BOSL2/gears.scad
Adrian Mariano 74fca586d7 doc fixes
2023-06-18 09:22:41 -04:00

1596 lines
66 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////////////////////////////
// LibFile: gears.scad
// Spur Gears, Bevel Gears, Racks, Worms and Worm Gears.
// Inspired by code by Leemon Baird, 2011, Leemon@Leemon.com
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/gears.scad>
// FileGroup: Parts
// FileSummary: Gears, racks, worms, and worm gears.
//////////////////////////////////////////////////////////////////////////////////////////////
// Section: Terminology
// The outline of a gear is a smooth circle (the "pitch circle") which has
// mountains and valleys added so it is toothed. There is an inner
// circle (the "root circle") that touches the base of all the teeth, an
// outer circle that touches the tips of all the teeth, and the invisible
// pitch circle in between them. There is also a "base circle", which can
// be smaller than all three of the others, which controls the shape of
// the teeth. The side of each tooth lies on the path that the end of a
// string would follow if it were wrapped tightly around the base circle,
// then slowly unwound. That shape is an "involute", which gives this
// type of gear its name.
// Section: Gears
// Function&Module: spur_gear()
// Synopsis: Creates a spur gear, helical gear, or internal ring gear.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
// spur_gear(pitch, teeth, thickness, [shaft_diam], [hide=], [pressure_angle=], [clearance=], [backlash=], [helical=], [slices=], [interior=]) [ATTACHMENTS];
// spur_gear(mod=, teeth=, thickness=, [shaft_diam=], ...) [ATTACHMENTS];
// Usage: As a Function
// vnf = spur_gear(pitch, teeth, thickness, [shaft_diam=], ...);
// vnf = spur_gear(mod=, teeth=, thickness=, [shaft_diam=], ...);
// Description:
// Creates a involute spur gear, helical gear, or internal ring gear. The module `spur_gear()` gives an involute
// spur gear, with reasonable defaults for all the parameters. Normally, you should just choose the
// first 4 parameters, and let the rest be default values. Spur gears have straight teeth and
// mesh together on parallel shafts without creating any axial thrust. The teeth engage suddenly across their
// entire width, creating stress and noise. Helical gears have angled teeth and engage more gradually, so they
// run more smoothly and quietly, however they do produce thrust along the gear axis. This can be
// circumvented using herringbone or double helical gears, which have no axial thrust and also self-align.
// Helical gears can mesh along shafts that are not parallel, where the angle between the shafts is
// the sum of the helical angles of the two gears.
// .
// The module `spur_gear()` gives a gear in
// the XY plane, centered on the origin, with one tooth centered on the positive Y axis. The most
// important is `pitch_radius()`, which tells how far apart to space gears that are meshing, and
// `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
// have the same `pitch` and `pressure_angle` parameters. `pitch` gives the number of millimeters
// of arc around the pitch circle covered by one tooth and one space between teeth. The
// `pressure_angle` controls how flat or bulged the sides of the teeth are. Common values include
// 14.5 degrees and 20 degrees, and occasionally 25. Though I've seen 28 recommended for plastic
// gears. Larger numbers bulge out more, giving stronger teeth, so 28 degrees is the default here.
// The ratio of `teeth` for two meshing gears gives how many times one will make a full revolution
// when the the other makes one full revolution. If the two numbers are coprime (i.e. are not both
// divisible by the same number greater than 1), then every tooth on one gear will meet every tooth
// on the other, for more even wear. So coprime numbers of teeth are good.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth around the entire perimeter
// thickness = Thickness of gear in mm
// shaft_diam = Diameter of the hole in the center, in mm. Default: 0 (no shaft hole)
// ---
// hide = Number of teeth to delete to make this only a fraction of a circle
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// helical = Teeth are slanted around the spur gear at this angle away from the gear axis of rotation.
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `helical`.
// scale = Scale of top of gear compared to bottom. Useful for making crown gears.
// interior = If true, create a mask for difference()ing from something else.
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example: Spur Gear
// spur_gear(pitch=5, teeth=20, thickness=8, shaft_diam=5);
// Example: Metric Gear
// spur_gear(mod=2, teeth=20, thickness=8, shaft_diam=5);
// Example: Helical Gear
// spur_gear(
// pitch=5, teeth=20, thickness=10,
// shaft_diam=5, helical=-30, slices=12,
// $fa=1, $fs=1
// );
// Example(Anim,Frames=8,VPT=[0,30,0],VPR=[0,0,0],VPD=300): Assembly of Gears
// n1 = 11; //red gear number of teeth
// n2 = 20; //green gear
// n3 = 5; //blue gear
// n4 = 16; //orange gear
// n5 = 9; //gray rack
// pitch = 9; //all meshing gears need the same `pitch` (and the same `pressure_angle`)
// thickness = 6;
// hole = 3;
// rack_base = 12;
// r1 = pitch_radius(pitch,n1);
// r2 = pitch_radius(pitch,n2);
// r3 = pitch_radius(pitch,n3);
// r4 = pitch_radius(pitch,n4);
// r5 = pitch_radius(pitch,n5);
// a1 = $t * 360 / n1;
// a2 = -$t * 360 / n2 + 180/n2;
// a3 = -$t * 360 / n3;
// a4 = -$t * 360 / n4 - 7.5*180/n4;
// color("#f77") zrot(a1) spur_gear(pitch,n1,thickness,hole);
// color("#7f7") back(r1+r2) zrot(a2) spur_gear(pitch,n2,thickness,hole);
// color("#77f") right(r1+r3) zrot(a3) spur_gear(pitch,n3,thickness,hole);
// color("#fc7") left(r1+r4) zrot(a4) spur_gear(pitch,n4,thickness,hole,hide=n4-3);
// color("#ccc") fwd(r1) right(pitch*$t)
// rack(pitch=pitch,teeth=n5,thickness=thickness,height=rack_base,anchor=CENTER,orient=BACK);
// Example: Helical gears meshing with non-parallel shafts
// ang1 = 30;
// ang2 = 10;
// pitch = 5;
// n = 20;
// r = pitch_radius(pitch,n);
// left(r) spur_gear(
// pitch=pitch, teeth=n, thickness=10,
// shaft_diam=5, helical=ang1, slices=12,
// $fa=1, $fs=1
// );
// right(r)
// xrot(ang1+ang2)
// zrot(360/n/2-5) spur_gear(
// pitch=pitch, teeth=n, thickness=10,
// shaft_diam=5, helical=ang2, slices=12,
// $fa=1, $fs=1
// );
function spur_gear(
pitch = 3,
teeth = 11,
thickness = 6,
shaft_diam = 0,
hide = 0,
pressure_angle = 28,
clearance = undef,
backlash = 0.0,
helical = 0,
slices = 2,
interior = false,
mod,
anchor = CENTER,
spin = 0,
orient = UP
) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
p = pitch_radius(pitch, teeth),
c = outer_radius(pitch, teeth, clearance, interior),
r = _root_radius(pitch, teeth, clearance, interior),
twist = atan2(thickness*tan(helical),p),
rgn = [
spur_gear2d(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
hide = hide,
clearance = clearance,
backlash = backlash,
interior = interior
),
if (shaft_diam > 0) circle(d=shaft_diam, $fn=max(12,segs(shaft_diam/2)))
],
vnf = linear_sweep(rgn, height=thickness, center=true)
) reorient(anchor,spin,orient, h=thickness, r=p, p=vnf);
module spur_gear(
pitch = 3,
teeth = 11,
thickness = 6,
shaft_diam = 0,
hide = 0,
pressure_angle = 28,
clearance = undef,
backlash = 0.0,
helical = 0,
slices = 2,
interior = false,
mod,
anchor = CENTER,
spin = 0,
orient = UP
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
p = pitch_radius(pitch, teeth);
c = outer_radius(pitch, teeth, clearance, interior);
r = _root_radius(pitch, teeth, clearance, interior);
twist = atan2(thickness*tan(helical),p);
attachable(anchor,spin,orient, r=p, l=thickness) {
difference() {
linear_extrude(height=thickness, center=true, convexity=teeth/2, twist=twist) {
spur_gear2d(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
hide = hide,
clearance = clearance,
backlash = backlash,
interior = interior
);
}
if (shaft_diam > 0) {
cylinder(h=2*thickness+1, r=shaft_diam/2, center=true, $fn=max(12,segs(shaft_diam/2)));
}
}
children();
}
}
// Function&Module: spur_gear2d()
// Synopsis: Creates a 2D spur gear or internal ring gear.
// SynTags: Geom, Path
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As Module
// spur_gear2d(pitch, teeth, [hide=], [pressure_angle=], [clearance=], [backlash=], [interior=]) [ATTACHMENTS];
// spur_gear2d(mod=, teeth=, [hide=], [pressure_angle=], [clearance=], [backlash=], [interior=]) [ATTACHMENTS];
// Usage: As Function
// poly = spur_gear2d(pitch, teeth, [hide=], [pressure_angle=], [clearance=], [backlash=], [interior=]);
// poly = spur_gear2d(mod=, teeth=, [hide=], [pressure_angle=], [clearance=], [backlash=], [interior=]);
// Description:
// When called as a module, creates a 2D involute spur gear. When called as a function, returns a
// 2D path for the perimeter of a 2D involute spur gear. Normally, you should just specify the
// first 2 parameters `pitch` and `teeth`, and let the rest be default values.
// Meshing gears must match in `pitch`, `pressure_angle`, and `helical`, and be separated by
// the sum of their pitch radii, which can be found with `pitch_radius()`.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth around the spur gear.
// hide = Number of teeth to delete to make this only a fraction of a circle
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// interior = If true, create a mask for difference()ing from something else.
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Example(2D): Typical Gear Shape
// spur_gear2d(pitch=5, teeth=20);
// Example(2D): Metric Gear
// spur_gear2d(mod=2, teeth=20);
// Example(2D): Lower Pressure Angle
// spur_gear2d(pitch=5, teeth=20, pressure_angle=20);
// Example(2D): Partial Gear
// spur_gear2d(pitch=5, teeth=20, hide=15, pressure_angle=20);
// Example(2D): Called as a Function
// path = spur_gear2d(pitch=8, teeth=16);
// polygon(path);
function spur_gear2d(
pitch = 3,
teeth = 11,
hide = 0,
pressure_angle = 28,
clearance = undef,
backlash = 0.0,
interior = false,
mod,
anchor = CENTER,
spin = 0
) = let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
pr = pitch_radius(pitch=pitch, teeth=teeth),
tooth_profile = _gear_tooth_profile(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
clearance = clearance,
backlash = backlash,
interior = interior,
valleys = false
),
pts = concat(
[for (tooth = [0:1:teeth-hide-1])
each rot(tooth*360/teeth, p=tooth_profile)
],
hide>0? [[0,0]] : []
)
) reorient(anchor,spin, two_d=true, r=pr, p=pts);
module spur_gear2d(
pitch = 3,
teeth = 11,
hide = 0,
pressure_angle = 28,
clearance = undef,
backlash = 0.0,
interior = false,
mod,
anchor = CENTER,
spin = 0
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
path = spur_gear2d(
pitch = pitch,
teeth = teeth,
hide = hide,
pressure_angle = pressure_angle,
clearance = clearance,
backlash = backlash,
interior = interior
);
pr = pitch_radius(pitch=pitch, teeth=teeth);
attachable(anchor,spin, two_d=true, r=pr) {
polygon(path);
children();
}
}
// Function&Module: rack()
// Synopsis: Creates a straight or helical gear rack.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack2d(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
// rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=], [clearance=], [helical=]) [ATTACHMENTS];
// rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash]=, [clearance=], [helical=]) [ATTACHMENTS];
// Usage: As a Function
// vnf = rack(pitch, teeth, thickness, height, [pressure_angle=], [backlash=], [clearance=], [helical=]);
// vnf = rack(mod=, teeth=, thickness=, height=, [pressure_angle=], [backlash=], [clearance=], [helical=]);
// Description:
// This is used to create a 3D rack, which is a linear bar with teeth that a gear can roll along.
// A rack can mesh with any gear that has the same `pitch` and `pressure_angle`.
// When called as a function, returns a 3D [VNF](vnf.scad) for the rack.
// When called as a module, creates a 3D rack shape.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 20
// thickness = Thickness of rack in mm (affects each tooth). Default: 5
// height = Height of rack in mm, from tooth top to back of rack. Default: 10
// ---
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 28
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// helical = The angle of the rack teeth away from perpendicular to the rack length. Used to match helical spur gear pinions. Default: 0
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "adendum" = At the tips of the teeth, at the center of rack.
// "adendum-left" = At the tips of the teeth, at the left end of the rack.
// "adendum-right" = At the tips of the teeth, at the right end of the rack.
// "adendum-back" = At the tips of the teeth, at the back of the rack.
// "adendum-front" = At the tips of the teeth, at the front of the rack.
// "dedendum" = At the base of the teeth, at the center of rack.
// "dedendum-left" = At the base of the teeth, at the left end of the rack.
// "dedendum-right" = At the base of the teeth, at the right end of the rack.
// "dedendum-back" = At the base of the teeth, at the back of the rack.
// "dedendum-front" = At the base of the teeth, at the front of the rack.
// Example(VPR=[60,0,325],VPD=130):
// rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20);
// Example: Rack for Helical Gear
// rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20, helical=30);
// Example: Alternate Helical Gear
// rack(pitch=5, teeth=10, thickness=5, height=5, pressure_angle=20, helical=-30);
// Example: Metric Rack
// rack(mod=2, teeth=10, thickness=5, height=5, pressure_angle=20);
// Example(Anim,VPT=[0,0,12],VPD=100,Frames=6): Rack and Pinion
// teeth1 = 16; teeth2 = 16;
// pitch = 5; thick = 5; helical = 30;
// pr = pitch_radius(pitch=pitch, teeth=teeth2);
// right(pr*2*PI/teeth2*$t) rack(pitch=pitch, teeth=teeth1, thickness=thick, height=5, helical=helical);
// up(pr) yrot(186.5-$t*360/teeth2)
// spur_gear(pitch=pitch, teeth=teeth2, thickness=thick, helical=helical, shaft_diam=5, orient=BACK);
module rack(
pitch = 5,
teeth = 20,
thickness = 5,
height = 10,
pressure_angle = 28,
backlash = 0.0,
clearance,
helical=0,
mod,
anchor = CENTER,
spin = 0,
orient = UP
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
a = _adendum(pitch);
d = _dedendum(pitch, clearance);
l = teeth * pitch;
anchors = [
named_anchor("adendum", [0,0,a], BACK),
named_anchor("adendum-left", [-l/2,0,a], LEFT),
named_anchor("adendum-right", [ l/2,0,a], RIGHT),
named_anchor("adendum-front", [0,-thickness/2,a], DOWN),
named_anchor("adendum-back", [0, thickness/2,a], UP),
named_anchor("dedendum", [0,0,-d], BACK),
named_anchor("dedendum-left", [-l/2,0,-d], LEFT),
named_anchor("dedendum-right", [ l/2,0,-d], RIGHT),
named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN),
named_anchor("dedendum-back", [0, thickness/2,-d], UP),
];
attachable(anchor,spin,orient, size=[l, thickness, 2*abs(a-height)], anchors=anchors) {
skew(sxy=tan(helical)) xrot(90) {
linear_extrude(height=thickness, center=true, convexity=teeth*2) {
rack2d(
pitch = pitch,
teeth = teeth,
height = height,
pressure_angle = pressure_angle,
backlash = backlash,
clearance = clearance
);
}
}
children();
}
}
function rack(
pitch = 5,
teeth = 20,
thickness = 5,
height = 10,
pressure_angle = 28,
backlash = 0.0,
clearance,
helical=0,
mod,
anchor = CENTER,
spin = 0,
orient = UP
) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
a = _adendum(pitch),
d = _dedendum(pitch, clearance),
l = teeth * pitch,
anchors = [
named_anchor("adendum", [0,0,a], BACK),
named_anchor("adendum-left", [-l/2,0,a], LEFT),
named_anchor("adendum-right", [ l/2,0,a], RIGHT),
named_anchor("adendum-front", [0,-thickness/2,a], DOWN),
named_anchor("adendum-back", [0, thickness/2,a], UP),
named_anchor("dedendum", [0,0,-d], BACK),
named_anchor("dedendum-left", [-l/2,0,-d], LEFT),
named_anchor("dedendum-right", [ l/2,0,-d], RIGHT),
named_anchor("dedendum-front", [0,-thickness/2,-d], DOWN),
named_anchor("dedendum-back", [0, thickness/2,-d], UP),
],
path = rack2d(
pitch = pitch,
teeth = teeth,
height = height,
pressure_angle = pressure_angle,
backlash = backlash,
clearance = clearance
),
vnf = linear_sweep(path, height=thickness, anchor="origin", orient=FWD),
out = helical==0? vnf : skew(sxy=tan(helical), p=vnf)
) reorient(anchor,spin,orient, size=[l, thickness, 2*abs(a-height)], anchors=anchors, p=out);
// Function&Module: rack2d()
// Synopsis: Creates a 2D gear rack.
// SynTags: Geom, Path
// Topics: Gears, Parts
// See Also: rack(), spur_gear(), spur_gear2d(), bevel_gear()
// Usage: As a Module
// rack2d(pitch, teeth, height, [pressure_angle=], [backlash=], [clearance=]) [ATTACHMENTS];
// rack2d(mod=, teeth=, height=, [pressure_angle=], [backlash=], [clearance=]) [ATTACHMENTS];
// Usage: As a Function
// path = rack2d(pitch, teeth, height, [pressure_angle=], [backlash=], [clearance=]);
// path = rack2d(mod=, teeth=, height=, [pressure_angle=], [backlash=], [clearance=]);
// Description:
// This is used to create a 2D rack, which is a linear bar with teeth that a gear can roll along.
// A rack can mesh with any gear that has the same `pitch` and `pressure_angle`.
// When called as a function, returns a 2D path for the outline of the rack.
// When called as a module, creates a 2D rack shape.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = Total number of teeth along the rack
// height = Height of rack in mm, from tooth top to back of rack.
// ---
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees.
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Extra Anchors:
// "adendum" = At the tips of the teeth, at the center of rack.
// "adendum-left" = At the tips of the teeth, at the left end of the rack.
// "adendum-right" = At the tips of the teeth, at the right end of the rack.
// "dedendum" = At the height of the teeth, at the center of rack.
// "dedendum-left" = At the height of the teeth, at the left end of the rack.
// "dedendum-right" = At the height of the teeth, at the right end of the rack.
// Example(2D):
// rack2d(pitch=5, teeth=10, height=10, pressure_angle=20);
// Example(2D): Called as a Function
// path = rack2d(pitch=8, teeth=8, height=10, pressure_angle=28);
// polygon(path);
function rack2d(
pitch = 5,
teeth = 20,
height = 10,
pressure_angle = 28,
backlash = 0.0,
clearance = undef,
mod,
anchor = CENTER,
spin = 0
) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
a = _adendum(pitch),
d = _dedendum(pitch, clearance)
)
assert(a+d < height)
let(
xa = a * sin(pressure_angle),
xd = d * sin(pressure_angle),
l = teeth * pitch,
anchors = [
named_anchor("adendum", [ 0, a,0], BACK),
named_anchor("adendum-left", [-l/2, a,0], LEFT),
named_anchor("adendum-right", [ l/2, a,0], RIGHT),
named_anchor("dedendum", [ 0,-d,0], BACK),
named_anchor("dedendum-left", [-l/2,-d,0], LEFT),
named_anchor("dedendum-right", [ l/2,-d,0], RIGHT),
],
path = [
[-(teeth-1)/2 * pitch + -1/2 * pitch, a-height],
[-(teeth-1)/2 * pitch + -1/2 * pitch, -d],
for (i = [0:1:teeth-1]) let(
off = (i-(teeth-1)/2) * pitch
) each [
[off + -1/4 * pitch + backlash - xd, -d],
[off + -1/4 * pitch + backlash + xa, a],
[off + 1/4 * pitch - backlash - xa, a],
[off + 1/4 * pitch - backlash + xd, -d],
],
[ (teeth-1)/2 * pitch + 1/2 * pitch, -d],
[ (teeth-1)/2 * pitch + 1/2 * pitch, a-height],
]
) reorient(anchor,spin, two_d=true, size=[l,2*abs(a-height)], anchors=anchors, p=path);
module rack2d(
pitch = 5,
teeth = 20,
height = 10,
pressure_angle = 28,
backlash = 0.0,
clearance = undef,
mod,
anchor = CENTER,
spin = 0
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
a = _adendum(pitch);
d = _dedendum(pitch, clearance);
l = teeth * pitch;
anchors = [
named_anchor("adendum", [ 0, a,0], BACK),
named_anchor("adendum-left", [-l/2, a,0], LEFT),
named_anchor("adendum-right", [ l/2, a,0], RIGHT),
named_anchor("dedendum", [ 0,-d,0], BACK),
named_anchor("dedendum-left", [-l/2,-d,0], LEFT),
named_anchor("dedendum-right", [ l/2,-d,0], RIGHT),
];
path = rack2d(
pitch = pitch,
teeth = teeth,
height = height,
pressure_angle = pressure_angle,
backlash = backlash,
clearance = clearance
);
attachable(anchor,spin, two_d=true, size=[l, 2*abs(a-height)], anchors=anchors) {
polygon(path);
children();
}
}
// Function&Module: bevel_gear()
// Synopsis: Creates a straight or spiral bevel gear.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module
// bevel_gear(pitch, teeth, face_width, [pitch_angle=]|[mate_teeth=], [shaft_diam=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [interior=]);
// bevel_gear(mod=, teeth=, face_width=, [pitch_angle=]|[mate_teeth=], [shaft_diam=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [interior=]);
// Usage: As a Function
// vnf = bevel_gear(pitch, teeth, face_width, [pitch_angle=]|[mate_teeth=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [interior=]);
// vnf = bevel_gear(mod=, teeth=, face_width=, [pitch_angle=]|[mate_teeth=], [hide=], [pressure_angle=], [clearance=], [backlash=], [cutter_radius=], [spiral_angle=], [left_handed=], [slices=], [interior=]);
// Description:
// Creates a (potentially spiral) bevel gear. The module `bevel_gear()` gives a bevel gear, with
// reasonable defaults for all the parameters. Normally, you should just choose the first 4
// parameters, and let the rest be default values. In straight bevel gear sets, when each tooth
// engages it inpacts the corresponding tooth. The abrupt tooth engagement causes impact stress
// which makes them more prone to breakage. Spiral bevel gears have teeth formed along spirals so
// they engage more gradually, resulting in a less abrupt transfer of force, so they are quieter
// in operation and less likely to break.
// .
// The module `bevel_gear()` gives a gear in the XY
// plane, centered on the origin, with one tooth centered on the positive Y axis. The various
// functions below it take the same parameters, and return various measurements for the gear. The
// most important is `pitch_radius()`, which tells how far apart to space gears that are meshing,
// and `outer_radius()`, which gives the size of the region filled by the gear. A gear has a "pitch
// circle", which is an invisible circle that cuts through the middle of each tooth (though not the
// exact center). In order for two gears to mesh, their pitch circles should just touch. So the
// distance between their centers should be `pitch_radius()` for one, plus `pitch_radius()` for the
// other, which gives the radii of their pitch circles. In order for two gears to mesh, they must
// have the same `pitch` and `pressure_angle` parameters. `pitch` gives the number of millimeters of arc around
// the pitch circle covered by one tooth and one space between teeth. The `pressure_angle` controls how flat or
// bulged the sides of the teeth are. Common values include 14.5 degrees and 20 degrees, and
// occasionally 25. Though I've seen 28 recommended for plastic gears. Larger numbers bulge out
// more, giving stronger teeth, so 28 degrees is the default here. The ratio of `teeth` for two
// meshing gears gives how many times one will make a full revolution when the the other makes one
// full revolution. If the two numbers are coprime (i.e. are not both divisible by the same number
// greater than 1), then every tooth on one gear will meet every tooth on the other, for more even
// wear. So coprime numbers of teeth are good.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth around the entire perimeter. Default: 20
// face_width = Width of the toothed surface in mm, from inside to outside. Default: 10
// pitch_angle = Angle of beveled gear face. Default: 45
// mate_teeth = The number of teeth in the gear that this gear will mate with. Overrides `pitch_angle` if given.
// ---
// shaft_diam = Diameter of the hole in the center, in mm. Module use only. Default: 0 (no shaft hole)
// hide = Number of teeth to delete to make this only a fraction of a circle. Default: 0
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 28
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// cutter_radius = Radius of spiral arc for teeth. If 0, then gear will not be spiral. Default: 0
// spiral_angle = The base angle for spiral teeth. Default: 0
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
// slices = Number of vertical layers to divide gear into. Useful for refining gears with `spiral`. Default: 1
// interior = If true, create a mask for difference()ing from something else.
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Extra Anchors:
// "apex" = At the pitch cone apex for the bevel gear.
// "pitchbase" = At the natural height of the pitch radius of the beveled gear.
// "flattop" = At the top of the flat top of the bevel gear.
// Example: Beveled Gear
// bevel_gear(
// pitch=5, teeth=36, face_width=10, shaft_diam=5,
// pitch_angle=45, spiral_angle=0
// );
// Example: Spiral Beveled Gear and Pinion
// t1 = 16; t2 = 28;
// bevel_gear(
// pitch=5, teeth=t1, mate_teeth=t2,
// slices=12, anchor="apex", orient=FWD
// );
// bevel_gear(
// pitch=5, teeth=t2, mate_teeth=t1, left_handed=true,
// slices=12, anchor="apex", spin=180/t2
// );
// Example(Anim,Frames=4,VPD=175): Manual Spacing of Pinion and Gear
// t1 = 14; t2 = 28; pitch=5;
// back(pitch_radius(pitch=pitch, teeth=t2)) {
// yrot($t*360/t1)
// bevel_gear(
// pitch=pitch, teeth=t1, mate_teeth=t2, shaft_diam=5,
// slices=12, orient=FWD
// );
// }
// down(pitch_radius(pitch=pitch, teeth=t1)) {
// zrot($t*360/t2)
// bevel_gear(
// pitch=pitch, teeth=t2, mate_teeth=t1, left_handed=true,
// shaft_diam=5, slices=12, spin=180/t2
// );
// }
function bevel_gear(
pitch = 5,
teeth = 20,
face_width = 10,
pitch_angle = 45,
mate_teeth,
hide = 0,
pressure_angle = 20,
clearance = undef,
backlash = 0.0,
cutter_radius = 30,
spiral_angle = 35,
left_handed = false,
slices = 5,
interior = false,
mod,
anchor = "pitchbase",
spin = 0,
orient = UP
) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
slices = cutter_radius==0? 1 : slices,
pitch_angle = is_undef(mate_teeth)? pitch_angle : atan(teeth/mate_teeth),
pr = pitch_radius(pitch, teeth),
rr = _root_radius(pitch, teeth, clearance, interior),
pitchoff = (pr-rr) * sin(pitch_angle),
ocone_rad = opp_ang_to_hyp(pr, pitch_angle),
icone_rad = ocone_rad - face_width,
cutter_radius = cutter_radius==0? 1000 : cutter_radius,
midpr = (icone_rad + ocone_rad) / 2,
radcp = [0, midpr] + polar_to_xy(cutter_radius, 180+spiral_angle),
angC1 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=ocone_rad),
angC2 = law_of_cosines(a=cutter_radius, b=norm(radcp), c=icone_rad),
radcpang = v_theta(radcp),
sang = radcpang - (180-angC1),
eang = radcpang - (180-angC2),
profile = _gear_tooth_profile(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
clearance = clearance,
backlash = backlash,
interior = interior,
valleys = false,
center = true
),
verts1 = [
for (v = lerpn(0,1,slices+1)) let(
p = radcp + polar_to_xy(cutter_radius, lerp(sang,eang,v)),
ang = v_theta(p)-90,
dist = norm(p)
) [
let(
u = dist / ocone_rad,
m = up((1-u) * pr / tan(pitch_angle)) *
up(pitchoff) *
zrot(ang/sin(pitch_angle)) *
back(u * pr) *
xrot(pitch_angle) *
scale(u)
)
for (tooth=[0:1:teeth-1])
each apply(xflip() * zrot(360*tooth/teeth) * m, path3d(profile))
]
],
botz = verts1[0][0].z,
topz = last(verts1)[0].z,
thickness = abs(topz - botz),
cpz = (topz + botz) / 2,
vertices = [for (x=verts1) reverse(x)],
sides_vnf = vnf_vertex_array(vertices, caps=false, col_wrap=true, reverse=true),
top_verts = last(vertices),
bot_verts = vertices[0],
gear_pts = len(top_verts),
face_pts = gear_pts / teeth,
top_faces =[
for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-1]) each [
[i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2],
[i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1]
],
for (i=[0:1:teeth-1]) each [
[gear_pts, (i+1)*face_pts-1, i*face_pts],
[gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1]
]
],
vnf1 = vnf_join([
[
[each top_verts, [0,0,top_verts[0].z]],
top_faces
],
[
[each bot_verts, [0,0,bot_verts[0].z]],
[for (x=top_faces) reverse(x)]
],
sides_vnf
]),
lvnf = left_handed? vnf1 : xflip(p=vnf1),
vnf = down(cpz, p=lvnf),
anchors = [
named_anchor("pitchbase", [0,0,pitchoff-thickness/2]),
named_anchor("flattop", [0,0,thickness/2]),
named_anchor("apex", [0,0,hyp_ang_to_opp(ocone_rad,90-pitch_angle)+pitchoff-thickness/2])
]
) reorient(anchor,spin,orient, vnf=vnf, extent=true, anchors=anchors, p=vnf);
module bevel_gear(
pitch = 5,
teeth = 20,
face_width = 10,
pitch_angle = 45,
mate_teeth,
shaft_diam = 0,
hide = 0,
pressure_angle = 20,
clearance = undef,
backlash = 0.0,
cutter_radius = 30,
spiral_angle = 35,
left_handed = false,
slices = 5,
interior = false,
mod,
anchor = "pitchbase",
spin = 0,
orient = UP
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
slices = cutter_radius==0? 1 : slices;
pitch_angle = is_undef(mate_teeth)? pitch_angle : atan(teeth/mate_teeth);
pr = pitch_radius(pitch, teeth);
ipr = pr - face_width*sin(pitch_angle);
rr = _root_radius(pitch, teeth, clearance, interior);
pitchoff = (pr-rr) * sin(pitch_angle);
vnf = bevel_gear(
pitch = pitch,
teeth = teeth,
face_width = face_width,
pitch_angle = pitch_angle,
hide = hide,
pressure_angle = pressure_angle,
clearance = clearance,
backlash = backlash,
cutter_radius = cutter_radius,
spiral_angle = spiral_angle,
left_handed = left_handed,
slices = slices,
interior = interior,
anchor=CENTER
);
axis_zs = [for (p=vnf[0]) if(norm(point2d(p)) < EPSILON) p.z];
thickness = max(axis_zs) - min(axis_zs);
anchors = [
named_anchor("pitchbase", [0,0,pitchoff-thickness/2]),
named_anchor("flattop", [0,0,thickness/2]),
named_anchor("apex", [0,0,adj_ang_to_opp(pr,90-pitch_angle)+pitchoff-thickness/2])
];
attachable(anchor,spin,orient, r1=pr, r2=ipr, h=thickness, anchors=anchors) {
difference() {
vnf_polyhedron(vnf, convexity=teeth/2);
if (shaft_diam > 0) {
cylinder(h=2*thickness+1, r=shaft_diam/2, center=true, $fn=max(12,segs(shaft_diam/2)));
}
}
children();
}
}
// Function&Module: worm()
// Synopsis: Creates a worm that will mate with a worm gear.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module
// worm(pitch, d, l, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]);
// worm(mod=, d=, l=, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]);
// Usage: As a Function
// vnf = worm(pitch, d, l, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]);
// vnf = worm(mod=, d=, l=, [starts=], [left_handed=], [pressure_angle=], [backlash=], [clearance=]);
// Description:
// Creates a worm shape that can be matched to a worm gear.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// d = The diameter of the worm. Default: 30
// l = The length of the worm. Default: 100
// starts = The number of lead starts. Default: 1
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example:
// worm(pitch=8, d=30, l=50, $fn=72);
// Example: Multiple Starts.
// worm(pitch=8, d=30, l=50, starts=3, $fn=72);
// Example: Left Handed
// worm(pitch=8, d=30, l=50, starts=3, left_handed=true, $fn=72);
// Example: Called as Function
// vnf = worm(pitch=8, d=35, l=50, starts=2, left_handed=true, pressure_angle=20, $fn=72);
// vnf_polyhedron(vnf);
function worm(
pitch=5,
d=30, l=100,
starts=1,
left_handed=false,
pressure_angle=20,
backlash=0,
clearance,
mod,
anchor=CENTER,
spin=0,
orient=UP
) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
rack_profile = select(rack2d(
pitch = pitch,
teeth = starts,
height = d,
pressure_angle = pressure_angle,
backlash = backlash,
clearance = clearance
), 1, -2),
polars = [
for (i=idx(rack_profile)) let(
p = rack_profile[i],
a = 360 * p.x / pitch / starts
) [a, p.y + d/2]
],
maxang = 360 / segs(d/2),
refined_polars = [
for (i=idx(polars,e=-2)) let(
delta = polars[i+1].x - polars[i].x,
steps = ceil(delta/maxang),
step = delta/steps
) for (j = [0:1:steps-1])
[polars[i].x + j*step, lerp(polars[i].y,polars[i+1].y, j/steps)]
],
cross_sect = [ for (p = refined_polars) polar_to_xy(p.y, p.x) ],
revs = l/pitch/starts,
zsteps = ceil(revs*360/maxang),
zstep = l/zsteps,
astep = revs*360/zsteps,
profiles = [
for (i=[0:1:zsteps]) let(
z = i*zstep - l/2,
a = i*astep - 360*revs/2
)
apply(zrot(a)*up(z), path3d(cross_sect))
],
rprofiles = [ for (prof=profiles) reverse(prof) ],
vnf1 = vnf_vertex_array(rprofiles, caps=true, col_wrap=true, style="min_edge"),
vnf = left_handed? xflip(p=vnf1) : vnf1
) reorient(anchor,spin,orient, d=d, l=l, p=vnf);
module worm(
pitch=5,
d=15, l=100,
starts=1,
left_handed=false,
pressure_angle=20,
backlash=0,
clearance,
mod,
anchor=CENTER,
spin=0,
orient=UP
) {
vnf = worm(
pitch=pitch,
starts=starts,
d=d, l=l,
left_handed=left_handed,
pressure_angle=pressure_angle,
backlash=backlash,
clearance=clearance,
mod=mod
);
attachable(anchor,spin,orient, d=d, l=l) {
vnf_polyhedron(vnf, convexity=ceil(l/pitch)*2);
children();
}
}
// Function&Module: worm_gear()
// Synopsis: Creates a worm gear that will mate with a worm.
// SynTags: Geom, VNF
// Topics: Gears, Parts
// See Also: worm(), worm_gear(), rack(), rack2d(), spur_gear(), spur_gear2d(), bevel_pitch_angle(), bevel_gear()
// Usage: As a Module
// worm_gear(pitch, teeth, worm_diam, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=], [shaft_diam=]) [ATTACHMENTS];
// worm_gear(mod=, teeth=, worm_diam=, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=], [shaft_diam=]) [ATTACHMENTS];
// Usage: As a Function
// vnf = worm_gear(pitch, teeth, worm_diam, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=]);
// vnf = worm_gear(mod=, teeth=, worm_diam=, [worm_starts=], [worm_arc=], [crowning=], [left_handed=], [pressure_angle=], [backlash=], [clearance=], [slices=]);
// Description:
// Creates a worm gear to match with a worm.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 30
// worm_diam = The pitch diameter of the worm gear to match to. Default: 30
// worm_starts = The number of lead starts on the worm gear to match to. Default: 1
// worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees
// crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fit the work easier. Default: 1
// left_handed = If true, the gear returned will have a left-handed spiral. Default: false
// pressure_angle = Controls how straight or bulged the tooth sides are. In degrees. Default: 20
// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle. Default: 0
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// slices = The number of vertical slices to refine the curve of the worm throat. Default: 10
// mod = The metric module/modulus of the gear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example: Right-Handed
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=1);
// Example: Left-Handed
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=1, left_handed=true);
// Example: Multiple Starts
// worm_gear(pitch=5, teeth=36, worm_diam=30, worm_starts=4);
// Example: Metric Worm Gear
// worm_gear(mod=2, teeth=32, worm_diam=30, worm_starts=1);
// Example(Anim,Frames=4,FrameMS=125,VPD=220,VPT=[-15,0,0]): Meshing Worm and Gear
// $fn=36;
// pitch = 5; starts = 4;
// worm_diam = 30; worm_length = 50;
// gear_teeth=36;
// right(worm_diam/2)
// yrot($t*360/starts)
// worm(d=worm_diam, l=worm_length, pitch=pitch, starts=starts, orient=BACK);
// left(pitch_radius(pitch=pitch, teeth=gear_teeth))
// zrot(-$t*360/gear_teeth)
// worm_gear(pitch=pitch, teeth=gear_teeth, worm_diam=worm_diam, worm_starts=starts);
// Example: Meshing Worm and Gear Metricly
// $fn = 72;
// modulus = 2; starts = 3;
// worm_diam = 30; worm_length = 50;
// gear_teeth=36;
// right(worm_diam/2)
// worm(d=worm_diam, l=worm_length, mod=modulus, starts=starts, orient=BACK);
// left(pitch_radius(mod=modulus, teeth=gear_teeth))
// worm_gear(mod=modulus, teeth=gear_teeth, worm_diam=worm_diam, worm_starts=starts);
// Example: Called as Function
// vnf = worm_gear(pitch=8, teeth=30, worm_diam=30, worm_starts=1);
// vnf_polyhedron(vnf);
function worm_gear(
pitch = 5,
teeth = 36,
worm_diam = 30,
worm_starts = 1,
worm_arc = 60,
crowning = 1,
left_handed = false,
pressure_angle = 20,
backlash = 0,
clearance,
slices = 10,
mod,
anchor = CENTER,
spin = 0,
orient = UP
) =
assert(worm_arc >= 10 && worm_arc <= 60)
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
p = pitch_radius(pitch, teeth),
circ = 2 * PI * p,
r1 = p + worm_diam/2 + crowning,
r2 = worm_diam/2 + crowning,
thickness = worm_gear_thickness(pitch=pitch, teeth=teeth, worm_diam=worm_diam, worm_arc=worm_arc, crowning=crowning, clearance=clearance),
helical = pitch * worm_starts * worm_arc / 360 * 360 / circ,
tooth_profile = reverse(_gear_tooth_profile(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
clearance = clearance,
backlash = backlash,
valleys = false,
center = true
)),
profiles = [
for (slice = [0:1:slices]) let(
u = slice/slices - 0.5,
zang = u * worm_arc,
tp = [0,r1,0] - spherical_to_xyz(r2, 90, 90+zang),
zang2 = u * helical
) [
for (i = [0:1:teeth-1]) each
apply(
zrot(-i*360/teeth+zang2) *
move(tp) *
xrot(-zang) *
scale(cos(zang)),
path3d(tooth_profile)
)
]
],
top_verts = last(profiles),
bot_verts = profiles[0],
face_pts = len(tooth_profile),
gear_pts = face_pts * teeth,
top_faces =[
for (i=[0:1:teeth-1], j=[0:1:(face_pts/2)-2]) each [
[i*face_pts+j, (i+1)*face_pts-j-1, (i+1)*face_pts-j-2],
[i*face_pts+j, (i+1)*face_pts-j-2, i*face_pts+j+1]
],
for (i=[0:1:teeth-1]) each [
[gear_pts, (i+1)*face_pts-1, i*face_pts],
[gear_pts, ((i+1)%teeth)*face_pts, (i+1)*face_pts-1]
]
],
sides_vnf = vnf_vertex_array(profiles, caps=false, col_wrap=true, style="min_edge"),
vnf1 = vnf_join([
[
[each top_verts, [0,0,top_verts[0].z]],
[for (x=top_faces) reverse(x)]
],
[
[each bot_verts, [0,0,bot_verts[0].z]],
top_faces
],
sides_vnf
]),
vnf = left_handed? xflip(p=vnf1) : vnf1
) reorient(anchor,spin,orient, r=p, l=thickness, p=vnf);
module worm_gear(
pitch = 5,
teeth = 36,
worm_diam = 30,
worm_starts = 1,
worm_arc = 60,
crowning = 1,
left_handed = false,
pressure_angle = 20,
backlash = 0,
slices = 10,
clearance,
mod,
shaft_diam = 0,
anchor = CENTER,
spin = 0,
orient = UP
) {
pitch = is_undef(mod) ? pitch : pitch_value(mod);
p = pitch_radius(pitch, teeth);
vnf = worm_gear(
pitch = pitch,
teeth = teeth,
worm_diam = worm_diam,
worm_starts = worm_starts,
worm_arc = worm_arc,
crowning = crowning,
left_handed = left_handed,
pressure_angle = pressure_angle,
backlash = backlash,
slices = slices,
clearance = clearance
);
thickness = pointlist_bounds(vnf[0])[1].z;
attachable(anchor,spin,orient, r=p, l=thickness) {
difference() {
vnf_polyhedron(vnf, convexity=teeth/2);
if (shaft_diam > 0) {
cylinder(d=shaft_diam, l=worm_diam, center=true);
}
}
children();
}
}
/// Function&Module: _gear_tooth_profile()
/// Usage: As Module
/// _gear_tooth_profile(pitch|mod, teeth, [pressure_angle], [clearance], [backlash], [interior], [valleys]);
/// Usage: As Function
/// path = _gear_tooth_profile(pitch|mod, teeth, [pressure_angle], [clearance], [backlash], [interior], [valleys]);
/// Topics: Gears
/// See Also: spur_gear2d()
/// Description:
/// When called as a function, returns the 2D profile path for an individual gear tooth.
/// When called as a module, creates the 2D profile shape for an individual gear tooth.
/// Arguments:
/// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
/// teeth = Total number of teeth on the spur gear that this is a tooth for.
/// pressure_angle = Pressure Angle. Controls how straight or bulged the tooth sides are. In degrees.
/// clearance = Gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
/// backlash = Gap between two meshing teeth, in the direction along the circumference of the pitch circle
/// interior = If true, create a mask for difference()ing from something else.
/// valleys = If true, add the valley bottoms on either side of the tooth. Default: true
/// center = If true, centers the pitch circle of the tooth profile at the origin. Default: false.
/// mod = The metric module/modulus of the gear.
/// Example(2D):
/// _gear_tooth_profile(pitch=5, teeth=20, pressure_angle=20);
/// Example(2D): Metric Gear Tooth
/// _gear_tooth_profile(mod=2, teeth=20, pressure_angle=20);
/// Example(2D):
/// _gear_tooth_profile(
/// pitch=5, teeth=20, pressure_angle=20, valleys=false
/// );
/// Example(2D): As a function
/// path = _gear_tooth_profile(
/// pitch=5, teeth=20, pressure_angle=20, valleys=false
/// );
/// stroke(path, width=0.1);
function _gear_tooth_profile(
pitch = 3,
teeth = 11,
pressure_angle = 28,
clearance = undef,
backlash = 0.0,
interior = false,
valleys = true,
center = false,
mod
) = let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
p = pitch_radius(pitch, teeth),
c = outer_radius(pitch, teeth, clearance, interior),
r = _root_radius(pitch, teeth, clearance, interior),
b = _base_radius(pitch, teeth, pressure_angle),
t = pitch/2-backlash/2, //tooth thickness at pitch circle
k = -_gear_iang(b, p) - t/2/p/PI*180, //angle to where involute meets base circle on each side of tooth
kk = r<b? k : -180/teeth,
isteps = 5,
pts = [
if (valleys) each [
_gear_polar(r-1, 180.1/teeth),
_gear_polar(r, 180.1/teeth),
],
_gear_polar(r, -kk),
for (i=[0: 1:isteps]) _gear_q7(i/isteps,r,b,c,k,-1),
for (i=[isteps:-1:0]) _gear_q7(i/isteps,r,b,c,k, 1),
_gear_polar(r, kk),
if (valleys) each [
_gear_polar(r, -180.1/teeth),
_gear_polar(r-1, -180.1/teeth),
]
],
pts2 = center? fwd(p, p=pts) : pts
) pts2;
module _gear_tooth_profile(
pitch = 3,
teeth = 11,
pressure_angle = 28,
backlash = 0.0,
clearance = undef,
interior = false,
valleys = true,
center = false,
mod
) {
no_children($children);
pitch = is_undef(mod) ? pitch : pitch_value(mod);
r = _root_radius(pitch, teeth, clearance, interior);
fwd(r)
polygon(
points=_gear_tooth_profile(
pitch = pitch,
teeth = teeth,
pressure_angle = pressure_angle,
backlash = backlash,
clearance = clearance,
interior = interior,
valleys = valleys,
center = center
)
);
}
// Section: Computing Gear Dimensions
// These functions let the user find the derived dimensions of the gear.
// A gear fits within a circle of radius outer_radius, and two gears should have
// their centers separated by the sum of their pitch_radius.
// Function: circular_pitch()
// Synopsis: Returns tooth density expressed as "circular pitch".
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value()
// Usage:
// circp = circular_pitch(pitch);
// circp = circular_pitch(mod=);
// Description:
// Get tooth density expressed as "circular pitch".
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// mod = The metric module/modulus of the gear.
// Example:
// circp = circular_pitch(pitch=5);
// circp = circular_pitch(mod=2);
function circular_pitch(pitch=5, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
pitch;
// Function: diametral_pitch()
// Synopsis: Returns tooth density expressed as "diametral pitch".
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value()
// Usage:
// dp = diametral_pitch(pitch);
// dp = diametral_pitch(mod=);
// Description:
// Get tooth density expressed as "diametral pitch".
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// mod = The metric module/modulus of the gear.
// Example:
// dp = diametral_pitch(pitch=5);
// dp = diametral_pitch(mod=2);
function diametral_pitch(pitch=5, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
PI / pitch;
// Function: pitch_value()
// Synopsis: Returns circular pitch in mm from module/modulus.
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value()
// Usage:
// pitch = pitch_value(mod);
// Description:
// Get circular pitch in mm from module/modulus. The circular pitch of a gear is the number of
// millimeters per tooth around the pitch radius circle.
// Arguments:
// mod = The module/modulus of the gear.
function pitch_value(mod) = mod * PI;
// Function: module_value()
// Synopsis: Returns tooth density expressed as "module" or "modulus" in millimeters.
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value()
// Usage:
// mod = module_value(pitch);
// Description:
// Get tooth density expressed as "module" or "modulus" in millimeters. The module is the pitch
// diameter of the gear divided by the number of teeth on it. For example, a gear with a pitch
// diameter of 40mm, with 20 teeth on it will have a modulus of 2.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
function module_value(pitch=5) = pitch / PI;
/// Function: _adendum()
/// Usage:
/// ad = _adendum(pitch|mod);
/// Topics: Gears
/// Description:
/// The height of the top of a gear tooth above the pitch radius circle.
/// Arguments:
/// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
/// mod = The metric module/modulus of the gear.
/// Example:
/// ad = _adendum(pitch=5);
/// ad = _adendum(mod=2);
/// Example(2D):
/// pitch = 5; teeth = 17;
/// pr = pitch_radius(pitch=pitch, teeth=teeth);
/// adn = _adendum(pitch=5);
/// #spur_gear2d(pitch=pitch, teeth=teeth);
/// color("black") {
/// stroke(circle(r=pr),width=0.1,closed=true);
/// stroke(circle(r=pr+adn),width=0.1,closed=true);
/// }
function _adendum(pitch=5, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
module_value(pitch) * 1.0;
/// Function: _dedendum()
/// Usage:
/// ddn = _dedendum(pitch|mod, [clearance]);
/// Topics: Gears
/// Description:
/// The depth of the gear tooth valley, below the pitch radius.
/// Arguments:
/// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
/// clearance = If given, sets the clearance between meshing teeth.
/// mod = The metric module/modulus of the gear.
/// Example:
/// ddn = _dedendum(pitch=5);
/// ddn = _dedendum(mod=2);
/// Example(2D):
/// pitch = 5; teeth = 17;
/// pr = pitch_radius(pitch=pitch, teeth=teeth);
/// ddn = _dedendum(pitch=5);
/// #spur_gear2d(pitch=pitch, teeth=teeth);
/// color("black") {
/// stroke(circle(r=pr),width=0.1,closed=true);
/// stroke(circle(r=pr-ddn),width=0.1,closed=true);
/// }
function _dedendum(pitch=5, clearance, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
is_undef(clearance)? (1.25 * module_value(pitch)) :
(module_value(pitch) + clearance);
// Function: pitch_radius()
// Synopsis: Returns the pitch radius for a gear.
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value(), outer_radius()
// Usage:
// pr = pitch_radius(pitch, teeth);
// pr = pitch_radius(mod=, teeth=);
// Description:
// Calculates the pitch radius for the gear. Two mated gears will have their centers spaced apart
// by the sum of the two gear's pitch radii.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
// mod = The metric module/modulus of the gear.
// Example:
// pr = pitch_radius(pitch=5, teeth=11);
// pr = pitch_radius(mod=2, teeth=20);
// Example(2D):
// pr = pitch_radius(pitch=5, teeth=11);
// #spur_gear2d(pitch=5, teeth=11);
// color("black")
// stroke(circle(r=pr),width=0.1,closed=true);
function pitch_radius(pitch=5, teeth=11, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
pitch * teeth / PI / 2;
// Function: outer_radius()
// Synopsis: Returns the outer radius for a gear.
// Topics: Gears, Parts
// See Also: spur_gear(), diametral_pitch(), circular_pitch(), pitch_value(), module_value(), pitch_radius(), outer_radius()
// Usage:
// or = outer_radius(pitch, teeth, [clearance=], [interior=]);
// or = outer_radius(mod=, teeth=, [clearance=], [interior=]);
// Description:
// Calculates the outer radius for the gear. The gear fits entirely within a cylinder of this radius.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
// teeth = The number of teeth on the gear.
// clearance = If given, sets the clearance between meshing teeth.
// interior = If true, calculate for an interior gear.
// mod = The metric module/modulus of the gear.
// Example:
// or = outer_radius(pitch=5, teeth=20);
// or = outer_radius(mod=2, teeth=16);
// Example(2D):
// pr = outer_radius(pitch=5, teeth=11);
// #spur_gear2d(pitch=5, teeth=11);
// color("black")
// stroke(circle(r=pr),width=0.1,closed=true);
function outer_radius(pitch=5, teeth=11, clearance, interior=false, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
pitch_radius(pitch, teeth) +
(interior? _dedendum(pitch, clearance) : _adendum(pitch));
/// Function: _root_radius()
/// Usage:
/// rr = _root_radius(pitch|mod, teeth, [clearance], [interior]);
/// Topics: Gears
/// Description:
/// Calculates the root radius for the gear, at the base of the dedendum.
/// Arguments:
/// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
/// teeth = The number of teeth on the gear.
/// clearance = If given, sets the clearance between meshing teeth.
/// interior = If true, calculate for an interior gear.
/// mod = The metric module/modulus of the gear.
/// Example:
/// rr = _root_radius(pitch=5, teeth=11);
/// rr = _root_radius(mod=2, teeth=16);
/// Example(2D):
/// pr = _root_radius(pitch=5, teeth=11);
/// #spur_gear2d(pitch=5, teeth=11);
/// color("black")
/// stroke(circle(r=pr),width=0.1,closed=true);
function _root_radius(pitch=5, teeth=11, clearance, interior=false, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
pitch_radius(pitch, teeth) -
(interior? _adendum(pitch) : _dedendum(pitch, clearance));
/// Function: _base_radius()
/// Usage:
/// br = _base_radius(pitch|mod, teeth, [pressure_angle]);
/// Topics: Gears
/// Description:
/// Get the base circle for involute teeth, at the base of the teeth.
/// Arguments:
/// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm.
/// teeth = The number of teeth on the gear.
/// pressure_angle = Pressure angle in degrees. Controls how straight or bulged the tooth sides are.
/// mod = The metric module/modulus of the gear.
/// Example:
/// br = _base_radius(pitch=5, teeth=20, pressure_angle=20);
/// br = _base_radius(mod=2, teeth=18, pressure_angle=20);
/// Example(2D):
/// pr = _base_radius(pitch=5, teeth=11);
/// #spur_gear2d(pitch=5, teeth=11);
/// color("black")
/// stroke(circle(r=pr),width=0.1,closed=true);
function _base_radius(pitch=5, teeth=11, pressure_angle=28, mod) =
let( pitch = is_undef(mod) ? pitch : pitch_value(mod) )
pitch_radius(pitch, teeth) * cos(pressure_angle);
// Function: bevel_pitch_angle()
// Synopsis: Returns the pitch cone angle for a bevel gear.
// Topics: Gears, Parts
// See Also: bevel_gear(), pitch_radius(), outer_radius()
// Usage:
// ang = bevel_pitch_angle(teeth, mate_teeth, [drive_angle=]);
// Description:
// Returns the correct pitch cone angle for a bevel gear with a given number of teeth, that is
// matched to another bevel gear with a (possibly different) number of teeth.
// Arguments:
// teeth = Number of teeth that this gear has.
// mate_teeth = Number of teeth that the matching gear has.
// drive_angle = Angle between the drive shafts of each gear. Default: 90º.
// Example:
// ang = bevel_pitch_angle(teeth=18, mate_teeth=30);
// Example(2D):
// t1 = 13; t2 = 19; pitch=5;
// pang = bevel_pitch_angle(teeth=t1, mate_teeth=t2, drive_angle=90);
// color("black") {
// zrot_copies([0,pang])
// stroke([[0,0,0], [0,-20,0]],width=0.2);
// stroke(arc(r=3, angle=[270,270+pang]),width=0.2);
// }
// #bevel_gear(
// pitch=5, teeth=t1, mate_teeth=t2,
// spiral_angle=0, cutter_radius=1000,
// slices=12, anchor="apex", orient=BACK
// );
function bevel_pitch_angle(teeth, mate_teeth, drive_angle=90) =
atan(sin(drive_angle)/((mate_teeth/teeth)+cos(drive_angle)));
// Function: worm_gear_thickness()
// Synopsis: Returns the thickness for a worm gear.
// Topics: Gears, Parts
// See Also: worm(), worm_gear(), pitch_radius(), outer_radius()
// Usage:
// thick = worm_gear_thickness(pitch, teeth, worm_diam, [worm_arc=], [crowning=], [clearance=]);
// thick = worm_gear_thickness(mod=, teeth=, worm_diam=, [worm_arc=], [crowning=], [clearance=]);
// Description:
// Calculate the thickness of the worm gear.
// Arguments:
// pitch = The circular pitch, or distance between teeth around the pitch circle, in mm. Default: 5
// teeth = Total number of teeth along the rack. Default: 30
// worm_diam = The pitch diameter of the worm gear to match to. Default: 30
// worm_arc = The arc of the worm to mate with, in degrees. Default: 60 degrees
// crowning = The amount to oversize the virtual hobbing cutter used to make the teeth, to add a slight crowning to the teeth to make them fit the work easier. Default: 1
// clearance = Clearance gap at the bottom of the inter-tooth valleys.
// mod = The metric module/modulus of the gear.
// Example:
// thick = worm_gear_thickness(pitch=5, teeth=36, worm_diam=30);
// thick = worm_gear_thickness(mod=2, teeth=28, worm_diam=25);
// Example(2D):
// pitch = 5; teeth=17;
// worm_diam = 30; starts=2;
// y = worm_gear_thickness(pitch=pitch, teeth=teeth, worm_diam=worm_diam);
// #worm_gear(
// pitch=pitch, teeth=teeth,
// worm_diam=worm_diam,
// worm_starts=starts,
// orient=BACK
// );
// color("black") {
// ycopies(y) stroke([[-25,0],[25,0]], width=0.5);
// stroke([[-20,-y/2],[-20,y/2]],width=0.5,endcaps="arrow");
// }
function worm_gear_thickness(pitch=5, teeth=30, worm_diam=30, worm_arc=60, crowning=1, clearance, mod) =
let(
pitch = is_undef(mod) ? pitch : pitch_value(mod),
r = worm_diam/2 + crowning,
pitch_thick = r * sin(worm_arc/2) * 2,
pr = pitch_radius(pitch, teeth),
rr = _root_radius(pitch, teeth, clearance, false),
pitchoff = (pr-rr) * sin(worm_arc/2),
thickness = pitch_thick + 2*pitchoff
) thickness;
function _gear_polar(r,t) = r*[sin(t),cos(t)];
function _gear_iang(r1,r2) = sqrt((r2/r1)*(r2/r1) - 1)/PI*180 - acos(r1/r2); //unwind a string this many degrees to go from radius r1 to radius r2
function _gear_q6(b,s,t,d) = _gear_polar(d,s*(_gear_iang(b,d)+t)); //point at radius d on the involute curve
function _gear_q7(f,r,b,r2,t,s) = _gear_q6(b,s,t,(1-f)*max(b,r)+f*r2); //radius a fraction f up the curved side of the tooth
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap