mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
1462 lines
53 KiB
OpenSCAD
1462 lines
53 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: geometry.scad
|
|
// Geometry helpers.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// CommonCode:
|
|
// include <BOSL2/rounding.scad>
|
|
|
|
|
|
// Section: Lines and Triangles
|
|
|
|
// Function: point_on_segment2d()
|
|
// Usage:
|
|
// point_on_segment2d(point, edge);
|
|
// Description:
|
|
// Determine if the point is on the line segment between two points.
|
|
// Returns true if yes, and false if not.
|
|
// Arguments:
|
|
// point = The point to test.
|
|
// edge = Array of two points forming the line segment to test against.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function point_on_segment2d(point, edge, eps=EPSILON) =
|
|
approx(point,edge[0],eps=eps) || approx(point,edge[1],eps=eps) || // The point is an endpoint
|
|
sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
|
|
&& sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
|
|
&& approx(point_left_of_segment2d(point, edge),0,eps=eps); // and on the line defined by edge
|
|
|
|
|
|
// Function: point_left_of_segment2d()
|
|
// Usage:
|
|
// point_left_of_segment2d(point, edge);
|
|
// Description:
|
|
// Return >0 if point is left of the line defined by edge.
|
|
// Return =0 if point is on the line.
|
|
// Return <0 if point is right of the line.
|
|
// Arguments:
|
|
// point = The point to check position of.
|
|
// edge = Array of two points forming the line segment to test against.
|
|
function point_left_of_segment2d(point, edge) =
|
|
(edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y);
|
|
|
|
|
|
// Internal non-exposed function.
|
|
function _point_above_below_segment(point, edge) =
|
|
edge[0].y <= point.y? (
|
|
(edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0
|
|
) : (
|
|
(edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0
|
|
);
|
|
|
|
|
|
// Function: collinear()
|
|
// Usage:
|
|
// collinear(a, b, c, [eps]);
|
|
// Description:
|
|
// Returns true if three points are co-linear.
|
|
// Arguments:
|
|
// a = First point.
|
|
// b = Second point.
|
|
// c = Third point.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function collinear(a, b, c, eps=EPSILON) =
|
|
distance_from_line([a,b], c) < eps;
|
|
|
|
|
|
// Function: collinear_indexed()
|
|
// Usage:
|
|
// collinear_indexed(points, a, b, c, [eps]);
|
|
// Description:
|
|
// Returns true if three points are co-linear.
|
|
// Arguments:
|
|
// points = A list of points.
|
|
// a = Index in `points` of first point.
|
|
// b = Index in `points` of second point.
|
|
// c = Index in `points` of third point.
|
|
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
|
|
function collinear_indexed(points, a, b, c, eps=EPSILON) =
|
|
let(
|
|
p1=points[a],
|
|
p2=points[b],
|
|
p3=points[c]
|
|
) collinear(p1, p2, p3, eps);
|
|
|
|
|
|
// Function: distance_from_line()
|
|
// Usage:
|
|
// distance_from_line(line, pt);
|
|
// Description:
|
|
// Finds the perpendicular distance of a point `pt` from the line `line`.
|
|
// Arguments:
|
|
// line = A list of two points, defining a line that both are on.
|
|
// pt = A point to find the distance of from the line.
|
|
// Example:
|
|
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
|
|
function distance_from_line(line, pt) =
|
|
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
|
|
norm(d - ((d * n) * n));
|
|
|
|
|
|
|
|
// Function: line_normal()
|
|
// Usage:
|
|
// line_normal([P1,P2])
|
|
// line_normal(p1,p2)
|
|
// Description: Returns the 2D normal vector to the given 2D line.
|
|
// Arguments:
|
|
// p1 = First point on 2D line.
|
|
// p2 = Second point on 2D line.
|
|
function line_normal(p1,p2) =
|
|
is_undef(p2)? line_normal(p1[0],p1[1]) :
|
|
normalize([p1.y-p2.y,p2.x-p1.x]);
|
|
|
|
|
|
// 2D Line intersection from two segments.
|
|
// This function returns [p,t,u] where p is the intersection point of
|
|
// the lines defined by the two segments, t is the bezier parameter
|
|
// for the intersection point on s1 and u is the bezier parameter for
|
|
// the intersection point on s2. The bezier parameter runs over [0,1]
|
|
// for each segment, so if it is in this range, then the intersection
|
|
// lies on the segment. Otherwise it lies somewhere on the extension
|
|
// of the segment.
|
|
function _general_line_intersection(s1,s2,eps=EPSILON) =
|
|
let(
|
|
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
|
|
) approx(denominator,0,eps=eps)? [undef,undef,undef] : let(
|
|
t = det2([s1[0],s2[0]]-s2) / denominator,
|
|
u = det2([s1[0],s1[0]]-[s1[1],s2[1]]) /denominator
|
|
) [s1[0]+t*(s1[1]-s1[0]), t, u];
|
|
|
|
|
|
// Function: line_intersection()
|
|
// Usage:
|
|
// line_intersection(l1, l2);
|
|
// Description:
|
|
// Returns the 2D intersection point of two unbounded 2D lines.
|
|
// Returns `undef` if the lines are parallel.
|
|
// Arguments:
|
|
// l1 = First 2D line, given as a list of two 2D points on the line.
|
|
// l2 = Second 2D line, given as a list of two 2D points on the line.
|
|
function line_intersection(l1,l2,eps=EPSILON) =
|
|
let(isect = _general_line_intersection(l1,l2,eps=eps)) isect[0];
|
|
|
|
|
|
// Function: segment_intersection()
|
|
// Usage:
|
|
// segment_intersection(s1, s2);
|
|
// Description:
|
|
// Returns the 2D intersection point of two 2D line segments.
|
|
// Returns `undef` if they do not intersect.
|
|
// Arguments:
|
|
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
|
|
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function segment_intersection(s1,s2,eps=EPSILON) =
|
|
let(
|
|
isect = _general_line_intersection(s1,s2,eps=eps)
|
|
) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
|
|
|
|
|
|
// Function: line_segment_intersection()
|
|
// Usage:
|
|
// line_segment_intersection(line, segment);
|
|
// Description:
|
|
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
|
|
// Returns `undef` if they do not intersect.
|
|
// Arguments:
|
|
// line = The unbounded 2D line, defined by two 2D points on the line.
|
|
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function line_segment_intersection(line,segment,eps=EPSILON) =
|
|
let(
|
|
isect = _general_line_intersection(line,segment,eps=eps)
|
|
) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
|
|
|
|
|
|
// Function: find_circle_2tangents()
|
|
// Usage:
|
|
// find_circle_2tangents(pt1, pt2, pt3, r|d);
|
|
// Description:
|
|
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
|
|
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
|
|
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
|
|
// Arguments:
|
|
// pt1 = A point that the first ray passes though.
|
|
// pt2 = The starting point of both rays.
|
|
// pt3 = A point that the second ray passes though.
|
|
// r = The radius of the circle to find.
|
|
// d = The diameter of the circle to find.
|
|
function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) =
|
|
let(
|
|
r = get_radius(r=r, d=d, dflt=undef),
|
|
v1 = normalize(pt1 - pt2),
|
|
v2 = normalize(pt3 - pt2)
|
|
) approx(norm(v1+v2))? undef :
|
|
assert(r!=undef, "Must specify either r or d.")
|
|
let(
|
|
a = vector_angle(v1,v2),
|
|
n = vector_axis(v1,v2),
|
|
v = normalize(mean([v1,v2])),
|
|
s = r/sin(a/2),
|
|
cp = pt2 + s*v/norm(v)
|
|
) [cp, n];
|
|
|
|
|
|
// Function: find_circle_3points()
|
|
// Usage:
|
|
// find_circle_3points(pt1, pt2, pt3);
|
|
// Description:
|
|
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
|
|
// points. The centerpoint will be a 2D or 3D vector, depending on the points input. If all three
|
|
// points are 2D, then the resulting centerpoint will be 2D, and the normal will be UP ([0,0,1]).
|
|
// If any of the points are 3D, then the resulting centerpoint will be 3D. If the three points are
|
|
// collinear, then `[undef,undef,undef]` will be returned. The normal will be a normalized 3D
|
|
// vector with a non-negative Z axis.
|
|
// Arguments:
|
|
// pt1 = The first point.
|
|
// pt2 = The second point.
|
|
// pt3 = The third point.
|
|
function find_circle_3points(pt1, pt2, pt3) =
|
|
collinear(pt1,pt2,pt3)? [undef,undef,undef] :
|
|
let(
|
|
v1 = pt1-pt2,
|
|
v2 = pt3-pt2,
|
|
n = vector_axis(v1,v2),
|
|
n2 = n.z<0? -n : n
|
|
) len(pt1)+len(pt2)+len(pt3)>6? (
|
|
let(
|
|
a = project_plane(pt1, pt1, pt2, pt3),
|
|
b = project_plane(pt2, pt1, pt2, pt3),
|
|
c = project_plane(pt3, pt1, pt2, pt3),
|
|
res = find_circle_3points(a, b, c)
|
|
) res[0]==undef? [undef,undef,undef] : let(
|
|
cp = lift_plane(res[0], pt1, pt2, pt3),
|
|
r = norm(p2-cp)
|
|
) [cp, r, n2]
|
|
) : let(
|
|
mp1 = pt2 + v1/2,
|
|
mp2 = pt2 + v2/2,
|
|
mpv1 = rot(90, v=n, p=v1),
|
|
mpv2 = rot(90, v=n, p=v2),
|
|
l1 = [mp1, mp1+mpv1],
|
|
l2 = [mp2, mp2+mpv2],
|
|
isect = line_intersection(l1,l2)
|
|
) is_undef(isect)? [undef,undef,undef] : let(
|
|
r = norm(p2-isect)
|
|
) [isect, r, n2];
|
|
|
|
|
|
|
|
// Function: tri_calc()
|
|
// Usage:
|
|
// tri_calc(ang,ang2,adj,opp,hyp);
|
|
// Description:
|
|
// Given a side length and an angle, or two side lengths, calculates the rest of the side lengths
|
|
// and angles of a right triangle. Returns [ADJACENT, OPPOSITE, HYPOTENUSE, ANGLE, ANGLE2] where
|
|
// ADJACENT is the length of the side adjacent to ANGLE, and OPPOSITE is the length of the side
|
|
// opposite of ANGLE and adjacent to ANGLE2. ANGLE and ANGLE2 are measured in degrees.
|
|
// This is certainly more verbose and slower than writing your own calculations, but has the nice
|
|
// benefit that you can just specify the info you have, and don't have to figure out which trig
|
|
// formulas you need to use.
|
|
// Figure(2D):
|
|
// color("#ccc") {
|
|
// stroke(closed=false, width=0.5, [[45,0], [45,5], [50,5]]);
|
|
// stroke(closed=false, width=0.5, arc(N=6, r=15, cp=[0,0], start=0, angle=30));
|
|
// stroke(closed=false, width=0.5, arc(N=6, r=14, cp=[50,30], start=212, angle=58));
|
|
// }
|
|
// color("black") stroke(closed=true, [[0,0], [50,30], [50,0]]);
|
|
// color("#0c0") {
|
|
// translate([10.5,2.5]) text(size=3,text="ang",halign="center",valign="center");
|
|
// translate([44.5,22]) text(size=3,text="ang2",halign="center",valign="center");
|
|
// }
|
|
// color("blue") {
|
|
// translate([25,-3]) text(size=3,text="Adjacent",halign="center",valign="center");
|
|
// translate([53,15]) rotate(-90) text(size=3,text="Opposite",halign="center",valign="center");
|
|
// translate([25,18]) rotate(30) text(size=3,text="Hypotenuse",halign="center",valign="center");
|
|
// }
|
|
// Arguments:
|
|
// ang = The angle in degrees of the primary corner of the triangle.
|
|
// ang2 = The angle in degrees of the other non-right corner of the triangle.
|
|
// adj = The length of the side adjacent to the primary corner.
|
|
// opp = The length of the side opposite to the primary corner.
|
|
// hyp = The length of the hypotenuse.
|
|
// Example:
|
|
// tri = tri_calc(opp=15,hyp=30);
|
|
// echo(adjacent=tri[0], opposite=tri[1], hypotenuse=tri[2], angle=tri[3], angle2=tri[4]);
|
|
// Examples:
|
|
// adj = tri_calc(ang=30,opp=10)[0];
|
|
// opp = tri_calc(ang=20,hyp=30)[1];
|
|
// hyp = tri_calc(ang2=50,adj=20)[2];
|
|
// ang = tri_calc(adj=20,hyp=30)[3];
|
|
// ang2 = tri_calc(adj=20,hyp=40)[4];
|
|
function tri_calc(ang,ang2,adj,opp,hyp) =
|
|
assert(num_defined([ang,ang2])<2,"You cannot specify both ang and ang2.")
|
|
assert(num_defined([ang,ang2,adj,opp,hyp])==2, "You must specify exactly two arguments.")
|
|
let(
|
|
ang = ang!=undef? assert(ang>0&&ang<90) ang :
|
|
ang2!=undef? (90-ang2) :
|
|
adj==undef? asin(constrain(opp/hyp,-1,1)) :
|
|
opp==undef? acos(constrain(adj/hyp,-1,1)) :
|
|
atan2(opp,adj),
|
|
ang2 = ang2!=undef? assert(ang2>0&&ang2<90) ang2 : (90-ang),
|
|
adj = adj!=undef? assert(adj>0) adj :
|
|
(opp!=undef? (opp/tan(ang)) : (hyp*cos(ang))),
|
|
opp = opp!=undef? assert(opp>0) opp :
|
|
(adj!=undef? (adj*tan(ang)) : (hyp*sin(ang))),
|
|
hyp = hyp!=undef? assert(hyp>0) assert(adj<hyp) assert(opp<hyp) hyp :
|
|
(adj!=undef? (adj/cos(ang)) : (opp/sin(ang)))
|
|
)
|
|
[adj, opp, hyp, ang, ang2];
|
|
|
|
|
|
|
|
// Function: triangle_area()
|
|
// Usage:
|
|
// triangle_area(a,b,c);
|
|
// Description:
|
|
// Returns the area of a triangle formed between three 2D or 3D vertices.
|
|
// Result will be negative if the points are 2D and in in clockwise order.
|
|
// Examples:
|
|
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
|
|
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
|
|
function triangle_area(a,b,c) =
|
|
len(a)==3? 0.5*norm(cross(c-a,c-b)) : (
|
|
a.x * (b.y - c.y) +
|
|
b.x * (c.y - a.y) +
|
|
c.x * (a.y - b.y)
|
|
) / 2;
|
|
|
|
|
|
|
|
// Section: Planes
|
|
|
|
// Function: plane3pt()
|
|
// Usage:
|
|
// plane3pt(p1, p2, p3);
|
|
// Description:
|
|
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
|
|
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
|
// Arguments:
|
|
// p1 = The first point on the plane.
|
|
// p2 = The second point on the plane.
|
|
// p3 = The third point on the plane.
|
|
function plane3pt(p1, p2, p3) =
|
|
let(
|
|
p1=point3d(p1),
|
|
p2=point3d(p2),
|
|
p3=point3d(p3),
|
|
normal = normalize(cross(p3-p1, p2-p1))
|
|
) concat(normal, [normal*p1]);
|
|
|
|
|
|
// Function: plane3pt_indexed()
|
|
// Usage:
|
|
// plane3pt_indexed(points, i1, i2, i3);
|
|
// Description:
|
|
// Given a list of points, and the indexes of three of those points,
|
|
// generates the cartesian equation of a plane that those points all
|
|
// lie on. Requires that the three indexed points be non-collinear.
|
|
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
|
// Arguments:
|
|
// points = A list of points.
|
|
// i1 = The index into `points` of the first point on the plane.
|
|
// i2 = The index into `points` of the second point on the plane.
|
|
// i3 = The index into `points` of the third point on the plane.
|
|
function plane3pt_indexed(points, i1, i2, i3) =
|
|
let(
|
|
p1 = points[i1],
|
|
p2 = points[i2],
|
|
p3 = points[i3]
|
|
) plane3pt(p1,p2,p3);
|
|
|
|
|
|
// Function: plane_normal()
|
|
// Usage:
|
|
// plane_normal(plane);
|
|
// Description:
|
|
// Returns the normal vector for the given plane.
|
|
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
|
|
|
|
|
|
// Function: distance_from_plane()
|
|
// Usage:
|
|
// distance_from_plane(plane, point)
|
|
// Description:
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
|
|
// The returned distance will be positive if the point is in front of the
|
|
// plane; on the same side of the plane as the normal of that plane points
|
|
// towards. If the point is behind the plane, then the distance returned
|
|
// will be negative. The normal of the plane is the same as [A,B,C].
|
|
// Arguments:
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
// point = The point to test.
|
|
function distance_from_plane(plane, point) =
|
|
[plane.x, plane.y, plane.z] * point - plane[3];
|
|
|
|
|
|
// Function: coplanar()
|
|
// Usage:
|
|
// coplanar(plane, point);
|
|
// Description:
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
|
|
// Returns true if the point is on that plane.
|
|
// Arguments:
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
// point = The point to test.
|
|
function coplanar(plane, point) =
|
|
abs(distance_from_plane(plane, point)) <= EPSILON;
|
|
|
|
|
|
// Function: in_front_of_plane()
|
|
// Usage:
|
|
// in_front_of_plane(plane, point);
|
|
// Description:
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
|
|
// plane that the normal points towards. The normal of the plane is the
|
|
// same as [A,B,C].
|
|
// Arguments:
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
// point = The point to test.
|
|
function in_front_of_plane(plane, point) =
|
|
distance_from_plane(plane, point) > EPSILON;
|
|
|
|
|
|
|
|
// Section: Paths and Polygons
|
|
|
|
|
|
// Function: is_path()
|
|
// Usage:
|
|
// is_path(x);
|
|
// Description:
|
|
// Returns true if the given item looks like a path. A path is defined as a list of two or more points.
|
|
function is_path(x) = is_list(x) && is_vector(x.x) && len(x)>1;
|
|
|
|
|
|
// Function: is_closed_path()
|
|
// Usage:
|
|
// is_closed_path(path, [eps]);
|
|
// Description:
|
|
// Returns true if the first and last points in the given path are coincident.
|
|
function is_closed_path(path, eps=EPSILON) = approx(path[0], path[len(path)-1], eps=eps);
|
|
|
|
|
|
// Function: close_path()
|
|
// Usage:
|
|
// close_path(path);
|
|
// Description:
|
|
// If a path's last point does not coincide with its first point, closes the path so it does.
|
|
function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : concat(path,[path[0]]);
|
|
|
|
|
|
// Function: cleanup_path()
|
|
// Usage:
|
|
// cleanup_path(path);
|
|
// Description:
|
|
// If a path's last point coincides with its first point, deletes the last point in the path.
|
|
function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path;
|
|
|
|
|
|
// Function: path_subselect()
|
|
// Usage:
|
|
// path_subselect(path,s1,u1,s2,u2):
|
|
// Description:
|
|
// Returns a portion of a path, from between the `u1` part of segment `s1`, to the `u2` part of
|
|
// segment `s2`. Both `u1` and `u2` are values between 0.0 and 1.0, inclusive, where 0 is the start
|
|
// of the segment, and 1 is the end. Both `s1` and `s2` are integers, where 0 is the first segment.
|
|
// Arguments:
|
|
// s1 = The number of the starting segment.
|
|
// u1 = The proportion along the starting segment, between 0.0 and 1.0, inclusive.
|
|
// s2 = The number of the ending segment.
|
|
// u2 = The proportion along the ending segment, between 0.0 and 1.0, inclusive.
|
|
function path_subselect(path,s1,u1,s2,u2) =
|
|
let(
|
|
l = len(path)-1,
|
|
u1 = s1<0? 0 : s1>l? 1 : u1,
|
|
u2 = s2<0? 0 : s2>l? 1 : u2,
|
|
s1 = constrain(s1,0,l),
|
|
s2 = constrain(s2,0,l),
|
|
pathout = concat(
|
|
(s1<l)? [lerp(path[s1],path[s1+1],u1)] : [],
|
|
[for (i=[s1+1:1:s2]) path[i]],
|
|
(s2<l)? [lerp(path[s2],path[s2+1],u2)] : []
|
|
)
|
|
) pathout;
|
|
|
|
|
|
// Function: polygon_area()
|
|
// Usage:
|
|
// area = polygon_area(vertices);
|
|
// Description:
|
|
// Given a polygon, returns the area of that polygon. If the polygon is self-crossing, the results are undefined.
|
|
function polygon_area(vertices) =
|
|
0.5*sum([for(i=[0:len(vertices)-1]) det2(select(vertices,i,i+1))]);
|
|
|
|
|
|
// Function: centroid()
|
|
// Usage:
|
|
// centroid(vertices)
|
|
// Description:
|
|
// Given a simple polygon, returns the coordinates of the polygon's centroid.
|
|
// If the polygon is self-intersecting, the results are undefined.
|
|
function centroid(vertices) =
|
|
sum([
|
|
for(i=[0:len(vertices)-1])
|
|
let(segment=select(vertices,i,i+1))
|
|
det2(segment)*sum(segment)
|
|
]) / 6 / polygon_area(vertices);
|
|
|
|
|
|
// Function: assemble_path_fragments()
|
|
// Usage:
|
|
// assemble_path_fragments(subpaths);
|
|
// Description:
|
|
// Given a list of incomplete paths, assembles them together into complete closed paths if it can.
|
|
function assemble_path_fragments(subpaths,eps=EPSILON,_finished=[]) =
|
|
len(subpaths)<=1? concat(_finished, subpaths) :
|
|
let(
|
|
path = subpaths[0]
|
|
) is_closed_path(path, eps=eps)? (
|
|
assemble_path_fragments(
|
|
[for (i=[1:1:len(subpaths)-1]) subpaths[i]],
|
|
eps=eps,
|
|
_finished=concat(_finished, [path])
|
|
)
|
|
) : let(
|
|
matches = [
|
|
for (i=[1:1:len(subpaths)-1], rev1=[0,1], rev2=[0,1]) let(
|
|
idx1 = rev1? 0 : len(path)-1,
|
|
idx2 = rev2? len(subpaths[i])-1 : 0
|
|
) if (approx(path[idx1], subpaths[i][idx2], eps=eps)) [
|
|
i, concat(
|
|
rev1? reverse(path) : path,
|
|
select(rev2? reverse(subpaths[i]) : subpaths[i], 1,-1)
|
|
)
|
|
]
|
|
]
|
|
) len(matches)==0? (
|
|
assemble_path_fragments(
|
|
select(subpaths,1,-1),
|
|
eps=eps,
|
|
_finished=concat(_finished, [path])
|
|
)
|
|
) : is_closed_path(matches[0][1], eps=eps)? (
|
|
assemble_path_fragments(
|
|
[for (i=[1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]],
|
|
eps=eps,
|
|
_finished=concat(_finished, [matches[0][1]])
|
|
)
|
|
) : let(
|
|
subpath = matches[0][1],
|
|
splen = len(subpath),
|
|
conn1 = [for (i=[1:splen-1]) if (approx(subpath[0],subpath[i])) i],
|
|
conn2 = [for (i=[0:splen-2]) if (approx(subpath[splen-1],subpath[i])) i]
|
|
) (conn1 != [] || conn2 != [])? let(
|
|
finpath = select(subpath, 0, conn1!=[]? conn1[0] : conn2[0]),
|
|
subpath2 = select(subpath, conn1!=[]? conn1[0] : conn2[0], -1)
|
|
) (
|
|
assemble_path_fragments(
|
|
concat(
|
|
[subpath2],
|
|
[for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]]
|
|
),
|
|
eps=eps,
|
|
_finished=concat(_finished, [finpath])
|
|
)
|
|
) : (
|
|
assemble_path_fragments(
|
|
concat(
|
|
[matches[0][1]],
|
|
[for (i = [1:1:len(subpaths)-1]) if(i != matches[0][0]) subpaths[i]]
|
|
),
|
|
eps=eps,
|
|
_finished=_finished
|
|
)
|
|
);
|
|
|
|
|
|
// Function: simplify_path()
|
|
// Description:
|
|
// Takes a path and removes unnecessary collinear points.
|
|
// Usage:
|
|
// simplify_path(path, [eps])
|
|
// Arguments:
|
|
// path = A list of 2D path points.
|
|
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
|
function simplify_path(path, eps=EPSILON) =
|
|
len(path)<=2? path : let(
|
|
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
|
|
) [for (i = indices) path[i]];
|
|
|
|
|
|
|
|
// Function: simplify_path_indexed()
|
|
// Description:
|
|
// Takes a list of points, and a path as a list of indexes into `points`,
|
|
// and removes all path points that are unecessarily collinear.
|
|
// Usage:
|
|
// simplify_path_indexed(path, eps)
|
|
// Arguments:
|
|
// points = A list of points.
|
|
// path = A list of indexes into `points` that forms a path.
|
|
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
|
function simplify_path_indexed(points, path, eps=EPSILON) =
|
|
len(path)<=2? path : let(
|
|
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
|
|
) [for (i = indices) path[i]];
|
|
|
|
|
|
|
|
// Function: point_in_polygon()
|
|
// Usage:
|
|
// point_in_polygon(point, path)
|
|
// Description:
|
|
// This function tests whether the given point is inside, outside or on the boundary of
|
|
// the specified 2D polygon using the Winding Number method.
|
|
// The polygon is given as a list of 2D points, not including the repeated end point.
|
|
// Returns -1 if the point is outside the polyon.
|
|
// Returns 0 if the point is on the boundary.
|
|
// Returns 1 if the point lies in the interior.
|
|
// The polygon does not need to be simple: it can have self-intersections.
|
|
// But the polygon cannot have holes (it must be simply connected).
|
|
// Rounding error may give mixed results for points on or near the boundary.
|
|
// Arguments:
|
|
// point = The point to check position of.
|
|
// path = The list of 2D path points forming the perimeter of the polygon.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function point_in_polygon(point, path, eps=EPSILON) =
|
|
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
|
|
// Does the point lie on any edges? If so return 0.
|
|
sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) point_on_segment2d(point, seg, eps=eps)?1:0]) > 0? 0 :
|
|
// Otherwise compute winding number and return 1 for interior, -1 for exterior
|
|
sum([for(i=[0:1:len(path)-1]) let(seg=select(path,i,i+1)) if(!approx(seg[0],seg[1],eps=eps)) _point_above_below_segment(point, seg)]) != 0? 1 : -1;
|
|
|
|
|
|
// Function: point_in_region()
|
|
// Usage:
|
|
// point_in_region(point, region);
|
|
// Description:
|
|
// Tests if a point is inside, outside, or on the border of a region.
|
|
// Returns -1 if the point is outside the region.
|
|
// Returns 0 if the point is on the boundary.
|
|
// Returns 1 if the point lies inside the region.
|
|
// Arguments:
|
|
// point = The point to test.
|
|
// region = The region to test against. Given as a list of polygon paths.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function point_in_region(point, region, eps=EPSILON, _i=0, _cnt=0) =
|
|
(_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let(
|
|
pip = point_in_polygon(point, region[_i], eps=eps)
|
|
) pip==0? 0 : point_in_region(point, region, eps=eps, _i=_i+1, _cnt = _cnt + (pip>0? 1 : 0));
|
|
|
|
|
|
// Function: pointlist_bounds()
|
|
// Usage:
|
|
// pointlist_bounds(pts);
|
|
// Description:
|
|
// Finds the bounds containing all the 2D or 3D points in `pts`.
|
|
// Returns [[minx, miny, minz], [maxx, maxy, maxz]]
|
|
// Arguments:
|
|
// pts = List of points.
|
|
function pointlist_bounds(pts) = [
|
|
[for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ],
|
|
[for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ]
|
|
];
|
|
|
|
|
|
// Function: polygon_clockwise()
|
|
// Usage:
|
|
// polygon_clockwise(path);
|
|
// Description:
|
|
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
|
|
// Results for complex (self-intersecting) polygon are indeterminate.
|
|
// Arguments:
|
|
// path = The list of 2D path points for the perimeter of the polygon.
|
|
function polygon_clockwise(path) =
|
|
let(
|
|
minx = min(subindex(path,0)),
|
|
lowind = search(minx, path, 0, 0),
|
|
lowpts = select(path, lowind),
|
|
miny = min(subindex(lowpts, 1)),
|
|
extreme_sub = search(miny, lowpts, 1, 1)[0],
|
|
extreme = select(lowind,extreme_sub)
|
|
) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
|
|
|
|
|
|
|
|
// Section: Regions and Boolean 2D Geometry
|
|
|
|
|
|
// Function: is_region()
|
|
// Usage:
|
|
// is_region(x);
|
|
// Description:
|
|
// Returns true if the given item looks like a region. A region is defined as a list of zero or more paths.
|
|
function is_region(x) = is_list(x) && is_path(x.x);
|
|
|
|
|
|
// Function: close_region()
|
|
// Usage:
|
|
// close_region(region);
|
|
// Description:
|
|
// Closes all paths within a given region.
|
|
function close_region(region, eps=EPSILON) = [for (path=region) close_path(path, eps=eps)];
|
|
|
|
// Function: check_and_fix_path()
|
|
// Usage:
|
|
// check_and_fix_path(path, [valid_dim], [closed])
|
|
// Description:
|
|
// Checks that the input is a path. If it is a region with one component, converts it to a path.
|
|
// valid_dim specfies the allowed dimension of the points in the path.
|
|
// If the path is closed, removed duplicate endpoint if present.
|
|
// Arguments:
|
|
// path = path to process
|
|
// valid_dim = list of allowed dimensions for the points in the path, e.g. [2,3] to require 2 or 3 dimensional input. If left undefined do not perform this check. Default: undef
|
|
// closed = set to true if the path is closed, which enables a check for endpoint duplication
|
|
function check_and_fix_path(path,valid_dim=undef,closed=false) =
|
|
let( path = is_region(path) ?
|
|
assert(len(path)==1,"Region supplied as path does not have exactly one component")
|
|
path[0] :
|
|
assert(is_path(path), "Input is not a path") path,
|
|
dim = array_dim(path))
|
|
assert(dim[0]>1,"Path must have at least 2 points")
|
|
assert(len(dim)==2,"Invalid path: path is either a list of scalars or a list of matrices")
|
|
assert(is_def(dim[1]), "Invalid path: entries in the path have variable length")
|
|
let(valid=is_undef(valid_dim) || in_list(dim[1],valid_dim))
|
|
assert(valid, str("The points on the path have length ",dim[1]," but length must be ",
|
|
len(valid_dim)==1? valid_dim[0] : str("one of ",valid_dim)))
|
|
closed && approx(path[0],select(path,-1)) ? slice(path,0,-2) : path;
|
|
|
|
|
|
// Function: cleanup_region()
|
|
// Usage:
|
|
// cleanup_region(region);
|
|
// Description:
|
|
// For all paths in the given region, if the last point coincides with the first point, removes the last point.
|
|
function cleanup_region(region, eps=EPSILON) = [for (path=region) cleanup_path(path, eps=eps)];
|
|
|
|
|
|
// Function: region_path_crossings()
|
|
// Usage:
|
|
// region_path_crossings(path, region);
|
|
// Description:
|
|
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
|
|
// Arguments:
|
|
// path = The path to find crossings on.
|
|
// region = Region to test for crossings of.
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
|
function region_path_crossings(path, region, eps=EPSILON) = sort([
|
|
for (
|
|
s1=enumerate(pair(close_path(path))),
|
|
p=close_region(region),
|
|
s2=pair(p)
|
|
) let(
|
|
isect = _general_line_intersection(s1[1],s2,eps=eps)
|
|
) if (
|
|
!is_undef(isect) &&
|
|
isect[1] >= 0-eps && isect[1] < 1+eps &&
|
|
isect[2] >= 0-eps && isect[2] < 1+eps
|
|
)
|
|
[s1[0], isect[1]]
|
|
]);
|
|
|
|
|
|
function _offset_chamfer(center, points, delta) =
|
|
let(
|
|
dist = sign(delta)*norm(center-line_intersection(select(points,[0,2]), [center, points[1]])),
|
|
endline = _shift_segment(select(points,[0,2]), delta-dist)
|
|
) [
|
|
line_intersection(endline, select(points,[0,1])),
|
|
line_intersection(endline, select(points,[1,2]))
|
|
];
|
|
|
|
|
|
function _shift_segment(segment, d) =
|
|
move(d*line_normal(segment),segment);
|
|
|
|
|
|
// Extend to segments to their intersection point. First check if the segments already have a point in common,
|
|
// which can happen if two colinear segments are input to the path variant of `offset()`
|
|
function _segment_extension(s1,s2) =
|
|
norm(s1[1]-s2[0])<1e-6 ? s1[1] : line_intersection(s1,s2);
|
|
|
|
|
|
function _makefaces(direction, startind, good, pointcount, closed) =
|
|
let(
|
|
lenlist = list_bset(good, pointcount),
|
|
numfirst = len(lenlist),
|
|
numsecond = sum(lenlist),
|
|
prelim_faces = _makefaces_recurse(startind, startind+len(lenlist), numfirst, numsecond, lenlist, closed)
|
|
)
|
|
direction? [for(entry=prelim_faces) reverse(entry)] : prelim_faces;
|
|
|
|
|
|
function _makefaces_recurse(startind1, startind2, numfirst, numsecond, lenlist, closed, firstind=0, secondind=0, faces=[]) =
|
|
// We are done if *both* firstind and secondind reach their max value, which is the last point if !closed or one past
|
|
// the last point if closed (wrapping around). If you don't check both you can leave a triangular gap in the output.
|
|
((firstind == numfirst - (closed?0:1)) && (secondind == numsecond - (closed?0:1)))? faces :
|
|
_makefaces_recurse(
|
|
startind1, startind2, numfirst, numsecond, lenlist, closed, firstind+1, secondind+lenlist[firstind],
|
|
lenlist[firstind]==0? (
|
|
// point in original path has been deleted in offset path, so it has no match. We therefore
|
|
// make a triangular face using the current point from the offset (second) path
|
|
// (The current point in the second path can be equal to numsecond if firstind is the last point)
|
|
concat(faces,[[secondind%numsecond+startind2, firstind+startind1, (firstind+1)%numfirst+startind1]])
|
|
// in this case a point or points exist in the offset path corresponding to the original path
|
|
) : (
|
|
concat(faces,
|
|
// First generate triangular faces for all of the extra points (if there are any---loop may be empty)
|
|
[for(i=[0:1:lenlist[firstind]-2]) [firstind+startind1, secondind+i+1+startind2, secondind+i+startind2]],
|
|
// Finish (unconditionally) with a quadrilateral face
|
|
[
|
|
[
|
|
firstind+startind1,
|
|
(firstind+1)%numfirst+startind1,
|
|
(secondind+lenlist[firstind])%numsecond+startind2,
|
|
(secondind+lenlist[firstind]-1)%numsecond+startind2
|
|
]
|
|
]
|
|
)
|
|
)
|
|
);
|
|
|
|
|
|
// Determine which of the shifted segments are good
|
|
function _good_segments(path, d, shiftsegs, closed, quality) =
|
|
let(
|
|
maxind = len(path)-(closed ? 1 : 2),
|
|
pathseg = [for(i=[0:maxind]) select(path,i+1)-path[i]],
|
|
pathseg_len = [for(seg=pathseg) norm(seg)],
|
|
pathseg_unit = [for(i=[0:maxind]) pathseg[i]/pathseg_len[i]],
|
|
// Order matters because as soon as a valid point is found, the test stops
|
|
// This order works better for circular paths because they succeed in the center
|
|
alpha = concat([for(i=[1:1:quality]) i/(quality+1)],[0,1])
|
|
) [
|
|
for (i=[0:len(shiftsegs)-1])
|
|
(i>maxind)? true :
|
|
_segment_good(path,pathseg_unit,pathseg_len, d - 1e-4, shiftsegs[i], alpha)
|
|
];
|
|
|
|
|
|
// Determine if a segment is good (approximately)
|
|
// Input is the path, the path segments normalized to unit length, the length of each path segment
|
|
// the distance threshold, the segment to test, and the locations on the segment to test (normalized to [0,1])
|
|
// The last parameter, index, gives the current alpha index.
|
|
//
|
|
// A segment is good if any part of it is farther than distance d from the path. The test is expensive, so
|
|
// we want to quit as soon as we find a point with distance > d, hence the recursive code structure.
|
|
//
|
|
// This test is approximate because it only samples the points listed in alpha. Listing more points
|
|
// will make the test more accurate, but slower.
|
|
function _segment_good(path,pathseg_unit,pathseg_len, d, seg,alpha ,index=0) =
|
|
index == len(alpha) ? false :
|
|
_point_dist(path,pathseg_unit,pathseg_len, alpha[index]*seg[0]+(1-alpha[index])*seg[1]) > d ? true :
|
|
_segment_good(path,pathseg_unit,pathseg_len,d,seg,alpha,index+1);
|
|
|
|
|
|
// Input is the path, the path segments normalized to unit length, the length of each path segment
|
|
// and a test point. Computes the (minimum) distance from the path to the point, taking into
|
|
// account that the minimal distance may be anywhere along a path segment, not just at the ends.
|
|
function _point_dist(path,pathseg_unit,pathseg_len,pt) =
|
|
min([
|
|
for(i=[0:len(pathseg_unit)-1]) let(
|
|
v = pt-path[i],
|
|
projection = v*pathseg_unit[i],
|
|
segdist = projection < 0? norm(pt-path[i]) :
|
|
projection > pathseg_len[i]? norm(pt-select(path,i+1)) :
|
|
norm(v-projection*pathseg_unit[i])
|
|
) segdist
|
|
]);
|
|
|
|
|
|
function _offset_region(
|
|
paths, r, delta, chamfer, closed,
|
|
maxstep, check_valid, quality,
|
|
return_faces, firstface_index,
|
|
flip_faces, _acc=[], _i=0
|
|
) =
|
|
_i>=len(paths)? _acc :
|
|
_offset_region(
|
|
paths, _i=_i+1,
|
|
_acc = (paths[_i].x % 2 == 0)? (
|
|
union(_acc, [
|
|
offset(
|
|
paths[_i].y,
|
|
r=r, delta=delta, chamfer=chamfer, closed=closed,
|
|
maxstep=maxstep, check_valid=check_valid, quality=quality,
|
|
return_faces=return_faces, firstface_index=firstface_index,
|
|
flip_faces=flip_faces
|
|
)
|
|
])
|
|
) : (
|
|
difference(_acc, [
|
|
offset(
|
|
paths[_i].y,
|
|
r=-r, delta=-delta, chamfer=chamfer, closed=closed,
|
|
maxstep=maxstep, check_valid=check_valid, quality=quality,
|
|
return_faces=return_faces, firstface_index=firstface_index,
|
|
flip_faces=flip_faces
|
|
)
|
|
])
|
|
),
|
|
r=r, delta=delta, chamfer=chamfer, closed=closed,
|
|
maxstep=maxstep, check_valid=check_valid, quality=quality,
|
|
return_faces=return_faces, firstface_index=firstface_index, flip_faces=flip_faces
|
|
);
|
|
|
|
|
|
// Function: offset()
|
|
//
|
|
// Description:
|
|
// Takes an input path and returns a path offset by the specified amount. As with the built-in
|
|
// offset() module, you can use `r` to specify rounded offset and `delta` to specify offset with
|
|
// corners. Positive offsets shift the path to the left (relative to the direction of the path).
|
|
//
|
|
// When offsets shrink the path, segments cross and become invalid. By default `offset()` checks
|
|
// for this situation. To test validity the code checks that segments have distance larger than (r
|
|
// or delta) from the input path. This check takes O(N^2) time and may mistakenly eliminate
|
|
// segments you wanted included in various situations, so you can disable it if you wish by setting
|
|
// check_valid=false. Another situation is that the test is not sufficiently thorough and some
|
|
// segments persist that should be eliminated. In this case, increase `quality` to 2 or 3. (This
|
|
// increases the number of samples on the segment that are checked.) Run time will increase. In
|
|
// some situations you may be able to decrease run time by setting quality to 0, which causes only
|
|
// segment ends to be checked.
|
|
//
|
|
// For construction of polyhedra `offset()` can also return face lists. These list faces between
|
|
// the original path and the offset path where the vertices are ordered with the original path
|
|
// first, starting at `firstface_index` and the offset path vertices appearing afterwords. The
|
|
// direction of the faces can be flipped using `flip_faces`. When you request faces the return
|
|
// value is a list: [offset_path, face_list].
|
|
// Arguments:
|
|
// path = the path to process. A list of 2d points.
|
|
// r = offset radius. Distance to offset. Will round over corners.
|
|
// delta = offset distance. Distance to offset with pointed corners.
|
|
// chamfer = chamfer corners when you specify `delta`. Default: false
|
|
// closed = path is a closed curve. Default: False.
|
|
// check_valid = perform segment validity check. Default: True.
|
|
// quality = validity check quality parameter, a small integer. Default: 1.
|
|
// return_faces = return face list. Default: False.
|
|
// firstface_index = starting index for face list. Default: 0.
|
|
// flip_faces = flip face direction. Default: false
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, delta=10, closed=true));
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, delta=10, chamfer=true, closed=true));
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, r=10, closed=true));
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, delta=-10, closed=true));
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, delta=-10, chamfer=true, closed=true));
|
|
// Example(2D):
|
|
// star = star(5, r=100, ir=30);
|
|
// #stroke(closed=true, star);
|
|
// stroke(closed=true, offset(star, r=-10, closed=true));
|
|
// Example(2D): This case needs `quality=2` for success
|
|
// test = [[0,0],[10,0],[10,7],[0,7], [-1,-3]];
|
|
// polygon(offset(test,r=-1.9, closed=true, quality=2));
|
|
// //polygon(offset(test,r=-1.9, closed=true, quality=1)); // Fails with erroneous 180 deg path error
|
|
// %down(.1)polygon(test);
|
|
// Example(2D): This case fails if `check_valid=true` when delta is large enough because segments are too close to the opposite side of the curve.
|
|
// star = star(5, r=22, ir=13);
|
|
// stroke(star,width=.2,closed=true);
|
|
// color("green")
|
|
// stroke(offset(star, delta=-9, closed=true),width=.2,closed=true); // Works with check_valid=true (the default)
|
|
// color("red")
|
|
// stroke(offset(star, delta=-10, closed=true, check_valid=false), // Fails if check_valid=true
|
|
// width=.2,closed=true);
|
|
// Example(2D): But if you use rounding with offset then you need `check_valid=true` when `r` is big enough. It works without the validity check as long as the offset shape retains a some of the straight edges at the star tip, but once the shape shrinks smaller than that, it fails. There is no simple way to get a correct result for the case with `r=10`, because as in the previous example, it will fail if you turn on validity checks.
|
|
// star = star(5, r=22, ir=13);
|
|
// color("green")
|
|
// stroke(offset(star, r=-8, closed=true,check_valid=false), width=.1, closed=true);
|
|
// color("red")
|
|
// stroke(offset(star, r=-10, closed=true,check_valid=false), width=.1, closed=true);
|
|
// Example(2D): The extra triangles in this example show that the validity check cannot be skipped
|
|
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
|
|
// stroke(ellipse, closed=true, width=0.3);
|
|
// stroke(offset(ellipse, r=-3, check_valid=false, closed=true), width=0.3, closed=true);
|
|
// Example(2D): The triangles are removed by the validity check
|
|
// ellipse = scale([20,4], p=circle(r=1,$fn=64));
|
|
// stroke(ellipse, closed=true, width=0.3);
|
|
// stroke(offset(ellipse, r=-3, check_valid=true, closed=true), width=0.3, closed=true);
|
|
// Example(2D): Open path. The path moves from left to right and the positive offset shifts to the left of the initial red path.
|
|
// sinpath = 2*[for(theta=[-180:5:180]) [theta/4,45*sin(theta)]];
|
|
// #stroke(sinpath);
|
|
// stroke(offset(sinpath, r=17.5));
|
|
// Example(2D): Region
|
|
// rgn = difference(circle(d=100), union(square([20,40], center=true), square([40,20], center=true)));
|
|
// #linear_extrude(height=1.1) for (p=rgn) stroke(closed=true, width=0.5, p);
|
|
// region(offset(rgn, r=-5));
|
|
function offset(
|
|
path, r=undef, delta=undef, chamfer=false,
|
|
maxstep=0.1, closed=false, check_valid=true,
|
|
quality=1, return_faces=false, firstface_index=0,
|
|
flip_faces=false
|
|
) =
|
|
is_region(path)? (
|
|
let(
|
|
path = [for (p=path) polygon_clockwise(p)? p : reverse(p)],
|
|
rgn = exclusive_or([for (p = path) [p]]),
|
|
pathlist = sort(idx=0,[
|
|
for (i=[0:1:len(rgn)-1]) [
|
|
sum(concat([0],[
|
|
for (j=[0:1:len(rgn)-1]) if (i!=j)
|
|
point_in_polygon(rgn[i][0],rgn[j])>=0? 1 : 0
|
|
])),
|
|
rgn[i]
|
|
]
|
|
])
|
|
) _offset_region(
|
|
pathlist, r=r, delta=delta, chamfer=chamfer, closed=true,
|
|
maxstep=maxstep, check_valid=check_valid, quality=quality,
|
|
return_faces=return_faces, firstface_index=firstface_index,
|
|
flip_faces=flip_faces
|
|
)
|
|
) : let(rcount = num_defined([r,delta]))
|
|
assert(rcount==1,"Must define exactly one of 'delta' and 'r'")
|
|
let(
|
|
chamfer = is_def(r) ? false : chamfer,
|
|
quality = max(0,round(quality)),
|
|
flip_dir = closed && !polygon_clockwise(path) ? -1 : 1,
|
|
d = flip_dir * (is_def(r) ? r : delta),
|
|
shiftsegs = [for(i=[0:len(path)-1]) _shift_segment(select(path,i,i+1), d)],
|
|
// good segments are ones where no point on the segment is less than distance d from any point on the path
|
|
good = check_valid ? _good_segments(path, abs(d), shiftsegs, closed, quality) : replist(true,len(shiftsegs)),
|
|
goodsegs = bselect(shiftsegs, good),
|
|
goodpath = bselect(path,good)
|
|
)
|
|
assert(len(goodsegs)>0,"Offset of path is degenerate")
|
|
let(
|
|
// Extend the shifted segments to their intersection points
|
|
sharpcorners = [for(i=[0:len(goodsegs)-1]) _segment_extension(select(goodsegs,i-1), select(goodsegs,i))],
|
|
// If some segments are parallel then the extended segments are undefined. This case is not handled
|
|
// Note if !closed the last corner doesn't matter, so exclude it
|
|
parallelcheck =
|
|
(len(sharpcorners)==2 && !closed) ||
|
|
all_defined(select(sharpcorners,closed?0:1,-1))
|
|
)
|
|
assert(parallelcheck, "Path turns back on itself (180 deg turn)")
|
|
let(
|
|
// This is a boolean array that indicates whether a corner is an outside or inside corner
|
|
// For outside corners, the newcorner is an extension (angle 0), for inside corners, it turns backward
|
|
// If either side turns back it is an inside corner---must check both.
|
|
// Outside corners can get rounded (if r is specified and there is space to round them)
|
|
outsidecorner = [
|
|
for(i=[0:len(goodsegs)-1]) let(
|
|
prevseg=select(goodsegs,i-1)
|
|
) (
|
|
(goodsegs[i][1]-goodsegs[i][0]) *
|
|
(goodsegs[i][0]-sharpcorners[i]) > 0
|
|
) && (
|
|
(prevseg[1]-prevseg[0]) *
|
|
(sharpcorners[i]-prevseg[1]) > 0
|
|
)
|
|
],
|
|
steps = is_def(delta) ? [] : [
|
|
for(i=[0:len(goodsegs)-1])
|
|
ceil(
|
|
abs(r)*vector_angle(
|
|
select(goodsegs,i-1)[1]-goodpath[i],
|
|
goodsegs[i][0]-goodpath[i]
|
|
)*PI/180/maxstep
|
|
)
|
|
],
|
|
// If rounding is true then newcorners replaces sharpcorners with rounded arcs where needed
|
|
// Otherwise it's the same as sharpcorners
|
|
// If rounding is on then newcorners[i] will be the point list that replaces goodpath[i] and newcorners later
|
|
// gets flattened. If rounding is off then we set it to [sharpcorners] so we can later flatten it and get
|
|
// plain sharpcorners back.
|
|
newcorners = is_def(delta) && !chamfer ? [sharpcorners] : [
|
|
for(i=[0:len(goodsegs)-1]) (
|
|
(!chamfer && steps[i] <=2) //Chamfer all points but only round if steps is 3 or more
|
|
|| !outsidecorner[i] // Don't round inside corners
|
|
|| (!closed && (i==0 || i==len(goodsegs)-1)) // Don't round ends of an open path
|
|
)? [sharpcorners[i]] : (
|
|
chamfer?
|
|
_offset_chamfer(
|
|
goodpath[i], [
|
|
select(goodsegs,i-1)[1],
|
|
sharpcorners[i],
|
|
goodsegs[i][0]
|
|
], d
|
|
) :
|
|
arc(
|
|
cp=goodpath[i],
|
|
points=[
|
|
select(goodsegs,i-1)[1],
|
|
goodsegs[i][0]
|
|
],
|
|
N=steps[i]
|
|
)
|
|
)
|
|
],
|
|
pointcount = (is_def(delta) && !chamfer)?
|
|
replist(1,len(sharpcorners)) :
|
|
[for(i=[0:len(goodsegs)-1]) len(newcorners[i])],
|
|
start = [goodsegs[0][0]],
|
|
end = [goodsegs[len(goodsegs)-2][1]],
|
|
edges = closed?
|
|
flatten(newcorners) :
|
|
concat(start,slice(flatten(newcorners),1,-2),end),
|
|
faces = !return_faces? [] :
|
|
_makefaces(
|
|
flip_faces, firstface_index, good,
|
|
pointcount, closed
|
|
)
|
|
) return_faces? [edges,faces] : edges;
|
|
|
|
|
|
function _split_path_at_region_crossings(path, region, eps=EPSILON) =
|
|
let(
|
|
path = deduplicate(path, eps=eps),
|
|
region = [for (path=region) deduplicate(path, eps=eps)],
|
|
xings = region_path_crossings(path, region, eps=eps),
|
|
crossings = deduplicate(
|
|
concat(
|
|
[[0,0]],
|
|
xings,
|
|
[[len(path)-2,1]]
|
|
),
|
|
eps=eps
|
|
),
|
|
subpaths = [
|
|
for (p = pair(crossings))
|
|
deduplicate(eps=eps,
|
|
path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1])
|
|
)
|
|
]
|
|
)
|
|
subpaths;
|
|
|
|
|
|
function _tag_subpaths(path, region, eps=EPSILON) =
|
|
let(
|
|
subpaths = _split_path_at_region_crossings(path, region, eps=eps),
|
|
tagged = [
|
|
for (sub = subpaths) let(
|
|
subpath = deduplicate(sub)
|
|
) if (len(sub)>1) let(
|
|
midpt = lerp(subpath[0], subpath[1], 0.5),
|
|
rel = point_in_region(midpt,region,eps=eps)
|
|
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
|
|
vec = normalize(subpath[1]-subpath[0]),
|
|
perp = rot(90, planar=true, p=vec),
|
|
sidept = midpt + perp*0.01,
|
|
rel1 = point_in_polygon(sidept,path,eps=eps)>0,
|
|
rel2 = point_in_region(sidept,region,eps=eps)>0
|
|
) rel1==rel2? ["S", subpath] : ["U", subpath]
|
|
]
|
|
) tagged;
|
|
|
|
|
|
function _tag_region_subpaths(region1, region2, eps=EPSILON) =
|
|
[for (path=region1) each _tag_subpaths(path, region2, eps=eps)];
|
|
|
|
|
|
function _tagged_region(region1,region2,keep1,keep2,eps=EPSILON) =
|
|
let(
|
|
region1 = close_region(region1, eps=eps),
|
|
region2 = close_region(region2, eps=eps),
|
|
tagged1 = _tag_region_subpaths(region1, region2, eps=eps),
|
|
tagged2 = _tag_region_subpaths(region2, region1, eps=eps),
|
|
tagged = concat(
|
|
[for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]],
|
|
[for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]]
|
|
),
|
|
outregion = assemble_path_fragments(tagged, eps=eps)
|
|
) outregion;
|
|
|
|
|
|
// Function&Module: union()
|
|
// Usage:
|
|
// union() {...}
|
|
// region = union(regions);
|
|
// region = union(REGION1,REGION2);
|
|
// region = union(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function and given a list of regions, where each region is a list of closed
|
|
// 2D paths, returns the boolean union of all given regions. Result is a single region.
|
|
// When called as the built-in module, makes the boolean union of the given children.
|
|
// Arguments:
|
|
// regions = List of regions to union. Each region is a list of closed paths.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(union(shape1,shape2));
|
|
function union(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
b!=undef? union(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
|
len(regions)<=1? regions[0] :
|
|
union(
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
concat(
|
|
[_tagged_region(regions[0],regions[1],["O","S"],["O"], eps=eps)],
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
),
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function&Module: difference()
|
|
// Usage:
|
|
// difference() {...}
|
|
// region = difference(regions);
|
|
// region = difference(REGION1,REGION2);
|
|
// region = difference(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function, and given a list of regions, where each region is a list of closed
|
|
// 2D paths, takes the first region and differences away all other regions from it. The resulting
|
|
// region is returned.
|
|
// When called as the built-in module, makes the boolean difference of the given children.
|
|
// Arguments:
|
|
// regions = List of regions to difference. Each region is a list of closed paths.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(difference(shape1,shape2));
|
|
function difference(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
b!=undef? difference(concat([regions],[b],c==undef?[]:[c]), eps=eps) :
|
|
len(regions)<=1? regions[0] :
|
|
difference(
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
concat(
|
|
[_tagged_region(regions[0],regions[1],["O","U"],["I"], eps=eps)],
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
),
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function&Module: intersection()
|
|
// Usage:
|
|
// intersection() {...}
|
|
// region = intersection(regions);
|
|
// region = intersection(REGION1,REGION2);
|
|
// region = intersection(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function, and given a list of regions, where each region is a list of closed
|
|
// 2D paths, returns the boolean intersection of all given regions. Result is a single region.
|
|
// When called as the built-in module, makes the boolean intersection of all the given children.
|
|
// Arguments:
|
|
// regions = List of regions to intersection. Each region is a list of closed paths.
|
|
// Example(2D):
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(intersection(shape1,shape2));
|
|
function intersection(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
|
|
len(regions)<=1? regions[0] :
|
|
intersection(
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
concat(
|
|
[_tagged_region(regions[0],regions[1],["I","S"],["I"],eps=eps)],
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
),
|
|
eps=eps
|
|
);
|
|
|
|
|
|
// Function&Module: exclusive_or()
|
|
// Usage:
|
|
// exclusive_or() {...}
|
|
// region = exclusive_or(regions);
|
|
// region = exclusive_or(REGION1,REGION2);
|
|
// region = exclusive_or(REGION1,REGION2,REGION3);
|
|
// Description:
|
|
// When called as a function and given a list of regions, where each region is a list of closed
|
|
// 2D paths, returns the boolean exclusive_or of all given regions. Result is a single region.
|
|
// When called as a module, performs a boolean exclusive-or of up to 10 children.
|
|
// Arguments:
|
|
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
|
|
// Example(2D): As Function
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
// for (shape = [shape1,shape2])
|
|
// color("red") stroke(shape, width=0.5, closed=true);
|
|
// color("green") region(exclusive_or(shape1,shape2));
|
|
// Example(2D): As Module
|
|
// exclusive_or() {
|
|
// square(40,center=false);
|
|
// circle(d=40);
|
|
// }
|
|
function exclusive_or(regions=[],b=undef,c=undef,eps=EPSILON) =
|
|
b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c]),eps=eps) :
|
|
len(regions)<=1? regions[0] :
|
|
exclusive_or(
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
concat(
|
|
[union([
|
|
difference([regions[0],regions[1]], eps=eps),
|
|
difference([regions[1],regions[0]], eps=eps)
|
|
], eps=eps)],
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
),
|
|
eps=eps
|
|
);
|
|
|
|
|
|
module exclusive_or() {
|
|
if ($children==1) {
|
|
children();
|
|
} else if ($children==2) {
|
|
difference() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
difference() {
|
|
children(1);
|
|
children(0);
|
|
}
|
|
} else if ($children==3) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
children(2);
|
|
}
|
|
} else if ($children==4) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
}
|
|
exclusive_or() {
|
|
children(2);
|
|
children(3);
|
|
}
|
|
}
|
|
} else if ($children==5) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
}
|
|
} else if ($children==6) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
children(5);
|
|
}
|
|
} else if ($children==7) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
}
|
|
} else if ($children==8) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
}
|
|
} else if ($children==9) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
children(8);
|
|
}
|
|
} else if ($children==10) {
|
|
exclusive_or() {
|
|
exclusive_or() {
|
|
children(0);
|
|
children(1);
|
|
children(2);
|
|
children(3);
|
|
}
|
|
exclusive_or() {
|
|
children(4);
|
|
children(5);
|
|
children(6);
|
|
children(7);
|
|
}
|
|
children(8);
|
|
children(9);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: region()
|
|
// Usage:
|
|
// region(r);
|
|
// Description:
|
|
// Creates 2D polygons for the given region. The region given is a list of closed 2D paths.
|
|
// Each path will be effectively exclusive-ORed from all other paths in the region, so if a
|
|
// path is inside another path, it will be effectively subtracted from it.
|
|
// Example(2D):
|
|
// region([circle(d=50), square(25,center=true)]);
|
|
// Example(2D):
|
|
// rgn = concat(
|
|
// [for (d=[50:-10:10]) circle(d=d-5)],
|
|
// [square([60,10], center=true)]
|
|
// );
|
|
// region(rgn);
|
|
module region(r)
|
|
{
|
|
points = flatten(r);
|
|
paths = [
|
|
for (i=[0:1:len(r)-1]) let(
|
|
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
|
|
) [for (k=[0:1:len(r[i])-1]) start+k]
|
|
];
|
|
polygon(points=points, paths=paths);
|
|
}
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|