mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
652 lines
20 KiB
OpenSCAD
652 lines
20 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: math.scad
|
|
// Math helper functions.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Math Constants
|
|
|
|
PHI = (1+sqrt(5))/2; // The golden ratio phi.
|
|
|
|
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
|
|
|
|
|
|
// Section: Simple Calculations
|
|
|
|
// Function: quant()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Example:
|
|
// quant(12,4); // Returns: 12
|
|
// quant(13,4); // Returns: 12
|
|
// quant(13.1,4); // Returns: 12
|
|
// quant(14,4); // Returns: 16
|
|
// quant(14.1,4); // Returns: 16
|
|
// quant(15,4); // Returns: 16
|
|
// quant(16,4); // Returns: 16
|
|
// quant(9,3); // Returns: 9
|
|
// quant(10,3); // Returns: 9
|
|
// quant(10.4,3); // Returns: 9
|
|
// quant(10.5,3); // Returns: 12
|
|
// quant(11,3); // Returns: 12
|
|
// quant(12,3); // Returns: 12
|
|
// quant([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,16,16,16,16]
|
|
// quant([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,12,12,12]
|
|
// quant([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[12,12,12]]
|
|
function quant(x,y) =
|
|
is_list(x)? [for (v=x) quant(v,y)] :
|
|
floor(x/y+0.5)*y;
|
|
|
|
|
|
// Function: quantdn()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized down.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Examples:
|
|
// quantdn(12,4); // Returns: 12
|
|
// quantdn(13,4); // Returns: 12
|
|
// quantdn(13.1,4); // Returns: 12
|
|
// quantdn(14,4); // Returns: 12
|
|
// quantdn(14.1,4); // Returns: 12
|
|
// quantdn(15,4); // Returns: 12
|
|
// quantdn(16,4); // Returns: 16
|
|
// quantdn(9,3); // Returns: 9
|
|
// quantdn(10,3); // Returns: 9
|
|
// quantdn(10.4,3); // Returns: 9
|
|
// quantdn(10.5,3); // Returns: 9
|
|
// quantdn(11,3); // Returns: 9
|
|
// quantdn(12,3); // Returns: 12
|
|
// quantdn([12,13,13.1,14,14.1,15,16],4); // Returns: [12,12,12,12,12,12,16]
|
|
// quantdn([9,10,10.4,10.5,11,12],3); // Returns: [9,9,9,9,9,12]
|
|
// quantdn([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,9,9],[9,9,12]]
|
|
function quantdn(x,y) =
|
|
is_list(x)? [for (v=x) quantdn(v,y)] :
|
|
floor(x/y)*y;
|
|
|
|
|
|
// Function: quantup()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
|
|
// If `x` is a list, then every item in that list will be recursively quantized up.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
// Examples:
|
|
// quantup(12,4); // Returns: 12
|
|
// quantup(13,4); // Returns: 16
|
|
// quantup(13.1,4); // Returns: 16
|
|
// quantup(14,4); // Returns: 16
|
|
// quantup(14.1,4); // Returns: 16
|
|
// quantup(15,4); // Returns: 16
|
|
// quantup(16,4); // Returns: 16
|
|
// quantup(9,3); // Returns: 9
|
|
// quantup(10,3); // Returns: 12
|
|
// quantup(10.4,3); // Returns: 12
|
|
// quantup(10.5,3); // Returns: 12
|
|
// quantup(11,3); // Returns: 12
|
|
// quantup(12,3); // Returns: 12
|
|
// quantup([12,13,13.1,14,14.1,15,16],4); // Returns: [12,16,16,16,16,16,16]
|
|
// quantup([9,10,10.4,10.5,11,12],3); // Returns: [9,12,12,12,12,12]
|
|
// quantup([[9,10,10.4],[10.5,11,12]],3); // Returns: [[9,12,12],[12,12,12]]
|
|
function quantup(x,y) =
|
|
is_list(x)? [for (v=x) quantup(v,y)] :
|
|
ceil(x/y)*y;
|
|
|
|
|
|
// Function: constrain()
|
|
// Usage:
|
|
// constrain(v, minval, maxval);
|
|
// Description:
|
|
// Constrains value to a range of values between minval and maxval, inclusive.
|
|
// Arguments:
|
|
// v = value to constrain.
|
|
// minval = minimum value to return, if out of range.
|
|
// maxval = maximum value to return, if out of range.
|
|
// Example:
|
|
// constrain(-5, -1, 1); // Returns: -1
|
|
// constrain(5, -1, 1); // Returns: 1
|
|
// constrain(0.3, -1, 1); // Returns: 0.3
|
|
// constrain(9.1, 0, 9); // Returns: 9
|
|
// constrain(-0.1, 0, 9); // Returns: 0
|
|
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
|
|
|
|
|
|
// Function: approx()
|
|
// Usage:
|
|
// approx(a,b,[eps])
|
|
// Description:
|
|
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
|
|
// Arguments:
|
|
// a = First value.
|
|
// b = Second value.
|
|
// eps = The maximum allowed difference between `a` and `b` that will return true.
|
|
// Example:
|
|
// approx(-0.3333333333,-1/3); // Returns: true
|
|
// approx(0.3333333333,1/3); // Returns: true
|
|
// approx(0.3333,1/3); // Returns: false
|
|
// approx(0.3333,1/3,eps=1e-3); // Returns: true
|
|
// approx(PI,3.1415926536); // Returns: true
|
|
function approx(a,b,eps=EPSILON) = let(c=a-b) (is_num(c)? abs(c) : norm(c)) <= eps;
|
|
|
|
|
|
// Function: min_index()
|
|
// Usage:
|
|
// min_index(vals,[all]);
|
|
// Description:
|
|
// Returns the index of the first occurrence of the mainimum value in the given list.
|
|
// If `all` is true then returns a list of all indices where the minimum value occurs.
|
|
// Arguments:
|
|
// vals = vector of values
|
|
// all = set to true to return indices of all occurences of the minimum. Default: false
|
|
// Example:
|
|
// min_index([5,3,9,6,2,7,8,2,1]); // Returns: 4
|
|
// min_index([5,3,9,6,2,7,8,2,1],all=true); // Returns: [4,7]
|
|
function min_index(vals, all=false) =
|
|
all ? search(min(vals),vals,0) : search(min(vals), vals)[0];
|
|
|
|
// Function: max_index()
|
|
// Usage:
|
|
// max_index(vals,[all]);
|
|
// Description:
|
|
// Returns the index of the first occurrence of the maximum value in the given list.
|
|
// If `all` is true then returns a list of all indices where the maximum value occurs.
|
|
// Arguments:
|
|
// vals = vector of values
|
|
// all = set to true to return indices of all occurences of the maximum. Default: false
|
|
// Example:
|
|
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
|
|
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
|
|
function max_index(vals, all=false) =
|
|
all ? search(max(vals),vals,0) : search(max(vals), vals)[0];
|
|
|
|
|
|
// Function: posmod()
|
|
// Usage:
|
|
// posmod(x,m)
|
|
// Description:
|
|
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
|
|
// Arguments:
|
|
// x = The value to constrain.
|
|
// m = Modulo value.
|
|
// Example:
|
|
// posmod(-700,360); // Returns: 340
|
|
// posmod(-270,360); // Returns: 90
|
|
// posmod(-120,360); // Returns: 240
|
|
// posmod(120,360); // Returns: 120
|
|
// posmod(270,360); // Returns: 270
|
|
// posmod(700,360); // Returns: 340
|
|
// posmod(3,2.5); // Returns: 0.5
|
|
function posmod(x,m) = (x%m+m)%m;
|
|
|
|
|
|
// Function: modang(x)
|
|
// Usage:
|
|
// ang = modang(x)
|
|
// Description:
|
|
// Takes an angle in degrees and normalizes it to an equivalent angle value between -180 and 180.
|
|
// Example:
|
|
// modang(-700,360); // Returns: 20
|
|
// modang(-270,360); // Returns: 90
|
|
// modang(-120,360); // Returns: -120
|
|
// modang(120,360); // Returns: 120
|
|
// modang(270,360); // Returns: -90
|
|
// modang(700,360); // Returns: -20
|
|
function modang(x) =
|
|
let(xx = posmod(x,360)) xx<180? xx : xx-360;
|
|
|
|
|
|
// Function: modrange()
|
|
// Usage:
|
|
// modrange(x, y, m, [step])
|
|
// Description:
|
|
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
|
|
// Arguments:
|
|
// x = The start value to constrain.
|
|
// y = The end value to constrain.
|
|
// m = Modulo value.
|
|
// step = Step by this amount.
|
|
// Examples:
|
|
// modrange(90,270,360, step=45); // Returns: [90,135,180,225,270]
|
|
// modrange(270,90,360, step=45); // Returns: [270,315,0,45,90]
|
|
// modrange(90,270,360, step=-45); // Returns: [90,45,0,315,270]
|
|
// modrange(270,90,360, step=-45); // Returns: [270,225,180,135,90]
|
|
function modrange(x, y, m, step=1) =
|
|
let(
|
|
a = posmod(x, m),
|
|
b = posmod(y, m),
|
|
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
|
|
) [for (i=[a:step:c]) (i%m+m)%m];
|
|
|
|
|
|
// Function: sqr()
|
|
// Usage:
|
|
// sqr(x);
|
|
// Description: Returns the square of the given number.
|
|
// Examples:
|
|
// sqr(3); // Returns: 9
|
|
// sqr(-4); // Returns: 16
|
|
function sqr(x) = x*x;
|
|
|
|
|
|
// Function: log2()
|
|
// Usage:
|
|
// foo = log2(x);
|
|
// Description: Returns the logarith base 10 of the value given.
|
|
// Examples:
|
|
// log2(0.125); // Returns: -3
|
|
// log2(16); // Returns: 4
|
|
// log2(256); // Returns: 8
|
|
function log2(x) = ln(x)/ln(2);
|
|
|
|
|
|
// Function: rand_int()
|
|
// Usage:
|
|
// rand_int(min,max,N,[seed]);
|
|
// Description:
|
|
// Return a list of random integers in the range of min to max, inclusive.
|
|
// Arguments:
|
|
// min = Minimum integer value to return.
|
|
// max = Maximum integer value to return.
|
|
// N = Number of random integers to return.
|
|
// seed = If given, sets the random number seed.
|
|
// Example:
|
|
// ints = rand_int(0,100,3);
|
|
// int = rand_int(-10,10,1)[0];
|
|
function rand_int(min, max, N, seed=undef) =
|
|
assert(max >= min, "Max value cannot be smaller than min")
|
|
let (rvect = is_def(seed) ? rands(min,max+1,N,seed) : rands(min,max+1,N))
|
|
[for(entry = rvect) floor(entry)];
|
|
|
|
|
|
// Function: gaussian_rands()
|
|
// Usage:
|
|
// gaussian_rands(mean, stddev, [N], [seed])
|
|
// Description:
|
|
// Returns a random number with a gaussian/normal distribution.
|
|
// Arguments:
|
|
// mean = The average random number returned.
|
|
// stddev = The standard deviation of the numbers to be returned.
|
|
// N = Number of random numbers to return. Default: 1
|
|
// seed = If given, sets the random number seed.
|
|
function gaussian_rands(mean, stddev, N=1, seed=undef) =
|
|
let(nums = is_undef(seed)? rands(0,1,N*2) : rands(0,1,N*2,seed))
|
|
[for (i = list_range(N)) mean + stddev*sqrt(-2*ln(nums[i*2]))*cos(360*nums[i*2+1])];
|
|
|
|
|
|
// Function: log_rands()
|
|
// Usage:
|
|
// log_rands(minval, maxval, factor, [N], [seed]);
|
|
// Description:
|
|
// Returns a single random number, with a logarithmic distribution.
|
|
// Arguments:
|
|
// minval = Minimum value to return.
|
|
// maxval = Maximum value to return. `minval` <= X < `maxval`.
|
|
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
|
|
// N = Number of random numbers to return. Default: 1
|
|
// seed = If given, sets the random number seed.
|
|
function log_rands(minval, maxval, factor, N=1, seed=undef) =
|
|
assert(maxval >= minval, "maxval cannot be smaller than minval")
|
|
let(
|
|
minv = 1-1/pow(factor,minval),
|
|
maxv = 1-1/pow(factor,maxval),
|
|
nums = is_undef(seed)? rands(minv, maxv, N) : rands(minv, maxv, N, seed)
|
|
) [for (num=nums) -ln(1-num)/ln(factor)];
|
|
|
|
|
|
// Function: segs()
|
|
// Description:
|
|
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
|
|
// Arguments:
|
|
// r = Radius of circle to get the number of segments for.
|
|
function segs(r) =
|
|
$fn>0? ($fn>3? $fn : 3) :
|
|
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs)));
|
|
|
|
|
|
// Function: lerp()
|
|
// Description: Interpolate between two values or vectors.
|
|
// Arguments:
|
|
// a = First value.
|
|
// b = Second value.
|
|
// u = The proportion from `a` to `b` to calculate. Valid range is 0.0 to 1.0, inclusive. If given as a list or range of values, returns a list of results.
|
|
function lerp(a,b,u) =
|
|
is_num(u)? (1-u)*a + u*b :
|
|
[for (v = u) lerp(a,b,v)];
|
|
|
|
|
|
// Function: hypot()
|
|
// Description: Calculate hypotenuse length of a 2D or 3D triangle.
|
|
// Arguments:
|
|
// x = Length on the X axis.
|
|
// y = Length on the Y axis.
|
|
// z = Length on the Z axis.
|
|
function hypot(x,y,z=0) =
|
|
norm([x,y,z]);
|
|
|
|
|
|
// Function: sinh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
|
|
function sinh(x) =
|
|
(exp(x)-exp(-x))/2;
|
|
|
|
|
|
// Function: cosh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
|
|
function cosh(x) =
|
|
(exp(x)+exp(-x))/2;
|
|
|
|
|
|
// Function: tanh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
|
|
function tanh(x) =
|
|
sinh(x)/cosh(x);
|
|
|
|
|
|
// Function: asinh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
|
|
function asinh(x) =
|
|
ln(x+sqrt(x*x+1));
|
|
|
|
|
|
// Function: acosh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
|
|
function acosh(x) =
|
|
ln(x+sqrt(x*x-1));
|
|
|
|
|
|
// Function: atanh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
|
|
function atanh(x) =
|
|
ln((1+x)/(1-x))/2;
|
|
|
|
|
|
// Function: sum()
|
|
// Description:
|
|
// Returns the sum of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of sums of each part.
|
|
// Arguments:
|
|
// v = The list to get the sum of.
|
|
// Example:
|
|
// sum([1,2,3]); // returns 6.
|
|
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
|
|
function sum(v, _i=0, _acc=undef) = _i>=len(v)? _acc : sum(v, _i+1, ((_acc==undef)? v[_i] : _acc+v[_i]));
|
|
|
|
|
|
// Function: cumsum()
|
|
// Description:
|
|
// Returns a list where each item is the cumulative sum of all items up to and including the corresponding entry in the input list.
|
|
// If passed an array of vectors, returns a list of cumulative vectors sums.
|
|
// Arguments:
|
|
// v = The list to get the sum of.
|
|
// Example:
|
|
// cumsum([1,1,1]); // returns [1,2,3]
|
|
// cumsum([2,2,2]); // returns [2,4,6]
|
|
// cumsum([1,2,3]); // returns [1,3,6]
|
|
// cumsum([[1,2,3], [3,4,5], [5,6,7]]); // returns [[1,2,3], [4,6,8], [9,12,15]]
|
|
function cumsum(v,_i=0,_acc=[]) =
|
|
_i==len(v) ? _acc :
|
|
cumsum(
|
|
v, _i+1,
|
|
concat(
|
|
_acc,
|
|
[_i==0 ? v[_i] : select(_acc,-1)+v[_i]]
|
|
)
|
|
);
|
|
|
|
|
|
// Function: sum_of_squares()
|
|
// Description:
|
|
// Returns the sum of the square of each element of a vector.
|
|
// Arguments:
|
|
// v = The vector to get the sum of.
|
|
// Example:
|
|
// sum_of_squares([1,2,3]); // Returns: 14.
|
|
// sum_of_squares([1,2,4]); // Returns: 21
|
|
// sum_of_squares([-3,-2,-1]); // Returns: 14
|
|
function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v));
|
|
|
|
|
|
// Function: sum_of_sines()
|
|
// Usage:
|
|
// sum_of_sines(a,sines)
|
|
// Description:
|
|
// Gives the sum of a series of sines, at a given angle.
|
|
// Arguments:
|
|
// a = Angle to get the value for.
|
|
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
|
|
// Examples:
|
|
// v = sum_of_sines(30, [[10,3,0], [5,5.5,60]]);
|
|
function sum_of_sines(a, sines) =
|
|
sum([
|
|
for (s = sines) let(
|
|
ss=point3d(s),
|
|
v=ss.x*sin(a*ss.y+ss.z)
|
|
) v
|
|
]);
|
|
|
|
|
|
// Function: deltas()
|
|
// Description:
|
|
// Returns a list with the deltas of adjacent entries in the given list.
|
|
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
|
// Arguments:
|
|
// v = The list to get the deltas of.
|
|
// Example:
|
|
// deltas([2,5,9,17]); // returns [3,4,8].
|
|
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
|
function deltas(v) = [for (p=pair(v)) p.y-p.x];
|
|
|
|
|
|
// Function: product()
|
|
// Description:
|
|
// Returns the product of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of products of each part.
|
|
// If passed an array of matrices, returns a the resulting product matrix.
|
|
// Arguments:
|
|
// v = The list to get the product of.
|
|
// Example:
|
|
// product([2,3,4]); // returns 24.
|
|
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
|
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
|
|
|
|
|
|
// Function: mean()
|
|
// Description:
|
|
// Returns the mean of all entries in the given array.
|
|
// If passed an array of vectors, returns a vector of mean of each part.
|
|
// Arguments:
|
|
// v = The list of values to get the mean of.
|
|
// Example:
|
|
// mean([2,3,4]); // returns 3.
|
|
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
|
|
function mean(v) = sum(v)/len(v);
|
|
|
|
|
|
// Function: det2()
|
|
// Description:
|
|
// Optimized function that returns the determinant for the given 2x2 square matrix.
|
|
// Arguments:
|
|
// M = The 2x2 square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,-2], [1,8] ];
|
|
// det = det2(M); // Returns: 50
|
|
function det2(M) = M[0][0] * M[1][1] - M[0][1]*M[1][0];
|
|
|
|
|
|
// Function: det3()
|
|
// Description:
|
|
// Optimized function that returns the determinant for the given 3x3 square matrix.
|
|
// Arguments:
|
|
// M = The 3x3 square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
|
// det = det3(M); // Returns: -334
|
|
function det3(M) =
|
|
M[0][0] * (M[1][1]*M[2][2]-M[2][1]*M[1][2]) -
|
|
M[1][0] * (M[0][1]*M[2][2]-M[2][1]*M[0][2]) +
|
|
M[2][0] * (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
|
|
|
|
|
|
// Function: determinant()
|
|
// Description:
|
|
// Returns the determinant for the given square matrix.
|
|
// Arguments:
|
|
// M = The NxN square matrix to get the determinant of.
|
|
// Example:
|
|
// M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
|
|
// det = determinant(M); // Returns: 2267
|
|
function determinant(M) =
|
|
assert(len(M)==len(M[0]))
|
|
len(M)==1? M[0][0] :
|
|
len(M)==2? det2(M) :
|
|
len(M)==3? det3(M) :
|
|
sum(
|
|
[for (col=[0:1:len(M)-1])
|
|
((col%2==0)? 1 : -1) *
|
|
M[col][0] *
|
|
determinant(
|
|
[for (r=[1:1:len(M)-1])
|
|
[for (c=[0:1:len(M)-1])
|
|
if (c!=col) M[c][r]
|
|
]
|
|
]
|
|
)
|
|
]
|
|
);
|
|
|
|
|
|
// Section: Comparisons and Logic
|
|
|
|
|
|
function _type_num(x) =
|
|
is_undef(x)? 0 :
|
|
is_bool(x)? 1 :
|
|
is_num(x)? 2 :
|
|
is_string(x)? 3 :
|
|
is_list(x)? 4 : 5;
|
|
|
|
|
|
// Function: compare_vals()
|
|
// Usage:
|
|
// compare_vals(a, b);
|
|
// Description:
|
|
// Compares two values. Lists are compared recursively.
|
|
// If types are not the same, then undef < bool < num < str < list < range.
|
|
// Arguments:
|
|
// a = First value to compare.
|
|
// b = Second value to compare.
|
|
function compare_vals(a, b) =
|
|
(a==b)? 0 :
|
|
let(t1=_type_num(a), t2=_type_num(b)) (t1!=t2)? (t1-t2) :
|
|
is_list(a)? compare_lists(a,b) :
|
|
(a<b)? -1 : (a>b)? 1 : 0;
|
|
|
|
|
|
// Function: compare_lists()
|
|
// Usage:
|
|
// compare_lists(a, b)
|
|
// Description:
|
|
// Compare contents of two lists using `compare_vals()`.
|
|
// Returns <0 if `a`<`b`.
|
|
// Returns 0 if `a`==`b`.
|
|
// Returns >0 if `a`>`b`.
|
|
// Arguments:
|
|
// a = First list to compare.
|
|
// b = Second list to compare.
|
|
function compare_lists(a, b) =
|
|
a==b? 0 : let(
|
|
cmps = [
|
|
for(i=[0:1:min(len(a),len(b))-1]) let(
|
|
cmp = compare_vals(a[i],b[i])
|
|
) if(cmp!=0) cmp
|
|
]
|
|
) cmps==[]? (len(a)-len(b)) : cmps[0];
|
|
|
|
|
|
// Function: any()
|
|
// Description:
|
|
// Returns true if any item in list `l` evaluates as true.
|
|
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// any([0,false,undef]); // Returns false.
|
|
// any([1,false,undef]); // Returns true.
|
|
// any([1,5,true]); // Returns true.
|
|
// any([[0,0], [0,0]]); // Returns false.
|
|
// any([[0,0], [1,0]]); // Returns true.
|
|
function any(l, i=0, succ=false) =
|
|
(i>=len(l) || succ)? succ :
|
|
any(
|
|
l, i=i+1, succ=(
|
|
is_list(l[i])? any(l[i]) :
|
|
!(!l[i])
|
|
)
|
|
);
|
|
|
|
|
|
// Function: all()
|
|
// Description:
|
|
// Returns true if all items in list `l` evaluate as true.
|
|
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// all([0,false,undef]); // Returns false.
|
|
// all([1,false,undef]); // Returns false.
|
|
// all([1,5,true]); // Returns true.
|
|
// all([[0,0], [0,0]]); // Returns false.
|
|
// all([[0,0], [1,0]]); // Returns false.
|
|
// all([[1,1], [1,1]]); // Returns true.
|
|
function all(l, i=0, fail=false) =
|
|
(i>=len(l) || fail)? (!fail) :
|
|
all(
|
|
l, i=i+1, fail=(
|
|
is_list(l[i])? !all(l[i]) :
|
|
!l[i]
|
|
)
|
|
);
|
|
|
|
|
|
// Function: count_true()
|
|
// Usage:
|
|
// count_true(l)
|
|
// Description:
|
|
// Returns the number of items in `l` that evaluate as true.
|
|
// If `l` is a lists of lists, this is applied recursively to each
|
|
// sublist. Returns the total count of items that evaluate as true
|
|
// in all recursive sublists.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// nmax = If given, stop counting if `nmax` items evaluate as true.
|
|
// Example:
|
|
// count_true([0,false,undef]); // Returns 0.
|
|
// count_true([1,false,undef]); // Returns 1.
|
|
// count_true([1,5,false]); // Returns 2.
|
|
// count_true([1,5,true]); // Returns 3.
|
|
// count_true([[0,0], [0,0]]); // Returns 0.
|
|
// count_true([[0,0], [1,0]]); // Returns 1.
|
|
// count_true([[1,1], [1,1]]); // Returns 4.
|
|
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
|
function count_true(l, nmax=undef, i=0, cnt=0) =
|
|
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
|
|
count_true(
|
|
l=l, nmax=nmax, i=i+1, cnt=cnt+(
|
|
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
|
|
(l[i]? 1 : 0)
|
|
)
|
|
);
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|