[0][0], path[cutlist[0][1]-1])) cutlist[0][0]
|
|
],
|
|
for(i=[0:1:cuts-2])
|
|
cutlist[i][0]==cutlist[i+1][0] ? []
|
|
:
|
|
[ if (!approx(cutlist[i][0], select(path,cutlist[i][1]))) cutlist[i][0],
|
|
each slice(path, cutlist[i][1], cutlist[i+1][1]-1),
|
|
if (!approx(cutlist[i+1][0], select(path,cutlist[i+1][1]-1))) cutlist[i+1][0],
|
|
],
|
|
[
|
|
if (!approx(cutlist[cuts-1][0], select(path,cutlist[cuts-1][1]))) cutlist[cuts-1][0],
|
|
each select(path,cutlist[cuts-1][1],closed ? 0 : -1)
|
|
]
|
|
];
|
|
|
|
|
|
|
|
// Input `data` is a list that sums to an integer.
|
|
// Returns rounded version of input data so that every
|
|
// entry is rounded to an integer and the sum is the same as
|
|
// that of the input. Works by rounding an entry in the list
|
|
// and passing the rounding error forward to the next entry.
|
|
// This will generally distribute the error in a uniform manner.
|
|
function _sum_preserving_round(data, index=0) =
|
|
index == len(data)-1 ? list_set(data, len(data)-1, round(data[len(data)-1])) :
|
|
let(
|
|
newval = round(data[index]),
|
|
error = newval - data[index]
|
|
) _sum_preserving_round(
|
|
list_set(data, [index,index+1], [newval, data[index+1]-error]),
|
|
index+1
|
|
);
|
|
|
|
|
|
// Function: subdivide_path()
|
|
// Usage:
|
|
// newpath = subdivide_path(path, [N|refine], method);
|
|
// Description:
|
|
// Takes a path as input (closed or open) and subdivides the path to produce a more
|
|
// finely sampled path. The new points can be distributed proportional to length
|
|
// (`method="length"`) or they can be divided up evenly among all the path segments
|
|
// (`method="segment"`). If the extra points don't fit evenly on the path then the
|
|
// algorithm attempts to distribute them uniformly. The `exact` option requires that
|
|
// the final length is exactly as requested. If you set it to `false` then the
|
|
// algorithm will favor uniformity and the output path may have a different number of
|
|
// points due to rounding error.
|
|
// .
|
|
// With the `"segment"` method you can also specify a vector of lengths. This vector,
|
|
// `N` specfies the desired point count on each segment: with vector input, `subdivide_path`
|
|
// attempts to place `N[i]-1` points on segment `i`. The reason for the -1 is to avoid
|
|
// double counting the endpoints, which are shared by pairs of segments, so that for
|
|
// a closed polygon the total number of points will be sum(N). Note that with an open
|
|
// path there is an extra point at the end, so the number of points will be sum(N)+1.
|
|
// Arguments:
|
|
// path = path to subdivide
|
|
// N = scalar total number of points desired or with `method="segment"` can be a vector requesting `N[i]-1` points on segment i.
|
|
// refine = number of points to add each segment.
|
|
// closed = set to false if the path is open. Default: True
|
|
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform point sample that may not match the number of points requested. Default: True
|
|
// method = One of `"length"` or `"segment"`. If `"length"`, adds vertices evenly along the total path length. If `"segment"`, adds points evenly among the segments. Default: `"length"`
|
|
// Example(2D):
|
|
// mypath = subdivide_path(square([2,2],center=true), 12);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D):
|
|
// mypath = subdivide_path(square([8,2],center=true), 12);
|
|
// move_copies(mypath)circle(r=.2,$fn=32);
|
|
// Example(2D):
|
|
// mypath = subdivide_path(square([8,2],center=true), 12, method="segment");
|
|
// move_copies(mypath)circle(r=.2,$fn=32);
|
|
// Example(2D):
|
|
// mypath = subdivide_path(square([2,2],center=true), 17, closed=false);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D): Specifying different numbers of points on each segment
|
|
// mypath = subdivide_path(hexagon(side=2), [2,3,4,5,6,7], method="segment");
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D): Requested point total is 14 but 15 points output due to extra end point
|
|
// mypath = subdivide_path(pentagon(side=2), [3,4,3,4], method="segment", closed=false);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D): Since 17 is not divisible by 5, a completely uniform distribution is not possible.
|
|
// mypath = subdivide_path(pentagon(side=2), 17);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D): With `exact=false` a uniform distribution, but only 15 points
|
|
// mypath = subdivide_path(pentagon(side=2), 17, exact=false);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(2D): With `exact=false` you can also get extra points, here 20 instead of requested 18
|
|
// mypath = subdivide_path(pentagon(side=2), 18, exact=false);
|
|
// move_copies(mypath)circle(r=.1,$fn=32);
|
|
// Example(FlatSpin,VPD=15,VPT=[0,0,1.5]): Three-dimensional paths also work
|
|
// mypath = subdivide_path([[0,0,0],[2,0,1],[2,3,2]], 12);
|
|
// move_copies(mypath)sphere(r=.1,$fn=32);
|
|
function subdivide_path(path, N, refine, closed=true, exact=true, method="length") =
|
|
assert(is_path(path))
|
|
assert(method=="length" || method=="segment")
|
|
assert(num_defined([N,refine]),"Must give exactly one of N and refine")
|
|
let(
|
|
N = !is_undef(N)? N :
|
|
!is_undef(refine)? len(path) * refine :
|
|
undef
|
|
)
|
|
assert((is_num(N) && N>0) || is_vector(N),"Parameter N to subdivide_path must be postive number or vector")
|
|
let(
|
|
count = len(path) - (closed?0:1),
|
|
add_guess = method=="segment"? (
|
|
is_list(N)? (
|
|
assert(len(N)==count,"Vector parameter N to subdivide_path has the wrong length")
|
|
add_scalar(N,-1)
|
|
) : repeat((N-len(path)) / count, count)
|
|
) : // method=="length"
|
|
assert(is_num(N),"Parameter N to subdivide path must be a number when method=\"length\"")
|
|
let(
|
|
path_lens = concat(
|
|
[ for (i = [0:1:len(path)-2]) norm(path[i+1]-path[i]) ],
|
|
closed? [norm(path[len(path)-1]-path[0])] : []
|
|
),
|
|
add_density = (N - len(path)) / sum(path_lens)
|
|
)
|
|
path_lens * add_density,
|
|
add = exact? _sum_preserving_round(add_guess) :
|
|
[for (val=add_guess) round(val)]
|
|
) concat(
|
|
[
|
|
for (i=[0:1:count]) each [
|
|
for(j=[0:1:add[i]])
|
|
lerp(path[i],select(path,i+1), j/(add[i]+1))
|
|
]
|
|
],
|
|
closed? [] : [last(path)]
|
|
);
|
|
|
|
|
|
// Function: path_length_fractions()
|
|
// Usage:
|
|
// fracs = path_length_fractions(path, [closed]);
|
|
// Description:
|
|
// Returns the distance fraction of each point in the path along the path, so the first
|
|
// point is zero and the final point is 1. If the path is closed the length of the output
|
|
// will have one extra point because of the final connecting segment that connects the last
|
|
// point of the path to the first point.
|
|
function path_length_fractions(path, closed=false) =
|
|
assert(is_path(path))
|
|
assert(is_bool(closed))
|
|
let(
|
|
lengths = [
|
|
0,
|
|
for (i=[0:1:len(path)-(closed?1:2)])
|
|
norm(select(path,i+1)-path[i])
|
|
],
|
|
partial_len = cumsum(lengths),
|
|
total_len = last(partial_len)
|
|
) partial_len / total_len;
|
|
|
|
|
|
// Function: resample_path()
|
|
// Usage:
|
|
// newpath = resample_path(path, N|spacing, [closed]);
|
|
// Description:
|
|
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
|
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
|
// input path that are guaranteed to appear in the output path are the starting and ending points.
|
|
// If you specify `spacing` then the length you give will be rounded to the nearest spacing that gives
|
|
// a uniform sampling of the path and the resulting uniformly sampled path is returned.
|
|
// Note that because this function operates on a discrete input path the quality of the output depends on
|
|
// the sampling of the input. If you want very accurate output, use a lot of points for the input.
|
|
// Arguments:
|
|
// path = path to resample
|
|
// N = Number of points in output
|
|
// spacing = Approximate spacing desired
|
|
// closed = set to true if path is closed. Default: false
|
|
function resample_path(path, N, spacing, closed=false) =
|
|
assert(is_path(path))
|
|
assert(num_defined([N,spacing])==1,"Must define exactly one of N and spacing")
|
|
assert(is_bool(closed))
|
|
let(
|
|
length = path_length(path,closed),
|
|
// In the open path case decrease N by 1 so that we don't try to get
|
|
// path_cut to return the endpoint (which might fail due to rounding)
|
|
// Add last point later
|
|
N = is_def(N) ? N-(closed?0:1) : round(length/spacing),
|
|
distlist = lerpn(0,length,N,false),
|
|
cuts = path_cut_points(path, distlist, closed=closed)
|
|
)
|
|
[ each subindex(cuts,0),
|
|
if (!closed) last(path) // Then add last point here
|
|
];
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|