mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
2354 lines
76 KiB
OpenSCAD
2354 lines
76 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: transforms.scad
|
|
// This is the file that the most commonly used transformations, distributors, and mutator are in.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// CommonCode:
|
|
// include <BOSL2/paths.scad>
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Translations
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Function&Module: move()
|
|
//
|
|
// Description:
|
|
// If called as a module, moves/translates all children. If called as a function with the `pts`
|
|
// argument, returns the translated point or list of points. If called as a function without the
|
|
// `pts` argument, returns an affine translation matrix, either 2D or 3D depending on the length
|
|
// of the offset vector `a`.
|
|
//
|
|
// Usage: As Module
|
|
// move([x], [y], [z]) ...
|
|
// move(a) ...
|
|
// Usage: Translate Points
|
|
// pts = move(a, p);
|
|
// pts = move([x], [y], [z], p);
|
|
// Usage: Get Translation Matrix
|
|
// mat = move(a);
|
|
//
|
|
// Arguments:
|
|
// a = An [X,Y,Z] vector to translate by.
|
|
// x = X axis translation.
|
|
// y = Y axis translation.
|
|
// z = Z axis translation.
|
|
// p = Either a point, or a list of points to be translated when used as a function.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// move([0,20,30]) sphere(d=10);
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// move(y=20) sphere(d=10);
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// move(x=-10, y=-5) sphere(d=10);
|
|
//
|
|
// Example(NORENDER):
|
|
// pt1 = move([0,20,30], p=[15,23,42]); // Returns: [15, 43, 72]
|
|
// pt2 = move(y=10, p=[15,23,42]); // Returns: [15, 33, 42]
|
|
// pt3 = move([0,3,1], p=[[1,2,3],[4,5,6]]); // Returns: [[1,5,4], [4,8,7]]
|
|
// pt4 = move(y=11, p=[[1,2,3],[4,5,6]]); // Returns: [[1,13,3], [4,16,6]]
|
|
// mat2d = move([2,3]); // Returns: [[1,0,2],[0,1,3],[0,0,1]]
|
|
// mat3d = move([2,3,4]); // Returns: [[1,0,0,2],[0,1,0,3],[0,0,1,4],[0,0,0,1]]
|
|
module move(a=[0,0,0], x=0, y=0, z=0)
|
|
{
|
|
translate(a+[x,y,z]) children();
|
|
}
|
|
|
|
function translate(a=[0,0,0], p=undef) = move(a=a, p=p);
|
|
|
|
function move(a=[0,0,0], p=undef, x=0, y=0, z=0) =
|
|
is_undef(p)? (
|
|
len(a)==2? affine2d_translate(a+[x,y]) :
|
|
affine3d_translate(point3d(a)+[x,y,z])
|
|
) : (
|
|
is_vector(p)? p+a+[x,y,z] :
|
|
[for (pt = p) pt+a+[x,y,z]]
|
|
);
|
|
|
|
|
|
// Module: left()
|
|
//
|
|
// Description:
|
|
// Moves children left (in the X- direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// left(x) ...
|
|
//
|
|
// Arguments:
|
|
// x = Scalar amount to move left.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// left(20) sphere(d=10);
|
|
module left(x=0) translate([-x,0,0]) children();
|
|
|
|
|
|
// Module: right()
|
|
//
|
|
// Description:
|
|
// Moves children right (in the X+ direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// right(x) ...
|
|
//
|
|
// Arguments:
|
|
// x = Scalar amount to move right.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// right(20) sphere(d=10);
|
|
module right(x=0) translate([x,0,0]) children();
|
|
|
|
|
|
// Module: fwd()
|
|
//
|
|
// Description:
|
|
// Moves children forward (in the Y- direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// fwd(y) ...
|
|
//
|
|
// Arguments:
|
|
// y = Scalar amount to move forward.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// fwd(20) sphere(d=10);
|
|
module fwd(y=0) translate([0,-y,0]) children();
|
|
|
|
|
|
// Module: back()
|
|
//
|
|
// Description:
|
|
// Moves children back (in the Y+ direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// back(y) ...
|
|
//
|
|
// Arguments:
|
|
// y = Scalar amount to move back.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// back(20) sphere(d=10);
|
|
module back(y=0) translate([0,y,0]) children();
|
|
|
|
|
|
// Module: down()
|
|
//
|
|
// Description:
|
|
// Moves children down (in the Z- direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// down(z) ...
|
|
//
|
|
// Arguments:
|
|
// z = Scalar amount to move down.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// down(20) sphere(d=10);
|
|
module down(z=0) translate([0,0,-z]) children();
|
|
|
|
|
|
// Module: up()
|
|
//
|
|
// Description:
|
|
// Moves children up (in the Z+ direction) by the given amount.
|
|
//
|
|
// Usage:
|
|
// up(z) ...
|
|
//
|
|
// Arguments:
|
|
// z = Scalar amount to move up.
|
|
//
|
|
// Example:
|
|
// #sphere(d=10);
|
|
// up(20) sphere(d=10);
|
|
module up(z=0) translate([0,0,z]) children();
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Rotations
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Function&Module: rot()
|
|
//
|
|
// Description:
|
|
// When called as a module, rotates all children around an arbitrary axis by the given number of degrees.
|
|
// Can be used as a drop-in replacement for `rotate()`, with extra features.
|
|
// When called as a function with a `p` argument containing a point, returns the rotated point.
|
|
// When called as a function with a `p` argument containing a list of points, returns the list of rotated points.
|
|
// When called as a function without a `p` argument, returns the rotational matrix. 2D if planar is true, 3D otherwise.
|
|
//
|
|
// Usage:
|
|
// rot(a, [cp], [reverse]) ...
|
|
// rot([X,Y,Z], [cp], [reverse]) ...
|
|
// rot(a, v, [cp], [reverse]) ...
|
|
// rot(from, to, [a], [reverse]) ...
|
|
//
|
|
// Arguments:
|
|
// a = Scalar angle or vector of XYZ rotation angles to rotate by, in degrees.
|
|
// v = vector for the axis of rotation. Default: [0,0,1] or UP
|
|
// cp = centerpoint to rotate around. Default: [0,0,0]
|
|
// from = Starting vector for vector-based rotations.
|
|
// to = Target vector for vector-based rotations.
|
|
// reverse = If true, exactly reverses the rotation, including axis rotation ordering. Default: false
|
|
// planar = If called as a function, this specifies if you want to work with 2D points.
|
|
// p = If called as a function, this contains a point or list of points to rotate.
|
|
//
|
|
// Example:
|
|
// #cube([2,4,9]);
|
|
// rot([30,60,0], cp=[0,0,9]) cube([2,4,9]);
|
|
//
|
|
// Example:
|
|
// #cube([2,4,9]);
|
|
// rot(30, v=[1,1,0], cp=[0,0,9]) cube([2,4,9]);
|
|
//
|
|
// Example:
|
|
// #cube([2,4,9]);
|
|
// rot(from=UP, to=LEFT+BACK) cube([2,4,9]);
|
|
module rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false)
|
|
{
|
|
if (!is_undef(cp)) {
|
|
translate(cp) rot(a=a, v=v, from=from, to=to, reverse=reverse) translate(-cp) children();
|
|
} else if (!is_undef(from)) {
|
|
assert(!is_undef(to), "`from` and `to` should be used together.");
|
|
from = point3d(from);
|
|
to = point3d(to);
|
|
axis = vector_axis(from, to);
|
|
ang = vector_angle(from, to);
|
|
if (ang < 0.0001 && a == 0) {
|
|
children(); // May be slightly faster?
|
|
} else if (reverse) {
|
|
rotate(a=-ang, v=axis) rotate(a=-a, v=from) children();
|
|
} else {
|
|
rotate(a=ang, v=axis) rotate(a=a, v=from) children();
|
|
}
|
|
} else if (a == 0) {
|
|
children(); // May be slightly faster?
|
|
} else if (reverse) {
|
|
if (!is_undef(v)) {
|
|
rotate(a=-a, v=v) children();
|
|
} else if (is_num(a)) {
|
|
rotate(-a) children();
|
|
} else {
|
|
rotate([-a[0],0,0]) rotate([0,-a[1],0]) rotate([0,0,-a[2]]) children();
|
|
}
|
|
} else {
|
|
rotate(a=a, v=v) children();
|
|
}
|
|
}
|
|
|
|
function rot(a=0, v=undef, cp=undef, from=undef, to=undef, reverse=false, p=undef, planar=false) =
|
|
assert(is_undef(from)==is_undef(to), "from and to must be specified together.")
|
|
let(rev = reverse? -1 : 1)
|
|
is_undef(p)? (
|
|
is_undef(cp)? (
|
|
planar? (
|
|
is_undef(from)? affine2d_zrot(a*rev) :
|
|
affine2d_zrot(vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev)
|
|
) : (
|
|
!is_undef(from)? affine3d_rot_by_axis(vector_axis(from,to),vector_angle(from,to)*rev) :
|
|
!is_undef(v)? affine3d_rot_by_axis(v,a*rev) :
|
|
is_num(a)? affine3d_zrot(a*rev) :
|
|
reverse? affine3d_chain([affine3d_zrot(-a.z),affine3d_yrot(-a.y),affine3d_xrot(-a.x)]) :
|
|
affine3d_chain([affine3d_xrot(a.x),affine3d_yrot(a.y),affine3d_zrot(a.z)])
|
|
)
|
|
) : (
|
|
planar? (
|
|
affine2d_chain([
|
|
move(-cp),
|
|
rot(a=a, v=v, from=from, to=to, reverse=reverse, planar=true),
|
|
move(cp)
|
|
])
|
|
) : (
|
|
affine3d_chain([
|
|
move(-cp),
|
|
rot(a=a, v=v, from=from, to=to, reverse=reverse),
|
|
move(cp)
|
|
])
|
|
)
|
|
)
|
|
) : (
|
|
is_vector(p)? (
|
|
rot(a=a, v=v, cp=cp, from=from, to=to, reverse=reverse, p=[p], planar=planar)[0]
|
|
) : (
|
|
(
|
|
(planar || (p!=[] && len(p[0])==2)) && !(
|
|
(is_vector(a) && norm(point2d(a))>0) ||
|
|
(!is_undef(v) && norm(point2d(v))>0 && !approx(a,0)) ||
|
|
(!is_undef(from) && !approx(from,to) && !(abs(from.z)>0 || abs(to.z))) ||
|
|
(!is_undef(from) && approx(from,to) && norm(point2d(from))>0 && a!=0)
|
|
)
|
|
)? (
|
|
is_undef(from)? rotate_points2d(p, a=a*rev, cp=cp) : (
|
|
approx(from,to)&&approx(a,0)? p :
|
|
rotate_points2d(p, a=vector_angle(from,to)*sign(vector_axis(from,to)[2])*rev, cp=cp)
|
|
)
|
|
) : (
|
|
rotate_points3d(p, a=a, v=v, cp=(is_undef(cp)? [0,0,0] : cp), from=from, to=to, reverse=reverse)
|
|
)
|
|
)
|
|
);
|
|
|
|
|
|
|
|
|
|
// Function&Module: xrot()
|
|
//
|
|
// Description:
|
|
// When called as a module, rotates children around the X axis by the given number of degrees.
|
|
// When called as a function with the `p` argument, rotates the coordinates in `p` around the X axis by the given number of degrees.
|
|
// When called as a function without the `p` argument, returns an affine matrix to rotate around the X axis by the given number of degrees.
|
|
// If given, rotations are centered around the centerpoint `cp`.
|
|
//
|
|
// Usage: As Module
|
|
// xrot(a, [cp]) ...
|
|
// Usage: Rotate Points
|
|
// rotated = xrot(a, p, [cp]);
|
|
// Usage: Get Rotation Matrix
|
|
// mat = xrot(a, [cp]);
|
|
//
|
|
// Arguments:
|
|
// a = angle to rotate by in degrees.
|
|
// cp = centerpoint to rotate around. Default: [0,0,0]
|
|
// p = If called as a function, this contains a point or list of points to rotate.
|
|
//
|
|
// Example:
|
|
// #cylinder(h=50, r=10, center=true);
|
|
// xrot(90) cylinder(h=50, r=10, center=true);
|
|
module xrot(a=0, cp=undef)
|
|
{
|
|
if (a==0) {
|
|
children(); // May be slightly faster?
|
|
} else if (!is_undef(cp)) {
|
|
translate(cp) rotate([a, 0, 0]) translate(-cp) children();
|
|
} else {
|
|
rotate([a, 0, 0]) children();
|
|
}
|
|
}
|
|
|
|
function xrot(a=0, cp=undef, p=undef) = rot([a,0,0], cp=cp, p=p);
|
|
|
|
|
|
// Function&Module: yrot()
|
|
//
|
|
// Description:
|
|
// When called as a module, rotates children around the Y axis by the given number of degrees.
|
|
// When called as a function with the `p` argument, rotates the coordinates in `p` around the Y axis by the given number of degrees.
|
|
// When called as a function without the `p` argument, returns an affine matrix to rotate around the Y axis by the given number of degrees.
|
|
// If given, rotations are centered around the centerpoint `cp`.
|
|
//
|
|
// Usage: As Module
|
|
// yrot(a, [cp]) ...
|
|
// Usage: Rotate Points
|
|
// rotated = yrot(a, p, [cp]);
|
|
// Usage: Get Rotation Matrix
|
|
// mat = yrot(a, [cp]);
|
|
//
|
|
// Arguments:
|
|
// a = angle to rotate by in degrees.
|
|
// cp = centerpoint to rotate around. Default: [0,0,0]
|
|
// p = If called as a function, this contains a point or list of points to rotate.
|
|
//
|
|
// Example:
|
|
// #cylinder(h=50, r=10, center=true);
|
|
// yrot(90) cylinder(h=50, r=10, center=true);
|
|
module yrot(a=0, cp=undef)
|
|
{
|
|
if (a==0) {
|
|
children(); // May be slightly faster?
|
|
} else if (!is_undef(cp)) {
|
|
translate(cp) rotate([0, a, 0]) translate(-cp) children();
|
|
} else {
|
|
rotate([0, a, 0]) children();
|
|
}
|
|
}
|
|
|
|
function yrot(a=0, cp=undef, p=undef) = rot([0,a,0], cp=cp, p=p);
|
|
|
|
|
|
// Function&Module: zrot()
|
|
//
|
|
// Description:
|
|
// When called as a module, rotates children around the Z axis by the given number of degrees.
|
|
// When called as a function with the `p` argument, rotates the coordinates in `p` around the Z axis by the given number of degrees.
|
|
// When called as a function without the `p` argument, returns an affine matrix to rotate around the Z axis by the given number of degrees.
|
|
// If given, rotations are centered around the centerpoint `cp`.
|
|
//
|
|
// Usage: As Module
|
|
// zrot(a, [cp]) ...
|
|
// Usage: Rotate Points
|
|
// rotated = zrot(a, p, [cp]);
|
|
// Usage: Get Rotation Matrix
|
|
// mat = zrot(a, [cp]);
|
|
//
|
|
// Arguments:
|
|
// a = angle to rotate by in degrees.
|
|
// cp = centerpoint to rotate around. Default: [0,0,0]
|
|
// p = If called as a function, this contains a point or list of points to rotate.
|
|
//
|
|
// Example:
|
|
// #cube(size=[60,20,40], center=true);
|
|
// zrot(90) cube(size=[60,20,40], center=true);
|
|
module zrot(a=0, cp=undef)
|
|
{
|
|
if (a==0) {
|
|
children(); // May be slightly faster?
|
|
} else if (!is_undef(cp)) {
|
|
translate(cp) rotate(a) translate(-cp) children();
|
|
} else {
|
|
rotate(a) children();
|
|
}
|
|
}
|
|
|
|
function zrot(a=0, cp=undef, p=undef) = rot(a, cp=cp, p=p);
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Scaling and Mirroring
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Function&Module: scale()
|
|
// Usage: As Module
|
|
// scale(SCALAR) ...
|
|
// scale([X,Y,Z]) ...
|
|
// Usage: Scale Points
|
|
// pts = scale(a, p);
|
|
// Usage: Get Scaling Matrix
|
|
// mat = scale(a);
|
|
// Description:
|
|
// When called as the built-in module, scales all children by the [X,Y,Z] scaling factors. When
|
|
// called as a function with a point in the `p` argument, returns the point scaled by the [X,Y,Z]
|
|
// scaling factors in `a`. When called as a function with a list of points in the `p` argument,
|
|
// returns the list of points, with each one scaled by the [X,Y,Z] scaling factors in `a`.
|
|
// Arguments:
|
|
// a = The [X,Y,Z] scaling factors, or a scalar value for uniform scaling across all axes. Default: 1
|
|
// p = If called as a function, the point or list of points to scale.
|
|
// Example(NORENDER):
|
|
// pt1 = scale(3, p=[3,1,4]); // Returns: [9,3,12]
|
|
// pt2 = scale([2,3,4], p=[3,1,4]); // Returns: [6,3,16]
|
|
// pt3 = scale([2,3,4], p=[[1,2,3],[4,5,6]]); // Returns: [[2,6,12], [8,15,24]]
|
|
// mat2d = scale([2,3]); // Returns: [[2,0,0],[0,3,0],[0,0,1]]
|
|
// mat3d = scale([2,3,4]); // Returns: [[2,0,0,0],[0,3,0,0],[0,0,4,0],[0,0,0,1]]
|
|
// Example(2D):
|
|
// path = circle(d=50,$fn=12);
|
|
// #stroke(path);
|
|
// stroke(scale([1.5,3],p=path));
|
|
function scale(a=1, p=undef) =
|
|
let(a = is_num(a)? [a,a,a] : a)
|
|
is_undef(p)? (
|
|
len(a)==2? affine2d_scale(a) : affine3d_scale(point3d(a))
|
|
) : (
|
|
is_vector(p)? vmul(p,a) : [for (pt = p) vmul(pt,a)]
|
|
);
|
|
|
|
|
|
// Function&Module: xscale()
|
|
//
|
|
// Usage: As Module
|
|
// xscale(x) ...
|
|
// Usage: Scale Points
|
|
// scaled = xscale(x, p);
|
|
// Usage: Get Scaling Matrix
|
|
// mat = xscale(x, planar);
|
|
//
|
|
// Description:
|
|
// When called as a module, scales children by the given `x` factor on the X axis.
|
|
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `x` in the X axis.
|
|
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `x` in the X axis.
|
|
//
|
|
// Arguments:
|
|
// x = Factor to scale by, along the X axis.
|
|
// p = A point or path to scale, when called as a function.
|
|
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
|
//
|
|
// Example: As Module
|
|
// xscale(3) sphere(r=10);
|
|
//
|
|
// Example(2D): Scaling Points
|
|
// path = circle(d=50,$fn=12);
|
|
// #stroke(path);
|
|
// stroke(xscale(2,p=path));
|
|
module xscale(x=1) scale([x,1,1]) children();
|
|
|
|
function xscale(x=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([x,1],p=p) : scale([x,1,1],p=p);
|
|
|
|
|
|
// Function&Module: yscale()
|
|
//
|
|
// Description:
|
|
// When called as a module, scales children by the given `y` factor on the Y axis.
|
|
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `y` in the Y axis.
|
|
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `y` in the Y axis.
|
|
//
|
|
// Usage:
|
|
// yscale(y) ...
|
|
// mat = yscale(y);
|
|
// scaled = yscale(y, p);
|
|
//
|
|
// Arguments:
|
|
// y = Factor to scale by, along the Y axis.
|
|
// p = A point or path to scale, when called as a function.
|
|
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
|
//
|
|
// Example: As Module
|
|
// yscale(3) sphere(r=10);
|
|
//
|
|
// Example(2D): Scaling Points
|
|
// path = circle(d=50,$fn=12);
|
|
// #stroke(path);
|
|
// stroke(yscale(2,p=path));
|
|
module yscale(y=1) scale([1,y,1]) children();
|
|
|
|
function yscale(y=1, p=undef, planar=false) = (planar || (!is_undef(p) && len(p)==2))? scale([1,y],p=p) : scale([1,y,1],p=p);
|
|
|
|
|
|
// Function&Module: zscale()
|
|
//
|
|
// Description:
|
|
// When called as a module, scales children by the given `z` factor on the Z axis.
|
|
// When called as a function with the `p` argument, scales the coordinates in `p` by the given scale `z` in the Z axis.
|
|
// When called as a function without the `p` argument, returns an affine matrix to scale by the given scale `z` in the Z axis.
|
|
//
|
|
// Usage:
|
|
// zscale(z) ...
|
|
//
|
|
// Arguments:
|
|
// z = Factor to scale by, along the Z axis.
|
|
// p = A point or path to scale, when called as a function.
|
|
// planar = If true, and `p` is not given, then the matrix returned is an affine2d matrix instead of an affine3d matrix.
|
|
//
|
|
// Example: As Module
|
|
// zscale(3) sphere(r=10);
|
|
//
|
|
// Example: Scaling Points
|
|
// path = xrot(90,p=circle(d=50,$fn=12));
|
|
// #trace_polyline(path);
|
|
// trace_polyline(zscale(2,p=path));
|
|
module zscale(z=1) scale([1,1,z]) children();
|
|
|
|
function zscale(z=1, p=undef) = scale([1,1,z],p=p);
|
|
|
|
|
|
// Module: xflip()
|
|
//
|
|
// Description:
|
|
// Mirrors the children along the X axis, like `mirror([1,0,0])` or `xscale(-1)`
|
|
//
|
|
// Usage:
|
|
// xflip([x]) ...
|
|
//
|
|
// Arguments:
|
|
// x = The X coordinate of the plane of reflection. Default: 0
|
|
//
|
|
// Example:
|
|
// xflip() yrot(90) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) cube([0.01,15,15], center=true);
|
|
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
|
|
//
|
|
// Example:
|
|
// xflip(x=-5) yrot(90) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) left(5) cube([0.01,15,15], center=true);
|
|
// color("red", 0.333) yrot(90) cylinder(d1=10, d2=0, h=20);
|
|
module xflip(x=0) translate([x,0,0]) mirror([1,0,0]) translate([-x,0,0]) children();
|
|
|
|
|
|
// Module: yflip()
|
|
//
|
|
// Description:
|
|
// Mirrors the children along the Y axis, like `mirror([0,1,0])` or `yscale(-1)`
|
|
//
|
|
// Usage:
|
|
// yflip([y]) ...
|
|
//
|
|
// Arguments:
|
|
// y = The Y coordinate of the plane of reflection. Default: 0
|
|
//
|
|
// Example:
|
|
// yflip() xrot(90) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) cube([15,0.01,15], center=true);
|
|
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
|
|
//
|
|
// Example:
|
|
// yflip(y=5) xrot(90) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) back(5) cube([15,0.01,15], center=true);
|
|
// color("red", 0.333) xrot(90) cylinder(d1=10, d2=0, h=20);
|
|
module yflip(y=0) translate([0,y,0]) mirror([0,1,0]) translate([0,-y,0]) children();
|
|
|
|
|
|
// Module: zflip()
|
|
//
|
|
// Description:
|
|
// Mirrors the children along the Z axis, like `mirror([0,0,1])` or `zscale(-1)`
|
|
//
|
|
// Usage:
|
|
// zflip([z]) ...
|
|
//
|
|
// Arguments:
|
|
// z = The Z coordinate of the plane of reflection. Default: 0
|
|
//
|
|
// Example:
|
|
// zflip() cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) cube([15,15,0.01], center=true);
|
|
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
|
|
//
|
|
// Example:
|
|
// zflip(z=-5) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue", 0.25) down(5) cube([15,15,0.01], center=true);
|
|
// color("red", 0.333) cylinder(d1=10, d2=0, h=20);
|
|
module zflip(z=0) translate([0,0,z]) mirror([0,0,1]) translate([0,0,-z]) children();
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Skewing
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: skew_xy()
|
|
//
|
|
// Description:
|
|
// Skews children on the X-Y plane, keeping constant in Z.
|
|
//
|
|
// Usage:
|
|
// skew_xy([xa], [ya], [planar]) ...
|
|
//
|
|
// Arguments:
|
|
// xa = skew angle towards the X direction.
|
|
// ya = skew angle towards the Y direction.
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Example(FlatSpin):
|
|
// #cube(size=10);
|
|
// skew_xy(xa=30, ya=15) cube(size=10);
|
|
// Example(2D):
|
|
// skew_xy(xa=15,ya=30,planar=true) square(30);
|
|
module skew_xy(xa=0, ya=0, planar=false) multmatrix(m = planar? affine2d_skew(xa, ya) : affine3d_skew_xy(xa, ya)) children();
|
|
|
|
|
|
// Module: skew_yz()
|
|
//
|
|
// Description:
|
|
// Skews children on the Y-Z plane, keeping constant in X.
|
|
//
|
|
// Usage:
|
|
// skew_yz([ya], [za]) ...
|
|
//
|
|
// Arguments:
|
|
// ya = skew angle towards the Y direction.
|
|
// za = skew angle towards the Z direction.
|
|
//
|
|
// Example(FlatSpin):
|
|
// #cube(size=10);
|
|
// skew_yz(ya=30, za=15) cube(size=10);
|
|
module skew_yz(ya=0, za=0) multmatrix(m = affine3d_skew_yz(ya, za)) children();
|
|
|
|
|
|
// Module: skew_xz()
|
|
//
|
|
// Description:
|
|
// Skews children on the X-Z plane, keeping constant in Y.
|
|
//
|
|
// Usage:
|
|
// skew_xz([xa], [za]) ...
|
|
//
|
|
// Arguments:
|
|
// xa = skew angle towards the X direction.
|
|
// za = skew angle towards the Z direction.
|
|
//
|
|
// Example(FlatSpin):
|
|
// #cube(size=10);
|
|
// skew_xz(xa=15, za=-10) cube(size=10);
|
|
module skew_xz(xa=0, za=0) multmatrix(m = affine3d_skew_xz(xa, za)) children();
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Translational Distributors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: place_copies()
|
|
//
|
|
// Description:
|
|
// Makes copies of the given children at each of the given offsets.
|
|
//
|
|
// Usage:
|
|
// place_copies(a) ...
|
|
//
|
|
// Arguments:
|
|
// a = array of XYZ offset vectors. Default [[0,0,0]]
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
//
|
|
// Example:
|
|
// #sphere(r=10);
|
|
// place_copies([[-25,-25,0], [25,-25,0], [0,0,50], [0,25,0]]) sphere(r=10);
|
|
module place_copies(a=[[0,0,0]])
|
|
{
|
|
for (off = a) assert(is_vector(off)) translate(off) children();
|
|
}
|
|
|
|
|
|
// Module: spread()
|
|
//
|
|
// Description:
|
|
// Evenly distributes `n` copies of all children along a line.
|
|
// Copies every child at each position.
|
|
//
|
|
// Usage:
|
|
// spread(l, [n], [p1]) ...
|
|
// spread(l, spacing, [p1]) ...
|
|
// spread(spacing, [n], [p1]) ...
|
|
// spread(p1, p2, [n]) ...
|
|
// spread(p1, p2, spacing) ...
|
|
//
|
|
// Arguments:
|
|
// p1 = Starting point of line.
|
|
// p2 = Ending point of line.
|
|
// l = Length to spread copies over.
|
|
// spacing = A 3D vector indicating which direction and distance to place each subsequent copy at.
|
|
// n = Number of copies to distribute along the line. (Default: 2)
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example(FlatSpin):
|
|
// spread([0,0,0], [5,5,20], n=6) cube(size=[3,2,1],center=true);
|
|
// Examples:
|
|
// spread(l=40, n=6) cube(size=[3,2,1],center=true);
|
|
// spread(l=[15,30], n=6) cube(size=[3,2,1],center=true);
|
|
// spread(l=40, spacing=10) cube(size=[3,2,1],center=true);
|
|
// spread(spacing=[5,5,0], n=5) cube(size=[3,2,1],center=true);
|
|
// Example:
|
|
// spread(l=20, n=3) {
|
|
// cube(size=[1,3,1],center=true);
|
|
// cube(size=[3,1,1],center=true);
|
|
// }
|
|
module spread(p1=undef, p2=undef, spacing=undef, l=undef, n=undef)
|
|
{
|
|
ll = (
|
|
!is_undef(l)? scalar_vec3(l, 0) :
|
|
(!is_undef(spacing) && !is_undef(n))? (n * scalar_vec3(spacing, 0)) :
|
|
(!is_undef(p1) && !is_undef(p2))? point3d(p2-p1) :
|
|
undef
|
|
);
|
|
cnt = (
|
|
!is_undef(n)? n :
|
|
(!is_undef(spacing) && !is_undef(ll))? floor(norm(ll) / norm(scalar_vec3(spacing, 0)) + 1.000001) :
|
|
2
|
|
);
|
|
spc = (
|
|
is_undef(spacing)? (ll/(cnt-1)) :
|
|
is_num(spacing) && !is_undef(ll)? (ll/(cnt-1)) :
|
|
scalar_vec3(spacing, 0)
|
|
);
|
|
assert(!is_undef(cnt), "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `spread()`.");
|
|
spos = !is_undef(p1)? point3d(p1) : -(cnt-1)/2 * spc;
|
|
for (i=[0:1:cnt-1]) {
|
|
pos = i * spc + spos;
|
|
$pos = pos;
|
|
$idx = i;
|
|
translate(pos) children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: xspread()
|
|
//
|
|
// Description:
|
|
// Spreads out `n` copies of the children along a line on the X axis.
|
|
//
|
|
// Usage:
|
|
// xspread(spacing, [n], [sp]) ...
|
|
// xspread(l, [n], [sp]) ...
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between copies. (Default: 1.0)
|
|
// n = Number of copies to spread out. (Default: 2)
|
|
// l = Length to spread copies over.
|
|
// sp = If given, copies will be spread on a line to the right of starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Examples:
|
|
// xspread(20) sphere(3);
|
|
// xspread(20, n=3) sphere(3);
|
|
// xspread(spacing=15, l=50) sphere(3);
|
|
// xspread(n=4, l=30, sp=[0,10,0]) sphere(3);
|
|
// Example:
|
|
// xspread(10, n=3) {
|
|
// cube(size=[1,3,1],center=true);
|
|
// cube(size=[3,1,1],center=true);
|
|
// }
|
|
module xspread(spacing=undef, n=undef, l=undef, sp=undef)
|
|
{
|
|
spread(l=l*RIGHT, spacing=spacing*RIGHT, n=n, p1=sp) children();
|
|
}
|
|
|
|
|
|
// Module: yspread()
|
|
//
|
|
// Description:
|
|
// Spreads out `n` copies of the children along a line on the Y axis.
|
|
//
|
|
// Usage:
|
|
// yspread(spacing, [n], [sp]) ...
|
|
// yspread(l, [n], [sp]) ...
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between copies. (Default: 1.0)
|
|
// n = Number of copies to spread out. (Default: 2)
|
|
// l = Length to spread copies over.
|
|
// sp = If given, copies will be spread on a line back from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Examples:
|
|
// yspread(20) sphere(3);
|
|
// yspread(20, n=3) sphere(3);
|
|
// yspread(spacing=15, l=50) sphere(3);
|
|
// yspread(n=4, l=30, sp=[10,0,0]) sphere(3);
|
|
// Example:
|
|
// yspread(10, n=3) {
|
|
// cube(size=[1,3,1],center=true);
|
|
// cube(size=[3,1,1],center=true);
|
|
// }
|
|
module yspread(spacing=undef, n=undef, l=undef, sp=undef)
|
|
{
|
|
spread(l=l*BACK, spacing=spacing*BACK, n=n, p1=sp) children();
|
|
}
|
|
|
|
|
|
// Module: zspread()
|
|
//
|
|
// Description:
|
|
// Spreads out `n` copies of the children along a line on the Z axis.
|
|
//
|
|
// Usage:
|
|
// zspread(spacing, [n], [sp]) ...
|
|
// zspread(l, [n], [sp]) ...
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between copies. (Default: 1.0)
|
|
// n = Number of copies to spread out. (Default: 2)
|
|
// l = Length to spread copies over.
|
|
// sp = If given, copies will be spread on a line up from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Examples:
|
|
// zspread(20) sphere(3);
|
|
// zspread(20, n=3) sphere(3);
|
|
// zspread(spacing=15, l=50) sphere(3);
|
|
// zspread(n=4, l=30, sp=[10,0,0]) sphere(3);
|
|
// Example:
|
|
// zspread(10, n=3) {
|
|
// cube(size=[1,3,1],center=true);
|
|
// cube(size=[3,1,1],center=true);
|
|
// }
|
|
module zspread(spacing=undef, n=undef, l=undef, sp=undef)
|
|
{
|
|
spread(l=l*UP, spacing=spacing*UP, n=n, p1=sp) children();
|
|
}
|
|
|
|
|
|
|
|
// Module: distribute()
|
|
//
|
|
// Description:
|
|
// Spreads out each individual child along the direction `dir`.
|
|
// Every child is placed at a different position, in order.
|
|
// This is useful for laying out groups of disparate objects
|
|
// where you only really care about the spacing between them.
|
|
//
|
|
// Usage:
|
|
// distribute(spacing, dir, [sizes]) ...
|
|
// distribute(l, dir, [sizes]) ...
|
|
//
|
|
// Arguments:
|
|
// spacing = Spacing to add between each child. (Default: 10.0)
|
|
// sizes = Array containing how much space each child will need.
|
|
// dir = Vector direction to distribute copies along.
|
|
// l = Length to distribute copies along.
|
|
//
|
|
// Side Effect:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example:
|
|
// distribute(sizes=[100, 30, 50], dir=UP) {
|
|
// sphere(r=50);
|
|
// cube([10,20,30], center=true);
|
|
// cylinder(d=30, h=50, center=true);
|
|
// }
|
|
module distribute(spacing=undef, sizes=undef, dir=RIGHT, l=undef)
|
|
{
|
|
gaps = ($children < 2)? [0] :
|
|
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
|
|
[for (i=[0:1:$children-2]) 0];
|
|
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
|
|
gaps2 = [for (gap = gaps) gap+spc];
|
|
spos = dir * -sum(gaps2)/2;
|
|
for (i=[0:1:$children-1]) {
|
|
totspc = sum(concat([0], slice(gaps2, 0, i)));
|
|
$pos = spos + totspc * dir;
|
|
$idx = i;
|
|
translate($pos) children(i);
|
|
}
|
|
}
|
|
|
|
|
|
// Module: xdistribute()
|
|
//
|
|
// Description:
|
|
// Spreads out each individual child along the X axis.
|
|
// Every child is placed at a different position, in order.
|
|
// This is useful for laying out groups of disparate objects
|
|
// where you only really care about the spacing between them.
|
|
//
|
|
// Usage:
|
|
// xdistribute(spacing, [sizes]) ...
|
|
// xdistribute(l, [sizes]) ...
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between each child. (Default: 10.0)
|
|
// sizes = Array containing how much space each child will need.
|
|
// l = Length to distribute copies along.
|
|
//
|
|
// Side Effect:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example:
|
|
// xdistribute(sizes=[100, 10, 30], spacing=40) {
|
|
// sphere(r=50);
|
|
// cube([10,20,30], center=true);
|
|
// cylinder(d=30, h=50, center=true);
|
|
// }
|
|
module xdistribute(spacing=10, sizes=undef, l=undef)
|
|
{
|
|
dir = RIGHT;
|
|
gaps = ($children < 2)? [0] :
|
|
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
|
|
[for (i=[0:1:$children-2]) 0];
|
|
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
|
|
gaps2 = [for (gap = gaps) gap+spc];
|
|
spos = dir * -sum(gaps2)/2;
|
|
for (i=[0:1:$children-1]) {
|
|
totspc = sum(concat([0], slice(gaps2, 0, i)));
|
|
$pos = spos + totspc * dir;
|
|
$idx = i;
|
|
translate($pos) children(i);
|
|
}
|
|
}
|
|
|
|
|
|
// Module: ydistribute()
|
|
//
|
|
// Description:
|
|
// Spreads out each individual child along the Y axis.
|
|
// Every child is placed at a different position, in order.
|
|
// This is useful for laying out groups of disparate objects
|
|
// where you only really care about the spacing between them.
|
|
//
|
|
// Usage:
|
|
// ydistribute(spacing, [sizes])
|
|
// ydistribute(l, [sizes])
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between each child. (Default: 10.0)
|
|
// sizes = Array containing how much space each child will need.
|
|
// l = Length to distribute copies along.
|
|
//
|
|
// Side Effect:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example:
|
|
// ydistribute(sizes=[30, 20, 100], spacing=40) {
|
|
// cylinder(d=30, h=50, center=true);
|
|
// cube([10,20,30], center=true);
|
|
// sphere(r=50);
|
|
// }
|
|
module ydistribute(spacing=10, sizes=undef, l=undef)
|
|
{
|
|
dir = BACK;
|
|
gaps = ($children < 2)? [0] :
|
|
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
|
|
[for (i=[0:1:$children-2]) 0];
|
|
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
|
|
gaps2 = [for (gap = gaps) gap+spc];
|
|
spos = dir * -sum(gaps2)/2;
|
|
for (i=[0:1:$children-1]) {
|
|
totspc = sum(concat([0], slice(gaps2, 0, i)));
|
|
$pos = spos + totspc * dir;
|
|
$idx = i;
|
|
translate($pos) children(i);
|
|
}
|
|
}
|
|
|
|
|
|
// Module: zdistribute()
|
|
//
|
|
// Description:
|
|
// Spreads out each individual child along the Z axis.
|
|
// Every child is placed at a different position, in order.
|
|
// This is useful for laying out groups of disparate objects
|
|
// where you only really care about the spacing between them.
|
|
//
|
|
// Usage:
|
|
// zdistribute(spacing, [sizes])
|
|
// zdistribute(l, [sizes])
|
|
//
|
|
// Arguments:
|
|
// spacing = spacing between each child. (Default: 10.0)
|
|
// sizes = Array containing how much space each child will need.
|
|
// l = Length to distribute copies along.
|
|
//
|
|
// Side Effect:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example:
|
|
// zdistribute(sizes=[30, 20, 100], spacing=40) {
|
|
// cylinder(d=30, h=50, center=true);
|
|
// cube([10,20,30], center=true);
|
|
// sphere(r=50);
|
|
// }
|
|
module zdistribute(spacing=10, sizes=undef, l=undef)
|
|
{
|
|
dir = UP;
|
|
gaps = ($children < 2)? [0] :
|
|
!is_undef(sizes)? [for (i=[0:1:$children-2]) sizes[i]/2 + sizes[i+1]/2] :
|
|
[for (i=[0:1:$children-2]) 0];
|
|
spc = !is_undef(l)? ((l - sum(gaps)) / ($children-1)) : default(spacing, 10);
|
|
gaps2 = [for (gap = gaps) gap+spc];
|
|
spos = dir * -sum(gaps2)/2;
|
|
for (i=[0:1:$children-1]) {
|
|
totspc = sum(concat([0], slice(gaps2, 0, i)));
|
|
$pos = spos + totspc * dir;
|
|
$idx = i;
|
|
translate($pos) children(i);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: grid2d()
|
|
//
|
|
// Description:
|
|
// Makes a square or hexagonal grid of copies of children.
|
|
//
|
|
// Usage:
|
|
// grid2d(size, spacing, [stagger], [scale], [in_poly]) ...
|
|
// grid2d(size, cols, rows, [stagger], [scale], [in_poly]) ...
|
|
// grid2d(spacing, cols, rows, [stagger], [scale], [in_poly]) ...
|
|
// grid2d(spacing, in_poly, [stagger], [scale]) ...
|
|
// grid2d(cols, rows, in_poly, [stagger], [scale]) ...
|
|
//
|
|
// Arguments:
|
|
// size = The [X,Y] size to spread the copies over.
|
|
// spacing = Distance between copies in [X,Y] or scalar distance.
|
|
// cols = How many columns of copies to make. If staggered, count both staggered and unstaggered columns.
|
|
// rows = How many rows of copies to make. If staggered, count both staggered and unstaggered rows.
|
|
// stagger = If true, make a staggered (hexagonal) grid. If false, make square grid. If `"alt"`, makes alternate staggered pattern. Default: false
|
|
// scale = [X,Y] scaling factors to reshape grid.
|
|
// in_poly = If given a list of polygon points, only creates copies whose center would be inside the polygon. Polygon can be concave and/or self crossing.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$col` is set to the integer column number for each child.
|
|
// `$row` is set to the integer row number for each child.
|
|
//
|
|
// Examples:
|
|
// grid2d(size=50, spacing=10, stagger=false) cylinder(d=10, h=1);
|
|
// grid2d(spacing=10, rows=7, cols=13, stagger=true) cylinder(d=6, h=5);
|
|
// grid2d(spacing=10, rows=7, cols=13, stagger="alt") cylinder(d=6, h=5);
|
|
// grid2d(size=50, rows=11, cols=11, stagger=true) cylinder(d=5, h=1);
|
|
//
|
|
// Example:
|
|
// poly = [[-25,-25], [25,25], [-25,25], [25,-25]];
|
|
// grid2d(spacing=5, stagger=true, in_poly=poly)
|
|
// zrot(180/6) cylinder(d=5, h=1, $fn=6);
|
|
// %polygon(poly);
|
|
//
|
|
// Example:
|
|
// // Makes a grid of hexagon pillars whose tops are all
|
|
// // angled to reflect light at [0,0,50], if they were shiny.
|
|
// hexregion = [for (a = [0:60:359.9]) 50.01*[cos(a), sin(a)]];
|
|
// grid2d(spacing=10, stagger=true, in_poly=hexregion) {
|
|
// // Note: You must use for(var=[val]) or let(var=val)
|
|
// // to set vars from $pos or other special vars in this scope.
|
|
// let (ref_v = (normalize([0,0,50]-point3d($pos)) + UP)/2)
|
|
// half_of(v=-ref_v, cp=[0,0,5])
|
|
// zrot(180/6)
|
|
// cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6);
|
|
// }
|
|
module grid2d(size=undef, spacing=undef, cols=undef, rows=undef, stagger=false, scale=[1,1,1], in_poly=undef, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
assert_in_list("stagger", stagger, [false, true, "alt"]);
|
|
scl = vmul(scalar_vec3(scale, 1), (stagger!=false? [0.5, sin(60), 1] : [1,1,1]));
|
|
if (!is_undef(size)) {
|
|
siz = scalar_vec3(size);
|
|
if (!is_undef(spacing)) {
|
|
spc = vmul(scalar_vec3(spacing), scl);
|
|
maxcols = ceil(siz[0]/spc[0]);
|
|
maxrows = ceil(siz[1]/spc[1]);
|
|
grid2d(spacing=spacing, cols=maxcols, rows=maxrows, stagger=stagger, scale=scale, in_poly=in_poly, anchor=anchor, spin=spin, orient=orient) children();
|
|
} else {
|
|
spc = [siz[0]/cols, siz[1]/rows, 0];
|
|
grid2d(spacing=spc, cols=cols, rows=rows, stagger=stagger, scale=scale, in_poly=in_poly, anchor=anchor, spin=spin, orient=orient) children();
|
|
}
|
|
} else {
|
|
spc = is_list(spacing)? spacing : vmul(scalar_vec3(spacing), scl);
|
|
bounds = !is_undef(in_poly)? pointlist_bounds(in_poly) : undef;
|
|
bnds = !is_undef(bounds)? [for (a=[0,1]) 2*max(vabs([ for (i=[0,1]) bounds[i][a] ]))+1 ] : undef;
|
|
mcols = !is_undef(cols)? cols : (!is_undef(spc) && !is_undef(bnds))? quantup(ceil(bnds[0]/spc[0])-1, 4)+1 : undef;
|
|
mrows = !is_undef(rows)? rows : (!is_undef(spc) && !is_undef(bnds))? quantup(ceil(bnds[1]/spc[1])-1, 4)+1 : undef;
|
|
siz = vmul(spc, [mcols-1, mrows-1, 0.01]);
|
|
echo(siz=siz, spc=spc, spacing=spacing, scl=scl, mcols=mcols, mrows=mrows);
|
|
staggermod = (stagger == "alt")? 1 : 0;
|
|
if (stagger == false) {
|
|
orient_and_anchor(siz, orient, anchor, spin=spin) {
|
|
for (row = [0:1:mrows-1]) {
|
|
for (col = [0:1:mcols-1]) {
|
|
pos = [col*spc[0], row*spc[1]] - point2d(siz/2);
|
|
if (is_undef(in_poly) || point_in_polygon(pos, in_poly)>=0) {
|
|
$col = col;
|
|
$row = row;
|
|
$pos = pos;
|
|
translate(pos) children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// stagger == true or stagger == "alt"
|
|
orient_and_anchor(siz, orient, anchor, spin=spin) {
|
|
cols1 = ceil(mcols/2);
|
|
cols2 = mcols - cols1;
|
|
for (row = [0:1:mrows-1]) {
|
|
rowcols = ((row%2) == staggermod)? cols1 : cols2;
|
|
if (rowcols > 0) {
|
|
for (col = [0:1:rowcols-1]) {
|
|
rowdx = (row%2 != staggermod)? spc[0] : 0;
|
|
pos = [2*col*spc[0]+rowdx, row*spc[1]] - point2d(siz/2);
|
|
if (is_undef(in_poly) || point_in_polygon(pos, in_poly)>=0) {
|
|
$col = col * 2 + ((row%2!=staggermod)? 1 : 0);
|
|
$row = row;
|
|
$pos = pos;
|
|
translate(pos) children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: grid3d()
|
|
//
|
|
// Description:
|
|
// Makes a 3D grid of duplicate children.
|
|
//
|
|
// Usage:
|
|
// grid3d(n, spacing) ...
|
|
// grid3d(n=[Xn,Yn,Zn], spacing=[dX,dY,dZ]) ...
|
|
// grid3d([xa], [ya], [za]) ...
|
|
//
|
|
// Arguments:
|
|
// xa = array or range of X-axis values to offset by. (Default: [0])
|
|
// ya = array or range of Y-axis values to offset by. (Default: [0])
|
|
// za = array or range of Z-axis values to offset by. (Default: [0])
|
|
// n = Optional number of copies to have per axis.
|
|
// spacing = spacing of copies per axis. Use with `n`.
|
|
//
|
|
// Side Effect:
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the [Xidx,Yidx,Zidx] index values of each child copy, when using `count` and `n`.
|
|
//
|
|
// Examples(FlatSpin):
|
|
// grid3d(xa=[0:25:50],ya=[0,40],za=[-20:40:20]) sphere(r=5);
|
|
// grid3d(n=[3, 4, 2], spacing=[60, 50, 40]) sphere(r=10);
|
|
// Examples:
|
|
// grid3d(ya=[-60:40:60],za=[0,70]) sphere(r=10);
|
|
// grid3d(n=3, spacing=30) sphere(r=10);
|
|
// grid3d(n=[3, 1, 2], spacing=30) sphere(r=10);
|
|
// grid3d(n=[3, 4], spacing=[80, 60]) sphere(r=10);
|
|
// Examples:
|
|
// grid3d(n=[10, 10, 10], spacing=50) color($idx/9) cube(50, center=true);
|
|
module grid3d(xa=[0], ya=[0], za=[0], n=undef, spacing=undef)
|
|
{
|
|
n = scalar_vec3(n, 1);
|
|
spacing = scalar_vec3(spacing, undef);
|
|
if (!is_undef(n) && !is_undef(spacing)) {
|
|
for (xi = [0:1:n.x-1]) {
|
|
for (yi = [0:1:n.y-1]) {
|
|
for (zi = [0:1:n.z-1]) {
|
|
$idx = [xi,yi,zi];
|
|
$pos = vmul(spacing, $idx - (n-[1,1,1])/2);
|
|
translate($pos) children();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (xoff = xa, yoff = ya, zoff = za) {
|
|
$pos = [xoff, yoff, zoff];
|
|
translate($pos) children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Rotational Distributors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: rot_copies()
|
|
//
|
|
// Description:
|
|
// Given a number of XYZ rotation angles, or a list of angles and an axis `v`,
|
|
// rotates copies of the children to each of those angles.
|
|
//
|
|
// Usage:
|
|
// rot_copies(rots, [cp], [sa], [delta], [subrot]) ...
|
|
// rot_copies(rots, v, [cp], [sa], [delta], [subrot]) ...
|
|
// rot_copies(n, [v], [cp], [sa], [delta], [subrot]) ...
|
|
//
|
|
// Arguments:
|
|
// rots = A list of [X,Y,Z] rotation angles in degrees. If `v` is given, this will be a list of scalar angles in degrees to rotate around `v`.
|
|
// v = If given, this is the vector to rotate around.
|
|
// cp = Centerpoint to rotate around.
|
|
// n = Optional number of evenly distributed copies, rotated around the ring.
|
|
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise.
|
|
// delta = [X,Y,Z] amount to move away from cp before rotating. Makes rings of copies.
|
|
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle (or XYZ rotation triplet) of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index value of each child copy.
|
|
//
|
|
// Example:
|
|
// #cylinder(h=20, r1=5, r2=0);
|
|
// rot_copies([[45,0,0],[0,45,90],[90,-45,270]]) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// rot_copies([45, 90, 135], v=DOWN+BACK)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// rot_copies(n=6, v=DOWN+BACK)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// rot_copies(n=6, v=DOWN+BACK, delta=[10,0,0])
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// rot_copies(n=6, v=UP+FWD, delta=[10,0,0], sa=45)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
module rot_copies(rots=[], v=undef, cp=[0,0,0], count=undef, n=undef, sa=0, offset=0, delta=[0,0,0], subrot=true)
|
|
{
|
|
cnt = first_defined([count, n]);
|
|
sang = sa + offset;
|
|
angs = !is_undef(cnt)?
|
|
(cnt<=0? [] : [for (i=[0:1:cnt-1]) i/cnt*360+sang]) :
|
|
assert(is_vector(rots)) rots;
|
|
if (cp != [0,0,0]) {
|
|
translate(cp) rot_copies(rots=rots, v=v, n=cnt, sa=sang, delta=delta, subrot=subrot) children();
|
|
} else if (subrot) {
|
|
for ($idx = [0:1:len(angs)-1]) {
|
|
$ang = angs[$idx];
|
|
rotate(a=$ang,v=v) translate(delta) rot(a=sang,v=v,reverse=true) children();
|
|
}
|
|
} else {
|
|
for ($idx = [0:1:len(angs)-1]) {
|
|
$ang = angs[$idx];
|
|
rotate(a=$ang,v=v) translate(delta) rot(a=$ang,v=v,reverse=true) children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: xrot_copies()
|
|
//
|
|
// Description:
|
|
// Given an array of angles, rotates copies of the children
|
|
// to each of those angles around the X axis.
|
|
//
|
|
// Usage:
|
|
// xrot_copies(rots, [r], [cp], [sa], [subrot]) ...
|
|
// xrot_copies(n, [r], [cp], [sa], [subrot]) ...
|
|
//
|
|
// Arguments:
|
|
// rots = Optional array of rotation angles, in degrees, to make copies at.
|
|
// cp = Centerpoint to rotate around.
|
|
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
|
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
|
|
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
|
|
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
//
|
|
// Example:
|
|
// xrot_copies([180, 270, 315])
|
|
// cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// xrot_copies(n=6)
|
|
// cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// xrot_copies(n=6, r=10)
|
|
// xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// xrot_copies(n=6, r=10, sa=45)
|
|
// xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// xrot_copies(n=6, r=20, subrot=false)
|
|
// xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
module xrot_copies(rots=[], cp=[0,0,0], n=undef, count=undef, sa=0, offset=0, r=0, subrot=true)
|
|
{
|
|
cnt = first_defined([count, n]);
|
|
sang = sa + offset;
|
|
rot_copies(rots=rots, v=RIGHT, cp=cp, n=cnt, sa=sang, delta=[0, r, 0], subrot=subrot) children();
|
|
}
|
|
|
|
|
|
// Module: yrot_copies()
|
|
//
|
|
// Description:
|
|
// Given an array of angles, rotates copies of the children
|
|
// to each of those angles around the Y axis.
|
|
//
|
|
// Usage:
|
|
// yrot_copies(rots, [r], [cp], [sa], [subrot]) ...
|
|
// yrot_copies(n, [r], [cp], [sa], [subrot]) ...
|
|
//
|
|
// Arguments:
|
|
// rots = Optional array of rotation angles, in degrees, to make copies at.
|
|
// cp = Centerpoint to rotate around.
|
|
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
|
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
|
|
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
|
|
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
//
|
|
// Example:
|
|
// yrot_copies([180, 270, 315])
|
|
// cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// yrot_copies(n=6)
|
|
// cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// yrot_copies(n=6, r=10)
|
|
// yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// yrot_copies(n=6, r=10, sa=45)
|
|
// yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// yrot_copies(n=6, r=20, subrot=false)
|
|
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
module yrot_copies(rots=[], cp=[0,0,0], n=undef, count=undef, sa=0, offset=0, r=0, subrot=true)
|
|
{
|
|
cnt = first_defined([count, n]);
|
|
sang = sa + offset;
|
|
rot_copies(rots=rots, v=BACK, cp=cp, n=cnt, sa=sang, delta=[-r, 0, 0], subrot=subrot) children();
|
|
}
|
|
|
|
|
|
// Module: zrot_copies()
|
|
//
|
|
// Description:
|
|
// Given an array of angles, rotates copies of the children
|
|
// to each of those angles around the Z axis.
|
|
//
|
|
// Usage:
|
|
// zrot_copies(rots, [r], [cp], [sa], [subrot]) ...
|
|
// zrot_copies(n, [r], [cp], [sa], [subrot]) ...
|
|
//
|
|
// Arguments:
|
|
// rots = Optional array of rotation angles, in degrees, to make copies at.
|
|
// cp = Centerpoint to rotate around.
|
|
// n = Optional number of evenly distributed copies to be rotated around the ring.
|
|
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+.
|
|
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies.
|
|
// subrot = If false, don't sub-rotate children as they are copied around the ring.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
//
|
|
// Example:
|
|
// zrot_copies([180, 270, 315])
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// zrot_copies(n=6)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// zrot_copies(n=6, r=10)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
//
|
|
// Example:
|
|
// zrot_copies(n=6, r=20, sa=45)
|
|
// yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
//
|
|
// Example:
|
|
// zrot_copies(n=6, r=20, subrot=false)
|
|
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
|
|
module zrot_copies(rots=[], cp=[0,0,0], n=undef, count=undef, sa=0, offset=0, r=0, subrot=true)
|
|
{
|
|
cnt = first_defined([count, n]);
|
|
sang = sa + offset;
|
|
rot_copies(rots=rots, v=UP, cp=cp, n=cnt, sa=sang, delta=[r, 0, 0], subrot=subrot) children();
|
|
}
|
|
|
|
|
|
// Module: xring()
|
|
// Description:
|
|
// Distributes `n` copies of the given children on a circle of radius `r`
|
|
// around the X axis. If `rot` is true, each copy is rotated in place to keep
|
|
// the same side towards the center. The first, unrotated copy will be at the
|
|
// starting angle `sa`.
|
|
// Usage:
|
|
// xring(n, r, [sa], [cp], [rot]) ...
|
|
// Arguments:
|
|
// n = Number of copies of children to distribute around the circle. (Default: 2)
|
|
// r = Radius of ring to distribute children around. (Default: 0)
|
|
// sa = Start angle for first (unrotated) copy. (Default: 0)
|
|
// cp = Centerpoint of ring. Default: [0,0,0]
|
|
// rot = If true, rotate each copy to keep the same side towards the center of the ring. Default: true.
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index value of each child copy.
|
|
// Examples:
|
|
// xring(n=6, r=10) xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// xring(n=6, r=10, sa=45) xrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// xring(n=6, r=20, rot=false) cylinder(h=20, r1=6, r2=0, center=true);
|
|
module xring(n=2, r=0, sa=0, cp=[0,0,0], rot=true)
|
|
{
|
|
xrot_copies(count=n, r=r, sa=sa, cp=cp, subrot=rot) children();
|
|
}
|
|
|
|
|
|
// Module: yring()
|
|
//
|
|
// Description:
|
|
// Distributes `n` copies of the given children on a circle of radius `r`
|
|
// around the Y axis. If `rot` is true, each copy is rotated in place to keep
|
|
// the same side towards the center. The first, unrotated copy will be at the
|
|
// starting angle `sa`.
|
|
//
|
|
// Usage:
|
|
// yring(n, r, [sa], [cp], [rot]) ...
|
|
//
|
|
// Arguments:
|
|
// n = Number of copies of children to distribute around the circle. (Default: 2)
|
|
// r = Radius of ring to distribute children around. (Default: 0)
|
|
// sa = Start angle for first (unrotated) copy. (Default: 0)
|
|
// cp = Centerpoint of ring. Default: [0,0,0]
|
|
// rot = If true, rotate each copy to keep the same side towards the center of the ring. Default: true.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index value of each child copy.
|
|
//
|
|
// Examples:
|
|
// yring(n=6, r=10) yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// yring(n=6, r=10, sa=45) yrot(-90) cylinder(h=20, r1=5, r2=0);
|
|
// yring(n=6, r=20, rot=false) cylinder(h=20, r1=6, r2=0, center=true);
|
|
module yring(n=2, r=0, sa=0, cp=[0,0,0], rot=true)
|
|
{
|
|
yrot_copies(count=n, r=r, sa=sa, cp=cp, subrot=rot) children();
|
|
}
|
|
|
|
|
|
// Module: zring()
|
|
//
|
|
// Description:
|
|
// Distributes `n` copies of the given children on a circle of radius `r`
|
|
// around the Z axis. If `rot` is true, each copy is rotated in place to keep
|
|
// the same side towards the center. The first, unrotated copy will be at the
|
|
// starting angle `sa`.
|
|
//
|
|
// Usage:
|
|
// zring(r, n, [sa], [cp], [rot]) ...
|
|
//
|
|
// Arguments:
|
|
// n = Number of copies of children to distribute around the circle. (Default: 2)
|
|
// r = Radius of ring to distribute children around. (Default: 0)
|
|
// sa = Start angle for first (unrotated) copy. (Default: 0)
|
|
// cp = Centerpoint of ring. Default: [0,0,0]
|
|
// rot = If true, rotate each copy to keep the same side towards the center of the ring. Default: true.
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the relative angle from `cp` of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index value of each child copy.
|
|
//
|
|
// Examples:
|
|
// zring(n=6, r=10) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// zring(n=6, r=10, sa=45) yrot(90) cylinder(h=20, r1=5, r2=0);
|
|
// zring(n=6, r=20, rot=false) yrot(90) cylinder(h=20, r1=6, r2=0, center=true);
|
|
module zring(n=2, r=0, sa=0, cp=[0,0,0], rot=true)
|
|
{
|
|
zrot_copies(count=n, r=r, sa=sa, cp=cp, subrot=rot) children();
|
|
}
|
|
|
|
|
|
// Module: arc_of()
|
|
//
|
|
// Description:
|
|
// Evenly distributes n duplicate children around an ovoid arc on the XY plane.
|
|
//
|
|
// Usage:
|
|
// arc_of(r|d, n, [sa], [ea], [rot]
|
|
// arc_of(rx|dx, ry|dy, n, [sa], [ea], [rot]
|
|
//
|
|
// Arguments:
|
|
// n = number of copies to distribute around the circle. (Default: 6)
|
|
// r = radius of circle (Default: 1)
|
|
// rx = radius of ellipse on X axis. Used instead of r.
|
|
// ry = radius of ellipse on Y axis. Used instead of r.
|
|
// d = diameter of circle. (Default: 2)
|
|
// dx = diameter of ellipse on X axis. Used instead of d.
|
|
// dy = diameter of ellipse on Y axis. Used instead of d.
|
|
// rot = whether to rotate the copied children. (Default: false)
|
|
// sa = starting angle. (Default: 0.0)
|
|
// ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0)
|
|
//
|
|
// Side Effects:
|
|
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
|
|
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$idx` is set to the index value of each child copy.
|
|
//
|
|
// Example:
|
|
// #cube(size=[10,3,3],center=true);
|
|
// arc_of(d=40, n=5) cube(size=[10,3,3],center=true);
|
|
//
|
|
// Example:
|
|
// #cube(size=[10,3,3],center=true);
|
|
// arc_of(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
|
|
//
|
|
// Example:
|
|
// #cube(size=[10,3,3],center=true);
|
|
// arc_of(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
|
|
//
|
|
// Example:
|
|
// #cube(size=[10,3,3],center=true);
|
|
// arc_of(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
|
|
module arc_of(
|
|
n=6,
|
|
r=undef, rx=undef, ry=undef,
|
|
d=undef, dx=undef, dy=undef,
|
|
sa=0, ea=360,
|
|
rot=true
|
|
) {
|
|
rx = get_radius(rx, r, dx, d, 1);
|
|
ry = get_radius(ry, r, dy, d, 1);
|
|
sa = posmod(sa, 360);
|
|
ea = posmod(ea, 360);
|
|
n = (abs(ea-sa)<0.01)?(n+1):n;
|
|
delt = (((ea<=sa)?360.0:0)+ea-sa)/(n-1);
|
|
for ($idx = [0:1:n-1]) {
|
|
$ang = sa + ($idx * delt);
|
|
$pos =[rx*cos($ang), ry*sin($ang), 0];
|
|
translate($pos) {
|
|
zrot(rot? atan2(ry*sin($ang), rx*cos($ang)) : 0) {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: ovoid_spread()
|
|
//
|
|
// Description:
|
|
// Spreads children semi-evenly over the surface of a sphere.
|
|
//
|
|
// Usage:
|
|
// ovoid_spread(r|d, n, [cone_ang], [scale], [perp]) ...
|
|
//
|
|
// Arguments:
|
|
// r = Radius of the sphere to distribute over
|
|
// d = Diameter of the sphere to distribute over
|
|
// n = How many copies to evenly spread over the surface.
|
|
// cone_ang = Angle of the cone, in degrees, to limit how much of the sphere gets covered. For full sphere coverage, use 180. Measured pre-scaling. Default: 180
|
|
// scale = The [X,Y,Z] scaling factors to reshape the sphere being covered.
|
|
// perp = If true, rotate children to be perpendicular to the sphere surface. Default: true
|
|
//
|
|
// Side Effects:
|
|
// `$pos` is set to the relative post-scaled centerpoint of each child copy, and can be used to modify each child individually.
|
|
// `$theta` is set to the theta angle of the child from the center of the sphere.
|
|
// `$phi` is set to the pre-scaled phi angle of the child from the center of the sphere.
|
|
// `$rad` is set to the pre-scaled radial distance of the child from the center of the sphere.
|
|
// `$idx` is set to the index number of each child being copied.
|
|
//
|
|
// Example:
|
|
// ovoid_spread(n=250, d=100, cone_ang=45, scale=[3,3,1])
|
|
// cylinder(d=10, h=10, center=false);
|
|
//
|
|
// Example:
|
|
// ovoid_spread(n=500, d=100, cone_ang=180)
|
|
// color(normalize(point3d(vabs($pos))))
|
|
// cylinder(d=8, h=10, center=false);
|
|
module ovoid_spread(r=undef, d=undef, n=100, cone_ang=90, scale=[1,1,1], perp=true)
|
|
{
|
|
r = get_radius(r=r, d=d, dflt=50);
|
|
cnt = ceil(n / (cone_ang/180));
|
|
|
|
// Calculate an array of [theta,phi] angles for `n` number of
|
|
// points, almost evenly spaced across the surface of a sphere.
|
|
// This approximation is based on the golden spiral method.
|
|
theta_phis = [for (x=[0:1:n-1]) [180*(1+sqrt(5))*(x+0.5)%360, acos(1-2*(x+0.5)/cnt)]];
|
|
|
|
for ($idx = [0:1:len(theta_phis)-1]) {
|
|
tp = theta_phis[$idx];
|
|
xyz = spherical_to_xyz(r, tp[0], tp[1]);
|
|
$pos = vmul(xyz,scale);
|
|
$theta = tp[0];
|
|
$phi = tp[1];
|
|
$rad = r;
|
|
translate($pos) {
|
|
if (perp) {
|
|
rot(from=UP, to=xyz) children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Reflectional Distributors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: mirror_copy()
|
|
//
|
|
// Description:
|
|
// Makes a copy of the children, mirrored across the given plane.
|
|
//
|
|
// Usage:
|
|
// mirror_copy(v, [cp], [offset]) ...
|
|
//
|
|
// Arguments:
|
|
// v = The normal vector of the plane to mirror across.
|
|
// offset = distance to offset away from the plane.
|
|
// cp = A point that lies on the mirroring plane.
|
|
//
|
|
// Side Effects:
|
|
// `$orig` is true for the original instance of children. False for the copy.
|
|
// `$idx` is set to the index value of each copy.
|
|
//
|
|
// Example:
|
|
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
|
|
//
|
|
// Example:
|
|
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
|
|
//
|
|
// Example:
|
|
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
|
|
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
|
|
module mirror_copy(v=[0,0,1], offset=0, cp=[0,0,0])
|
|
{
|
|
nv = v/norm(v);
|
|
off = nv*offset;
|
|
if (cp == [0,0,0]) {
|
|
translate(off) {
|
|
$orig = true;
|
|
$idx = 0;
|
|
children();
|
|
}
|
|
mirror(nv) translate(off) {
|
|
$orig = false;
|
|
$idx = 1;
|
|
children();
|
|
}
|
|
} else {
|
|
translate(off) children();
|
|
translate(cp) mirror(nv) translate(-cp) translate(off) children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: xflip_copy()
|
|
//
|
|
// Description:
|
|
// Makes a copy of the children, mirrored across the X axis.
|
|
//
|
|
// Usage:
|
|
// xflip_copy([x], [offset]) ...
|
|
//
|
|
// Arguments:
|
|
// offset = Distance to offset children right, before copying.
|
|
// x = The X coordinate of the mirroring plane. Default: 0
|
|
//
|
|
// Side Effects:
|
|
// `$orig` is true for the original instance of children. False for the copy.
|
|
// `$idx` is set to the index value of each copy.
|
|
//
|
|
// Example:
|
|
// xflip_copy() yrot(90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([0.01,15,15], center=true);
|
|
//
|
|
// Example:
|
|
// xflip_copy(offset=5) yrot(90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([0.01,15,15], center=true);
|
|
//
|
|
// Example:
|
|
// xflip_copy(x=-5) yrot(90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) left(5) cube([0.01,15,15], center=true);
|
|
module xflip_copy(offset=0, x=0)
|
|
{
|
|
mirror_copy(v=[1,0,0], offset=offset, cp=[x,0,0]) children();
|
|
}
|
|
|
|
|
|
// Module: yflip_copy()
|
|
//
|
|
// Description:
|
|
// Makes a copy of the children, mirrored across the Y axis.
|
|
//
|
|
// Usage:
|
|
// yflip_copy([y], [offset]) ...
|
|
//
|
|
// Arguments:
|
|
// offset = Distance to offset children back, before copying.
|
|
// y = The Y coordinate of the mirroring plane. Default: 0
|
|
//
|
|
// Side Effects:
|
|
// `$orig` is true for the original instance of children. False for the copy.
|
|
// `$idx` is set to the index value of each copy.
|
|
//
|
|
// Example:
|
|
// yflip_copy() xrot(-90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([15,0.01,15], center=true);
|
|
//
|
|
// Example:
|
|
// yflip_copy(offset=5) xrot(-90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([15,0.01,15], center=true);
|
|
//
|
|
// Example:
|
|
// yflip_copy(y=-5) xrot(-90) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) fwd(5) cube([15,0.01,15], center=true);
|
|
module yflip_copy(offset=0, y=0)
|
|
{
|
|
mirror_copy(v=[0,1,0], offset=offset, cp=[0,y,0]) children();
|
|
}
|
|
|
|
|
|
// Module: zflip_copy()
|
|
//
|
|
// Description:
|
|
// Makes a copy of the children, mirrored across the Z axis.
|
|
//
|
|
// Usage:
|
|
// zflip_copy([z], [offset]) ...
|
|
//
|
|
// Arguments:
|
|
// offset = Distance to offset children up, before copying.
|
|
// z = The Z coordinate of the mirroring plane. Default: 0
|
|
//
|
|
// Side Effects:
|
|
// `$orig` is true for the original instance of children. False for the copy.
|
|
// `$idx` is set to the index value of each copy.
|
|
//
|
|
// Example:
|
|
// zflip_copy() cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([15,15,0.01], center=true);
|
|
//
|
|
// Example:
|
|
// zflip_copy(offset=5) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) cube([15,15,0.01], center=true);
|
|
//
|
|
// Example:
|
|
// zflip_copy(z=-5) cylinder(h=20, r1=4, r2=0);
|
|
// color("blue",0.25) down(5) cube([15,15,0.01], center=true);
|
|
module zflip_copy(offset=0, z=0)
|
|
{
|
|
mirror_copy(v=[0,0,1], offset=offset, cp=[0,0,z]) children();
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: half_of()
|
|
//
|
|
// Usage:
|
|
// half_of(v, [cp], [s]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a cut plane, and masks away everything that is on one side.
|
|
//
|
|
// Arguments:
|
|
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
|
|
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0]
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
|
|
//
|
|
// Examples:
|
|
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
|
|
// half_of(DOWN+LEFT, s=200) sphere(d=150);
|
|
// Example(2D):
|
|
// half_of([1,1], planar=true) circle(d=50);
|
|
module half_of(v=UP, cp=[0,0,0], s=100, planar=false)
|
|
{
|
|
cp = is_num(cp)? cp*normalize(v) : cp;
|
|
if (cp != [0,0,0]) {
|
|
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
|
|
} else if (planar) {
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v;
|
|
ang = atan2(v.y, v.x);
|
|
difference() {
|
|
children();
|
|
rotate(ang+90) {
|
|
back(s/2) square(s, center=true);
|
|
}
|
|
}
|
|
} else {
|
|
difference() {
|
|
children();
|
|
rot(from=UP, to=-v) {
|
|
up(s/2) cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: left_half()
|
|
//
|
|
// Usage:
|
|
// left_half([s], [x]) ...
|
|
// left_half(planar=true, [s], [x]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples:
|
|
// left_half() sphere(r=20);
|
|
// left_half(x=-8) sphere(r=20);
|
|
// Example(2D):
|
|
// left_half(planar=true) circle(r=20);
|
|
module left_half(s=100, x=0, planar=false)
|
|
{
|
|
dir = LEFT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: right_half()
|
|
//
|
|
// Usage:
|
|
// right_half([s], [x]) ...
|
|
// right_half(planar=true, [s], [x]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples(FlatSpin):
|
|
// right_half() sphere(r=20);
|
|
// right_half(x=-5) sphere(r=20);
|
|
// Example(2D):
|
|
// right_half(planar=true) circle(r=20);
|
|
module right_half(s=100, x=0, planar=false)
|
|
{
|
|
dir = RIGHT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: front_half()
|
|
//
|
|
// Usage:
|
|
// front_half([s], [y]) ...
|
|
// front_half(planar=true, [s], [y]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples(FlatSpin):
|
|
// front_half() sphere(r=20);
|
|
// front_half(y=5) sphere(r=20);
|
|
// Example(2D):
|
|
// front_half(planar=true) circle(r=20);
|
|
module front_half(s=100, y=0, planar=false)
|
|
{
|
|
dir = FWD;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: back_half()
|
|
//
|
|
// Usage:
|
|
// back_half([s], [y]) ...
|
|
// back_half(planar=true, [s], [y]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples:
|
|
// back_half() sphere(r=20);
|
|
// back_half(y=8) sphere(r=20);
|
|
// Example(2D):
|
|
// back_half(planar=true) circle(r=20);
|
|
module back_half(s=100, y=0, planar=false)
|
|
{
|
|
dir = BACK;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: bottom_half()
|
|
//
|
|
// Usage:
|
|
// bottom_half([s], [z]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples:
|
|
// bottom_half() sphere(r=20);
|
|
// bottom_half(z=-10) sphere(r=20);
|
|
module bottom_half(s=100, z=0)
|
|
{
|
|
dir = DOWN;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: top_half()
|
|
//
|
|
// Usage:
|
|
// top_half([s], [z]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples(Spin):
|
|
// top_half() sphere(r=20);
|
|
// top_half(z=5) sphere(r=20);
|
|
module top_half(s=100, z=0)
|
|
{
|
|
dir = UP;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: chain_hull()
|
|
//
|
|
// Usage:
|
|
// chain_hull() ...
|
|
//
|
|
// Description:
|
|
// Performs hull operations between consecutive pairs of children,
|
|
// then unions all of the hull results. This can be a very slow
|
|
// operation, but it can provide results that are hard to get
|
|
// otherwise.
|
|
//
|
|
// Example:
|
|
// chain_hull() {
|
|
// cube(5, center=true);
|
|
// translate([30, 0, 0]) sphere(d=15);
|
|
// translate([60, 30, 0]) cylinder(d=10, h=20);
|
|
// translate([60, 60, 0]) cube([10,1,20], center=false);
|
|
// }
|
|
module chain_hull()
|
|
{
|
|
union() {
|
|
if ($children == 1) {
|
|
children();
|
|
} else if ($children > 1) {
|
|
for (i =[1:1:$children-1]) {
|
|
hull() {
|
|
children(i-1);
|
|
children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: round3d()
|
|
// Usage:
|
|
// round3d(r) ...
|
|
// round3d(or) ...
|
|
// round3d(ir) ...
|
|
// round3d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 3D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
|
|
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
|
|
// Use this as a last resort. This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
module round3d(r, or, ir, size=100)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset3d(or, size=size)
|
|
offset3d(-ir-or, size=size)
|
|
offset3d(ir, size=size)
|
|
children();
|
|
}
|
|
|
|
|
|
// Module: offset3d()
|
|
// Usage:
|
|
// offset3d(r, [size], [convexity]);
|
|
// Description:
|
|
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
|
|
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
|
|
// This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to expand object by. Negative numbers contract the object.
|
|
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
|
|
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
|
|
module offset3d(r=1, size=100, convexity=10) {
|
|
n = quant(max(8,segs(abs(r))),4);
|
|
if (r==0) {
|
|
children();
|
|
} else if (r>0) {
|
|
render(convexity=convexity)
|
|
minkowski() {
|
|
children();
|
|
sphere(r, $fn=n);
|
|
}
|
|
} else {
|
|
size2 = size * [1,1,1];
|
|
size1 = size2 * 1.02;
|
|
render(convexity=convexity)
|
|
difference() {
|
|
cube(size2, center=true);
|
|
minkowski() {
|
|
difference() {
|
|
cube(size1, center=true);
|
|
children();
|
|
}
|
|
sphere(-r, $fn=n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: 2D Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Module: round2d()
|
|
// Usage:
|
|
// round2d(r) ...
|
|
// round2d(or) ...
|
|
// round2d(ir) ...
|
|
// round2d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 2D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
// Examples(2D):
|
|
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
|
|
module round2d(r, or, ir)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset(or) offset(-ir-or) offset(delta=ir) children();
|
|
}
|
|
|
|
|
|
// Module: shell2d()
|
|
// Usage:
|
|
// shell2d(thickness, [or], [ir], [fill], [round])
|
|
// Description:
|
|
// Creates a hollow shell from 2D children, with optional rounding.
|
|
// Arguments:
|
|
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
|
|
// or = Radius to round convex corners/pointy bits on the outside of the shell.
|
|
// ir = Radius to round concave corners on the outside of the shell.
|
|
// round = Radius to round convex corners/pointy bits on the inside of the shell.
|
|
// fill = Radius to round concave corners on the inside of the shell.
|
|
// Examples(2D):
|
|
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,round=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,fill=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(8,or=16,ir=8,round=16,fill=8) {square([40,100], center=true); square([100,40], center=true);}
|
|
module shell2d(thickness, or=0, ir=0, fill=0, round=0)
|
|
{
|
|
thickness = is_num(thickness)? (
|
|
thickness<0? [thickness,0] : [0,thickness]
|
|
) : (thickness[0]>thickness[1])? (
|
|
[thickness[1],thickness[0]]
|
|
) : thickness;
|
|
difference() {
|
|
round2d(or=or,ir=ir)
|
|
offset(delta=thickness[1])
|
|
children();
|
|
round2d(or=fill,ir=round)
|
|
offset(delta=thickness[0])
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Colors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Function&Module: HSL()
|
|
// Usage:
|
|
// HSL(h,[s],[l],[a]) ...
|
|
// rgb = HSL(h,[s],[l]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSL(h=120,s=1,l=0.5) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSL(h=270,s=0.75,l=0.6);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSL(h,s=1,l=0.5) =
|
|
let(
|
|
h=posmod(h,360)
|
|
) [
|
|
for (n=[0,8,4]) let(
|
|
k=(n+h/30)%12
|
|
) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1)
|
|
];
|
|
|
|
module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children();
|
|
|
|
|
|
// Function&Module: HSV()
|
|
// Usage:
|
|
// HSV(h,[s],[v],[a]) ...
|
|
// rgb = HSV(h,[s],[v]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSV(h=120,s=1,v=1) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSV(h=270,s=0.75,v=0.9);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSV(h,s=1,v=1) =
|
|
let(
|
|
h=posmod(h,360),
|
|
v2=v*(1-s),
|
|
r=lookup(h,[[0,v], [60,v], [120,v2], [240,v2], [300,v], [360,v]]),
|
|
g=lookup(h,[[0,v2], [60,v], [180,v], [240,v2], [360,v2]]),
|
|
b=lookup(h,[[0,v2], [120,v2], [180,v], [300,v], [360,v2]])
|
|
) [r,g,b];
|
|
|
|
module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
|
|
|
|
|
// Module: rainbow()
|
|
// Usage:
|
|
// rainbow(list) ...
|
|
// Description:
|
|
// Iterates the list, displaying children in different colors for each list item.
|
|
// This is useful for debugging lists of paths and such.
|
|
// Arguments:
|
|
// list = The list of items to iterate through.
|
|
// Side Effects:
|
|
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
|
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
|
// Sets `$item` to the current item in `list` that we want to show.
|
|
// Example(2D):
|
|
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
|
|
// Example(2D):
|
|
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
|
// rainbow(rgn) stroke($item, closed=true);
|
|
module rainbow(list)
|
|
for($idx=[0:1:len(list)-1],$item=[list[$idx]])
|
|
HSV(h=360*$idx/len(list))
|
|
children();
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|