BOSL2/joiners.scad
Adrian Mariano 7db17614bb doc tweak
2024-11-04 20:30:46 -05:00

1383 lines
66 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: joiners.scad
// Modules for joining separately printed parts including screw together, snap-together and dovetails.
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/joiners.scad>
// FileGroup: Parts
// FileSummary: Joiner shapes for connecting separately printed objects.
//////////////////////////////////////////////////////////////////////
include <rounding.scad>
// Section: Half Joiners
// Function&Module: half_joiner_clear()
// Synopsis: Creates a mask to clear space for a {{half_joiner()}}.
// SynTags: Geom, VNF
// Topics: Joiners, Parts
// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
// Usage: As Module
// half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS];
// Usage: As Function
// vnf = half_joiner_clear(l, w, [ang=], [clearance=], [overlap=]);
// Description:
// Creates a mask to clear an area so that a half_joiner can be placed there.
// Arguments:
// l = Length of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// ang = Overhang angle of the joiner.
// ---
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example:
// half_joiner_clear();
function half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) =
let(
guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3],
path = [
[ l/2,-overlap], [ guide.z/2, -guide.y/2-overlap],
[-guide.z/2, -guide.y/2-overlap], [-l/2,-overlap],
[-l/2, overlap], [-guide.z/2, guide.y/2+overlap],
[ guide.z/2, guide.y/2+overlap], [ l/2, overlap],
],
dpath = deduplicate(path, closed=true),
vnf = linear_sweep(dpath, height=w+clearance*2, center=true, spin=90, orient=RIGHT)
) reorient(anchor,spin,orient, vnf=vnf, p=vnf);
module half_joiner_clear(l=20, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
vnf = half_joiner_clear(l=l, w=w, ang=ang, clearance=clearance, overlap=overlap);
attachable(anchor,spin,orient, vnf=vnf) {
vnf_polyhedron(vnf, convexity=2);
children();
}
}
// Function&Module: half_joiner()
// Synopsis: Creates a half-joiner shape to mate with a {{half_joiner2()}} shape..
// SynTags: Geom, VNF
// Topics: Joiners, Parts
// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
// Usage: As Module
// half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]) [ATTACHMENTS];
// Usage: As Function
// vnf = half_joiner(l, w, [base=], [ang=], [screwsize=], [$slop=]);
// Description:
// Creates a half_joiner object that can be attached to a matching half_joiner2 object.
// Arguments:
// l = Length of the half_joiner.
// w = Width of the half_joiner.
// ---
// base = Length of the backing to the half_joiner.
// ang = Overhang angle of the half_joiner.
// screwsize = If given, diameter of screwhole.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples(FlatSpin,VPD=75):
// half_joiner(screwsize=3);
// half_joiner(l=20,w=10,base=10);
// Example(3D):
// diff()
// cuboid(40)
// attach([FWD,TOP,RIGHT])
// xcopies(20) half_joiner();
function half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
let(
guide = [w/3-get_slop()*2, ang_adj_to_opp(ang, l/3)*2, l/3],
snap_h = 1,
snap = [guide.x+snap_h, 2*snap_h, l*0.6],
slope = guide.z/2/(w/8),
snap_top = slope * (snap.x-guide.x)/2,
verts = [
[-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2],
[-w/2, 0,-l/2],
[-w/2,-guide.y/2,-guide.z/2],
[-w/2,-guide.y/2, guide.z/2],
[-w/2, 0,l/2],
[ w/2, 0,l/2],
[ w/2,-guide.y/2, guide.z/2],
[ w/2,-guide.y/2,-guide.z/2],
[ w/2, 0,-l/2],
[-guide.x/2, 0,-l/2],
[-guide.x/2,-guide.y/2,-guide.z/2],
[-guide.x/2-w/8,-guide.y/2, 0],
[-guide.x/2,-guide.y/2, guide.z/2],
[-guide.x/2, 0,l/2],
[ guide.x/2, 0,l/2],
[ guide.x/2,-guide.y/2, guide.z/2],
[ guide.x/2+w/8,-guide.y/2, 0],
[ guide.x/2,-guide.y/2,-guide.z/2],
[ guide.x/2, 0,-l/2],
[-w/6, -snap.y/2, -snap.z/2],
[-w/6, -snap.y/2, -guide.z/2],
[-snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)],
[-w/6, snap.y/2, -guide.z/2],
[-w/6, snap.y/2, -snap.z/2],
[-snap.x/2, 0, snap_top-snap.z/2],
[-w/6, -snap.y/2, snap.z/2],
[-w/6, -snap.y/2, guide.z/2],
[-snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)],
[-w/6, snap.y/2, guide.z/2],
[-w/6, snap.y/2, snap.z/2],
[-snap.x/2, 0, snap.z/2-snap_top],
[ w/6, -snap.y/2, snap.z/2],
[ w/6, -snap.y/2, guide.z/2],
[ snap.x/2, 0, max(guide.z/2-snap_top, default(screwsize,0)*1.1/2)],
[ w/6, snap.y/2, guide.z/2],
[ w/6, snap.y/2, snap.z/2],
[ snap.x/2, 0, snap.z/2-snap_top],
[ w/6, -snap.y/2, -snap.z/2],
[ w/6, -snap.y/2, -guide.z/2],
[ snap.x/2, 0, min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2)],
[ w/6, snap.y/2, -guide.z/2],
[ w/6, snap.y/2, -snap.z/2],
[ snap.x/2, 0, snap_top-snap.z/2],
[-w/6, guide.y/2, -guide.z/2],
[-guide.x/2-w/8, guide.y/2, 0],
[-w/6, guide.y/2, guide.z/2],
[ w/6, guide.y/2, guide.z/2],
[ guide.x/2+w/8, guide.y/2, 0],
[ w/6, guide.y/2, -guide.z/2],
if (screwsize != undef) each [
for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)],
for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)],
]
],
faces = [
[0,1,2], [2,3,0],
[0,4,5], [0,5,6], [0,6,1], [1,6,7],
[3,10,11], [3,9,10], [2,9,3], [2,8,9],
[1,7,16], [1,16,17], [1,17,8], [1,8,2],
[0,3,11], [0,11,21], [0,21,12], [0,12,4],
[10,20,11], [20,21,11],
[12,13,5], [12,5,4],
[9,8,18], [17,18,8],
[6,16,7], [6,15,16],
[19,10,9], [19,9,18], [19,20,10],
[6,14,15], [6,5,14], [5,13,14],
[24,26,25], [26,24,27],
[22,27,24], [22,24,23],
[22,26,27],
[30,32,33], [30,31,32],
[30,33,28], [30,28,29],
[32,28,33],
[40,41,42], [40,42,45],
[45,42,43], [43,44,45],
[40,45,44],
[36,38,37], [36,39,38],
[36,35,34], [36,34,39],
[39,34,38],
[12,26,22], [12,22,13], [22,23,13], [12,46,26], [46,25,26],
[16,28,32], [16,15,28], [15,29,28], [48,16,32], [32,31,48],
[17,38,34], [17,34,18], [18,34,35], [49,38,17], [37,38,49],
[21,40,44], [51,21,44], [43,51,44], [20,40,21], [20,41,40],
[17,16,49], [49,16,48],
[21,51,46], [46,12,21],
[51,50,49], [48,47,46], [46,51,49], [46,49,48],
if (screwsize == undef) each [
[19,36,50], [19,35,36], [19,18,35], [36,37,50], [49,50,37],
[19,50,42], [19,42,41], [41,20,19], [50,43,42], [50,51,43],
[14,24,47], [14,23,24], [14,13,23], [47,24,25], [46,47,25],
[47,30,14], [14,30,29], [14,29,15], [47,31,30], [47,48,31],
] else each [
[20,19,56], [20,56,57], [20,57,58], [41,58,42], [20,58,41],
[50,51,52], [51,59,52], [51,58,59], [43,42,58], [51,43,58],
[49,50,52], [49,52,53], [49,53,54], [37,54,36], [49,54,37],
[56,19,18], [18,55,56], [18,54,55], [35,36,54], [18,35,54],
[14,64,15], [15,64,63], [15,63,62], [29,62,30], [15,62,29],
[48,31,62], [31,30,62], [48,62,61], [48,61,60], [60,47,48],
[13,23,66], [23,24,66], [13,66,65], [13,65,64], [64,14,13],
[46,47,60], [46,60,67], [46,67,66], [46,66,25], [66,24,25],
for (i=[0:7]) let(b=52) [b+i, b+8+i, b+8+(i+1)%8],
for (i=[0:7]) let(b=52) [b+i, b+8+(i+1)%8, b+(i+1)%8],
],
],
pvnf = [verts, faces],
vnf = xrot(90, p=pvnf)
) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf);
module half_joiner(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
{
vnf = half_joiner(l=l, w=w, base=base, ang=ang, screwsize=screwsize);
if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
half_joiner_clear(l=l, w=w, ang=ang, clearance=1);
union();
}
} else {
attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") {
vnf_polyhedron(vnf, convexity=12);
children();
}
}
}
// Function&Module: half_joiner2()
// Synopsis: Creates a half_joiner2 shape to mate with a {{half_joiner()}} shape..
// SynTags: Geom, VNF
// Topics: Joiners, Parts
// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
// Usage: As Module
// half_joiner2(l, w, [base=], [ang=], [screwsize=])
// Usage: As Function
// vnf = half_joiner2(l, w, [base=], [ang=], [screwsize=])
// Description:
// Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments:
// l = Length of the half_joiner.
// w = Width of the half_joiner.
// ---
// base = Length of the backing to the half_joiner.
// ang = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Examples(FlatSpin,VPD=75):
// half_joiner2(screwsize=3);
// half_joiner2(w=10,base=10,l=20);
// Example(3D):
// diff()
// cuboid(40)
// attach([FWD,TOP,RIGHT])
// xcopies(20) half_joiner2();
function half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) =
let(
guide = [w/3, ang_adj_to_opp(ang, l/3)*2, l/3],
snap_h = 1,
snap = [guide.x+snap_h, 2*snap_h, l*0.6],
slope = guide.z/2/(w/8),
snap_top = slope * (snap.x-guide.x)/2,
s1 = min(snap_top-guide.z/2,-default(screwsize,0)*1.1/2),
s2 = max(guide.z/2-snap_top, default(screwsize,0)*1.1/2),
verts = [
[-w/2,-base,-l/2], [-w/2,-base,l/2], [w/2,-base,l/2], [w/2,-base,-l/2],
[-w/2, 0,-l/2],
[-w/2, guide.y/2,-guide.z/2],
[-w/2, guide.y/2, guide.z/2],
[-w/2, 0,l/2],
[ w/2, 0,l/2],
[ w/2, guide.y/2, guide.z/2],
[ w/2, guide.y/2,-guide.z/2],
[ w/2, 0,-l/2],
[-guide.x/2, 0,-l/2],
[-guide.x/2,-guide.y/2,-guide.z/2],
[-guide.x/2-w/8,-guide.y/2, 0],
[-guide.x/2,-guide.y/2, guide.z/2],
[-guide.x/2, 0,l/2],
[ guide.x/2, 0,l/2],
[ guide.x/2,-guide.y/2, guide.z/2],
[ guide.x/2+w/8,-guide.y/2, 0],
[ guide.x/2,-guide.y/2,-guide.z/2],
[ guide.x/2, 0,-l/2],
[-w/6, -snap.y/2, -snap.z/2],
[-w/6, -snap.y/2, -guide.z/2],
[-snap.x/2, 0, s1],
[-w/6, snap.y/2, -guide.z/2],
[-w/6, snap.y/2, -snap.z/2],
[-snap.x/2, 0, snap_top-snap.z/2],
[-w/6, -snap.y/2, snap.z/2],
[-w/6, -snap.y/2, guide.z/2],
[-snap.x/2, 0, s2],
[-w/6, snap.y/2, guide.z/2],
[-w/6, snap.y/2, snap.z/2],
[-snap.x/2, 0, snap.z/2-snap_top],
[ w/6, -snap.y/2, snap.z/2],
[ w/6, -snap.y/2, guide.z/2],
[ snap.x/2, 0, s2],
[ w/6, snap.y/2, guide.z/2],
[ w/6, snap.y/2, snap.z/2],
[ snap.x/2, 0, snap.z/2-snap_top],
[ w/6, -snap.y/2, -snap.z/2],
[ w/6, -snap.y/2, -guide.z/2],
[ snap.x/2, 0, s1],
[ w/6, snap.y/2, -guide.z/2],
[ w/6, snap.y/2, -snap.z/2],
[ snap.x/2, 0, snap_top-snap.z/2],
[-w/6, guide.y/2, -guide.z/2],
[-guide.x/2-w/8, guide.y/2, 0],
[-w/6, guide.y/2, guide.z/2],
[ w/6, guide.y/2, guide.z/2],
[ guide.x/2+w/8, guide.y/2, 0],
[ w/6, guide.y/2, -guide.z/2],
if (screwsize != undef) each [
for (a = [0:45:359]) [guide.x/2+w/8, 0, 0] + screwsize * 1.1 / 2 * [-abs(sin(a))/slope, cos(a), sin(a)],
for (a = [0:45:359]) [-(guide.x/2+w/8), 0, 0] + screwsize * 1.1 / 2 * [abs(sin(a))/slope, cos(a), sin(a)],
for (a = [0:45:359]) [w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)],
for (a = [0:45:359]) [-w/2, 0, 0] + screwsize * 1.1 / 2 * [0, cos(a), sin(a)],
]
],
faces = [
[0,1,2], [2,3,0],
[1,7,16], [1,16,17], [1,17,8], [1,8,2],
[0,3,11], [0,11,21], [0,21,12], [0,12,4],
[10,51,11], [51,21,11],
[12,46,5], [12,5,4],
[9,8,49], [17,49,8],
[6,16,7], [6,48,16],
[50,10,9], [50,9,49], [50,51,10],
[6,47,48], [6,5,47], [5,46,47],
[24,25,26], [26,27,24],
[22,24,27], [22,23,24],
[22,27,26],
[30,33,32], [30,32,31],
[30,28,33], [30,29,28],
[32,33,28],
[40,42,41], [40,45,42],
[45,43,42], [43,45,44],
[40,44,45],
[36,37,38], [36,38,39],
[36,34,35], [36,39,34],
[39,38,34],
[12,22,26], [12,13,22], [22,13,23], [12,26,46], [46,26,25],
[16,32,28], [16,28,15], [15,28,29], [48,32,16], [32,48,31],
[17,34,38], [17,18,34], [18,35,34], [49,17,38], [37,49,38],
[21,44,40], [51,44,21], [43,44,51], [20,21,40], [20,40,41],
[17,16,18], [18,16,15],
[21,20,13], [13,12,21],
[20,19,18], [15,14,13], [13,20,18], [13,18,15],
if (screwsize == undef) each [
[0,4,5], [0,5,6], [0,6,1], [1,6,7],
[3,10,11], [3,9,10], [2,9,3], [2,8,9],
[19,50,36], [19,36,35], [19,35,18], [36,50,37], [49,37,50],
[19,42,50], [19,41,42], [41,19,20], [50,42,43], [50,43,51],
[14,47,24], [14,24,23], [14,23,13], [47,25,24], [46,25,47],
[47,14,30], [14,29,30], [14,15,29], [47,30,31], [47,31,48],
] else each [
[3,2,72], [2,71,72], [2,70,71], [2,8,70],
[8,9,70], [9,69,70], [9,68,69], [9,10,68],
[10,75,68], [10,74,75], [10,11,74],
[3,72,73], [3,73,74], [3,74,11],
[1,0,80], [0,81,80], [0,82,81], [0,4,82],
[4,5,82], [5,83,82], [5,76,83], [5,6,76],
[6,77,76], [6,78,77], [6,7,78],
[7,1,78], [1,79,78], [1,80,79],
[20,56,19], [20,57,56], [20,41,57], [41,58,57], [41,42,58],
[50,52,51], [51,52,59], [43,59,58], [43,58,42], [51,59,43],
[49,52,50], [49,53,52], [49,37,53], [37,36,54], [54,53,37],
[56,18,19], [18,56,55], [18,55,35], [35,55,54], [36,35,54],
[14,15,64], [15,63,64], [15,29,63], [29,62,63], [29,30,62],
[31,48,61], [31,61,62], [30,31,62], [48,60,61], [60,48,47],
[23,13,65], [65,66,23], [24,23,66], [13,64,65], [64,13,14],
[46,60,47], [46,67,60], [46,25,67], [66,67,25], [25,24,66],
for (i=[0:7]) let(b=52) each [
[b+i, b+16+(i+1)%8, b+16+i],
[b+i, b+(i+1)%8, b+16+(i+1)%8],
],
for (i=[0:7]) let(b=60) each [
[b+i, b+16+i, b+16+(i+1)%8],
[b+i, b+16+(i+1)%8, b+(i+1)%8],
],
],
],
verts2 = [
for (i = idx(verts))
!approx(s2, verts[54].z)? verts[i] :
i==54? [ snap.x/2-0.01, verts[i].y, verts[i].z] :
i==58? [ snap.x/2-0.01, verts[i].y, verts[i].z] :
i==62? [-snap.x/2+0.01, verts[i].y, verts[i].z] :
i==66? [-snap.x/2+0.01, verts[i].y, verts[i].z] :
verts[i]
],
pvnf = [verts2, faces],
vnf = xrot(90, p=pvnf)
) reorient(anchor,spin,orient, size=[w,l,base*2], p=vnf);
module half_joiner2(l=20, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
{
vnf = half_joiner2(l=l, w=w, base=base, ang=ang, screwsize=screwsize);
if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
half_joiner_clear(l=l, w=w, ang=ang, clearance=1);
union();
}
} else {
attachable(anchor,spin,orient, size=[w,base*2,l], $tag="keep") {
vnf_polyhedron(vnf, convexity=12);
children();
}
}
}
// Section: Full Joiners
// Module: joiner_clear()
// Synopsis: Creates a mask to clear space for a {{joiner()}} shape.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
// Description:
// Creates a mask to clear an area so that a joiner can be placed there.
// Usage:
// joiner_clear(l, w, [ang=], [clearance=], [overlap=]) [ATTACHMENTS];
// Arguments:
// l = Length of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// ang = Overhang angle of the joiner.
// ---
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example:
// joiner_clear();
function joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP) = no_function("joiner_clear");
module joiner_clear(l=40, w=10, ang=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
{
dmnd_height = l*0.5;
dmnd_width = dmnd_height*tan(ang);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(ang);
attachable(anchor,spin,orient, size=[w, guide_width, l]) {
union() {
back(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=clearance);
fwd(l/4) half_joiner_clear(l=l/2+0.01, w=w, ang=ang, overlap=overlap, clearance=-0.01);
}
children();
}
}
// Module: joiner()
// Synopsis: Creates a joiner shape that can mate with another rotated joiner shape.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: half_joiner_clear(), half_joiner(), half_joiner2(), joiner_clear(), joiner(), snap_pin(), rabbit_clip(), dovetail()
// Usage:
// joiner(l, w, base, [ang=], [screwsize=], [$slop=]) [ATTACHMENTS];
// Description:
// Creates a joiner object that can be attached to another joiner object.
// Arguments:
// l = Length of the joiner.
// w = Width of the joiner.
// base = Length of the backing to the joiner.
// ang = Overhang angle of the joiner.
// ---
// screwsize = If given, diameter of screwhole.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// $slop = Printer specific slop value to make parts fit more closely.
// Examples(FlatSpin,VPD=125):
// joiner(screwsize=3);
// joiner(l=40, w=10, base=10);
// Example(3D):
// diff()
// cuboid(50)
// attach([FWD,TOP,RIGHT])
// zrot_copies(n=2,r=15)
// joiner();
function joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP) = no_function("joiner");
module joiner(l=40, w=10, base=10, ang=30, screwsize, anchor=CENTER, spin=0, orient=UP)
{
if (is_list($tags_shown) && in_list("remove",$tags_shown)) {
attachable(anchor,spin,orient, size=[w,l,base*2], $tag="remove") {
joiner_clear(w=w, l=l, ang=ang, clearance=1);
union();
}
} else {
attachable(anchor,spin,orient, size=[w,l,base*2], $tag="keep") {
union() {
back(l/4) half_joiner(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize);
fwd(l/4) half_joiner2(l=l/2, w=w, base=base, ang=ang, screwsize=screwsize);
}
children();
}
}
}
// Section: Dovetails
// Module: dovetail()
// Synopsis: Creates a possibly tapered dovetail shape.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: joiner(), snap_pin(), rabbit_clip()
//
// Usage:
// dovetail(gender, w=|width, h=|height, slide|thickness=, [slope=|angle=], [taper=|back_width=], [chamfer=], [r=|radius=], [round=], [extra=], [$slop=])
//
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the positive Y direction. The gender determines whether the shape is meant to be added to your model or
// differenced, and it also changes the anchor and orientation. The default anchor for dovetails is BOTTOM;
// the default orientation depends on the gender, with male dovetails oriented UP and female ones DOWN. The dovetails by default
// have extra extension of 0.01 for unions and differences. You should ensure that attachment is done with overlap=0 to ensure that
// the sizing and positioning is correct. To adjust the fit, use the $slop variable, which increases the depth and width of
// the female part of the joint to allow a clearance gap of $slop on each of the three sides.
//
// Arguments:
// gender = A string, "male" or "female", to specify the gender of the dovetail.
// w / width = Width (at the wider, top end) of the dovetail before tapering
// h / height = Height of the dovetail (the amount it projects from its base)
// slide / thickness = Distance the dovetail slides when you assemble it (length of sliding dovetails, thickness of regular dovetails)
// ---
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
// r / radius = amount to round over the corners of the joint (Default: no rounding)
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
// $slop = Increase the width of socket by double this amount and depth by this amount to allow adjustment of the fit.
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
// dovetail("male", width=15, height=8, slide=30);
// right(20) dovetail("female", width=15, height=8, slide=30);
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
// dovetail("male", w=15, h=8, slide=30, taper=6);
// right(20) dovetail("female", 15, 8, 30, taper=6); // Same as above
// Example: A block that can link to itself
// diff()
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, height=8);
// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8);
// }
// Example: Setting the dovetail angle. This is too extreme to be useful.
// diff()
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, height=8, angle=30);
// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, angle=30);
// }
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, height=8, chamfer=1);
// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8,chamfer=1);
// }
// Example: Rounding the outside corners is another option
// diff("remove")
// cuboid([50,30,10]) {
// attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1, $fn=32);
// tag("remove") attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1, $fn=32);
// }
// Example: Or you can make a fully rounded joint
// $fn=32;
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", slide=10, width=15, height=8, radius=1.5, round=true);
// tag("remove")attach(FRONT) dovetail("female", slide=10, width=15, height=8, radius=1.5, round=true);
// }
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
// cuboid([50,30,10])
// attach(TOP) dovetail("male", slide=50, width=18, height=4, back_width=15, spin=90);
// fwd(35)
// diff("remove")
// cuboid([50,30,10])
// tag("remove") attach(TOP) dovetail("female", slide=50, width=18, height=4, back_width=15, spin=90);
// Example: A series of dovetails forming a tail board, with the inside of the joint up. A standard wood joint would have a zero taper.
// cuboid([50,30,10])
// attach(BACK) xcopies(10,5) dovetail("male", slide=10, width=7, taper=4, height=4);
// Example: Mating pin board for a half-blind right angle joint, where the joint only shows on the side but not the front. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
// diff("remove")
// cuboid([50,30,10])
// tag("remove")position(TOP+BACK) xcopies(10,5) dovetail("female", slide=10, width=7, taper=4, height=4, anchor=BOTTOM+FRONT,spin=180);
function dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient) = no_function("dovetail");
module dovetail(gender, width, height, slide, h, w, angle, slope, thickness, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
{
radius = get_radius(r1=radius,r2=r);
slide = one_defined([slide,thickness],"slide,thickness");
h = one_defined([h,height],"h,height");
w = one_defined([w,width],"w,width");
orient = is_def(orient) ? orient
: gender == "female" ? DOWN
: UP;
count = num_defined([angle,slope]);
count2 = num_defined([taper,back_width]);
count3 = num_defined([chamfer, radius]);
dummy =
assert(count<=1, "Do not specify both angle and slope")
assert(count2<=1, "Do not specify both taper and back_width")
assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
slope = is_def(slope) ? slope
: is_def(angle) ? 1/tan(angle)
: 6;
height_slop = gender == "female" ? get_slop() : 0;
// Need taper angle for computing width adjustment, but not used elsewhere
taper_ang = is_def(taper) ? taper
: is_def(back_width) ? atan((back_width-w)/2/slide)
: 0;
// This is the adjustment factor for width to grow in the direction normal to the dovetail face
wfactor = sqrt( 1/slope^2 + 1/cos(taper_ang)^2 );
// adjust width for increased height adjust for normal to dovetail surface
width_slop = 2*height_slop/slope + 2* height_slop * wfactor;
width = w + width_slop;
height = h + height_slop;
back_width = u_add(back_width, width_slop);
extra_offset = is_def(taper) ? -extra * tan(taper)
: is_def(back_width) ? extra * (back_width-width)/slide/2
: 0;
size = is_def(chamfer) && chamfer>0 ? chamfer
: is_def(radius) && radius>0 ? radius
: 0;
fullsize = round ? [size,size]
: gender == "male" ? [size,0]
: [0,size];
type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
smallend_half = round_corners(
move(
[0,-slide/2-extra,0],
p=[
[0, 0, height],
[width/2 - extra_offset, 0, height],
[width/2 - extra_offset - height/slope, 0, 0 ],
[width/2 - extra_offset + height, 0, 0 ]
]
),
method=type, cut = fullsize, closed=false
);
smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
offset = is_def(taper) ? -slide * tan(taper)
: is_def(back_width) ? (back_width-width) / 2
: 0;
bigend_points = move([offset+2*extra_offset,slide+2*extra,0], p=smallend_points);
bigenough = all_nonnegative(column(smallend_half,0)) && all_nonnegative(column(bigend_points,0));
assert(bigenough, "Width (or back_width) of dovetail is not large enough for its geometry (angle and taper");
//adjustment = $overlap * (gender == "male" ? -1 : 1); // Adjustment for default overlap in attach()
adjustment = 0; // Default overlap is assumed to be zero
// This code computes the true normal from which the exact width factor can be obtained
// as the x component. Comparing to wfactor above shows that they agree.
// pts = [smallend_points[0], smallend_points[1], bigend_points[1],bigend_points[0]];
// n = -polygon_normal(pts);
// echo(n=n);
// echo(invwfactor = 1/wfactor, error = n.x-1/wfactor);
attachable(anchor,spin,orient, size=[width+2*offset, slide, height]) {
down(height/2+adjustment) {
//color("red")stroke([pts],width=.1);
skin(
[
reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))),
reverse(concat(bigend_points, xflip(p=reverse(bigend_points))))
],
slices=0, convexity=4
);
}
children();
}
}
// Section: Tension Clips
// h is total height above 0 of the nub
// nub extends below xy plane by distance nub/2
module _pin_nub(r, nub, h)
{
L = h / 4;
rotate_extrude(){
polygon(
[[ 0,-nub/2],
[-r,-nub/2],
[-r-nub, nub/2],
[-r-nub, nub/2+L],
[-r, h],
[0, h]]);
}
}
module _pin_slot(l, r, t, d, nub, depth, stretch) {
yscale(4)
intersection() {
translate([t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
translate([-t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
}
cube([2 * r, depth, 2 * l], center = true);
up(l)
zscale(stretch)
ycyl(r = r, h = depth);
}
module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed)
{
extra = 0.02; // This sets the extra extension below the socket bottom
// so that difference() works without issues
rPoint = r / sqrt(2);
down(extra) cylinder(r = r, h = lStraight + extra);
up(lStraight) {
zscale(stretch) {
hull() {
sphere(r = r);
if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint/stretch);
}
}
}
up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d);
}
function _pin_size(size) =
is_undef(size) ? [] :
let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"]))
assert(sizeok,"Pin size must be one of \"tiny\", \"small\", \"medium\" or \"standard\"")
size=="standard" || size=="large" ?
struct_set([], ["length", 10.8,
"diameter", 7,
"snap", 0.5,
"nub_depth", 1.8,
"thickness", 1.8,
"preload", 0.2]):
size=="medium" ?
struct_set([], ["length", 8,
"diameter", 4.6,
"snap", 0.45,
"nub_depth", 1.5,
"thickness", 1.4,
"preload", 0.2]) :
size=="small" ?
struct_set([], ["length", 6,
"diameter", 3.2,
"snap", 0.4,
"nub_depth", 1.2,
"thickness", 1.0,
"preload", 0.16]) :
size=="tiny" ?
struct_set([], ["length", 4,
"diameter", 2.5,
"snap", 0.25,
"nub_depth", 0.9,
"thickness", 0.8,
"preload", 0.1]):
undef;
// Module: snap_pin()
// Synopsis: Creates a snap-pin that can slot into a {{snap_pin_socket()}} to join two parts.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: snap_pin_socket(), joiner(), dovetail(), snap_pin(), rabbit_clip()
// Usage:
// snap_pin(size, [pointed=], [anchor=], [spin=], [orient]=) [ATTACHMENTS];
// snap_pin(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, thickness=, [clearance=], [preload=], [pointed=]) [ATTACHMENTS];
// Description:
// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
// override the standard parameters by specifying other ones. The pins have flat sides so they can
// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
// .
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// .
// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
// and distributed under the Creative Commons - Attribution - Share Alike License
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "medium", "small", or "tiny".
// ---
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r/radius = radius of the pin
// d/diameter = diameter of the pin
// l/length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// thickness = thickness of the pin walls
// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
// Example: Pin in native orientation
// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
// Example: Pins oriented for printing
// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
function snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) =no_function("snap_pin");
module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) {
preload_default = 0.2;
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
thickness = first_defined([thickness, struct_val(sizedat,"thickness")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]);
nubscale = 0.9; // Mysterious arbitrary parameter
// The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
// If the point is enabled the cap length is instead 2*r
// preload shrinks the length, bringing the nubs closer together
rInner = radius - clearance;
stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced.
lStraight = length - sqrt(2) * radius - clearance;
lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius);
attachable(anchor=anchor,spin=spin, orient=orient,
size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){
zflip_copy()
difference() {
intersection() {
cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true);
_pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed);
}
_pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch);
}
children();
}
}
// Module: snap_pin_socket()
// Synopsis: Creates a snap-pin socket for a {{snap_pin()}} to slot into.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip()
// Usage:
// snap_pin_socket(size, [fixed=], [fins=], [pointed=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
// snap_pin_socket(r=|radius=|d=|diameter=, l=|length=, nub_depth=, snap=, [fixed=], [pointed=], [fins=]) [ATTACHMENTS];
// Description:
// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
// The socket extends 0.02 extra below its bottom anchor point so that differences will work correctly. (You must have $overlap smaller than 0.02 in
// attach or the socket will be beneath the surface of the parent object.)
// .
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "medium", "small", or "tiny".
// ---
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r/radius = radius of the pin
// d/diameter = diameter of the pin
// l/length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// fixed = if true the pin cannot rotate, if false it can. Default: true
// pointed = if true the socket has a pointed tip. Default: true
// fins = if true supporting fins are included. Default: false
// Example: The socket shape itself in native orientation.
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
// Example: A spinning socket with fins:
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
// $fn=40;
// diff("socket") cuboid([20,20,20])
// tag("socket"){
// attach(TOP) snap_pin_socket("standard");
// position(TOP+FRONT)snap_pin_socket("standard");
// }
function snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) = no_function("snap_pin_socket");
module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) {
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
tip = pointed ? sqrt(2) * radius : radius;
lPin = length + (pointed?(2-sqrt(2))*radius:0);
lStraight = lPin - (pointed?sqrt(2)*radius:radius);
attachable(anchor=anchor,spin=spin,orient=orient,
size=[2*(radius+snap),radius*sqrt(2),lPin])
{
down(lPin/2)
intersection() {
cube([3 * (radius + snap), fixed ? radius * sqrt(2) : 3*(radius+snap), 3 * lPin + 3 * radius], center = true);
union() {
_pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
if (fins)
up(lStraight){
cube([2 * radius, 0.01, 2 * tip], center = true);
cube([0.01, 2 * radius, 2 * tip], center = true);
}
}
}
children();
}
}
// Module: rabbit_clip()
// Synopsis: Creates a rabbit-eared clip that can snap into a slot.
// SynTags: Geom
// Topics: Joiners, Parts
// See Also: snap_pin(), joiner(), dovetail(), snap_pin(), rabbit_clip()
// Usage:
// rabbit_clip(type, length, width, snap, thickness, depth, [compression=], [clearance=], [lock=], [lock_clearance=], [splineteps=], [anchor=], [orient=], [spin=]) [ATTACHMENTS];
// Description:
// Creates a clip with two flexible ears to lock into a mating socket, or create a mask to produce the appropriate
// mating socket. The clip can be made to insert and release easily, or to hold much better, or it can be
// created with locking flanges that will make it very hard or impossible to remove. Unlike the snap pin, this clip
// is rectangular and can be made at any height, so a suitable clip could be very thin. It's also possible to get a
// solid connection with a short pin.
// .
// The type parameters specifies whether to make a clip, a socket mask, or a double clip. The length is the
// total nominal length of the clip. (The actual length will be very close, but not equal to this.) The width
// gives the nominal width of the clip, which is the actual width of the clip at its base. The snap parameter
// gives the depth of the clip sides, which controls how easy the clip is to insert and remove. The clip "ears" are
// made over-wide by the compression value. A nonzero compression helps make the clip secure in its socket.
// The socket's width and length are increased by the clearance value which creates some space and can compensate
// for printing inaccuracy. The socket will be slightly longer than the nominal width. The thickness is the thickness
// curved line that forms the clip. The clip depth is the amount the basic clip shape is extruded. Be sure that you
// make the socket with a larger depth than the clip (try 0.4 mm) to allow ease of insertion of the clip. The clearance
// value does not apply to the depth. The splinesteps parameter increases the sampling of the clip curves.
// .
// By default clips appear with orient=UP and sockets with orient=DOWN. The clips and sockets extend 0.02 units below
// their base so that unions and differences will work without trouble, but be sure that the attach overlap is smaller
// than 0.02.
// .
// The first figure shows the dimensions of the rabbit clip. The second figure shows the clip in red overlayed on
// its socket in yellow. The left clip has a nonzero clearance, so its socket is bigger than the clip all around.
// The right hand locking clip has no clearance, but it has a lock clearance, which provides some space behind
// the lock to allow the clip to fit. (Note that depending on your printer, this can be set to zero.)
// Figure(2DMed,NoAxes):
// snap=1.5;
// comp=0.75;
// mid = 8.053; // computed in rabbit_clip
// tip = [-4.58,18.03];
// translate([9,3]){
// back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK);
// color("blue"){
// stroke([[6,0],[6,18]],width=0.1);
// stroke([[6+comp, 12], [6+comp, 18]], width=.1);
// }
// color("red"){
// stroke([[6-snap,mid], [6,mid]], endcaps="arrow2",width=0.15);
// translate([6+.4,mid-.15])text("snap",size=1,valign="center");
// translate([6+comp/2,19.5])text("compression", size=1, halign="center");
// stroke([[6+comp/2,19.3], [6+comp/2,17.7]], endcap2="arrow2", width=.15);
// fwd(1.1)text("width",size=1,halign="center");
// xflip_copy()stroke([[2,-.7], [6,-.7]], endcap2="arrow2", width=.15);
// move([-6.7,mid])rot(90)text("length", size=1, halign="center");
// stroke([[-7,10.3], [-7,18]], width=.15, endcap2="arrow2");
// stroke([[-7,0], [-7,5.8]], width=.15,endcap1="arrow2");
// stroke([tip, tip-[0,1]], width=.15);
// move([tip.x+2,19.5])text("thickness", halign="center",size=1);
// stroke([[tip.x+2, 19.3], tip+[.1,.1]], width=.15, endcap2="arrow2");
// }
// }
//
// Figure(2DMed,NoAxes):
// snap=1.5;
// comp=0;
// translate([29,3]){
// back_half()
// rabbit_clip("socket", width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap, orient=BACK,lock=true);
// color("red")back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
// orient=BACK,lock=true,lock_clearance=1);
// }
// translate([9,3]){
// back_half()
// rabbit_clip("socket", clearance=.5,width=12, length=18, depth=1, thickness = 1,
// compression=comp, snap=snap, orient=BACK,lock=false);
// color("red")back_half()
// rabbit_clip("pin",width=12, length=18, depth=1, thickness = 1, compression=comp, snap=snap,
// orient=BACK,lock=false,lock_clearance=1);
// }
// Arguments:
// type = One of "pin", "socket", "male", "female" or "double" to specify what to make.
// length = nominal clip length
// width = nominal clip width
// snap = depth of hollow on the side of the clip
// thickness = thickness of the clip "line"
// depth = amount to extrude clip (give extra room for the socket, about 0.4mm)
// ---
// compression = excess width at the "ears" to lock more tightly. Default: 0.1
// clearance = extra space in the socket for easier insertion. Default: 0.1
// lock = set to true to make a locking clip that may be irreversible. Default: false
// lock_clearance = give clearance for the lock. Default: 0
// splinesteps = number of samples in the curves of the clip. Default: 8
// anchor = anchor point for clip
// orient = clip orientation. Default: UP for pins, DOWN for sockets
// spin = spin the clip. Default: 0
//
// Example: Here are several sizes that work printed in PLA on a Prusa MK3, with default clearance of 0.1 and a depth of 5
// module test_pair(length, width, snap, thickness, compression, lock=false)
// {
// depth = 5;
// extra_depth = 10;// Change this to 0.4 for closed sockets
// cuboid([max(width+5,12),12, depth], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
// attach(BACK)
// rabbit_clip(type="pin",length=length, width=width,snap=snap,thickness=thickness,depth=depth,
// compression=compression,lock=lock);
// right(width+13)
// diff("remove")
// cuboid([width+8,max(12,length+2),depth+3], chamfer=.5, edges=[FRONT,"Y"], anchor=BOTTOM)
// tag("remove")
// attach(BACK)
// rabbit_clip(type="socket",length=length, width=width,snap=snap,thickness=thickness,
// depth=depth+extra_depth, lock=lock,compression=0);
// }
// left(37)ydistribute(spacing=28){
// test_pair(length=6, width=7, snap=0.25, thickness=0.8, compression=0.1);
// test_pair(length=3.5, width=7, snap=0.1, thickness=0.8, compression=0.1); // snap = 0.2 gives a firmer connection
// test_pair(length=3.5, width=5, snap=0.1, thickness=0.8, compression=0.1); // hard to take apart
// }
// right(17)ydistribute(spacing=28){
// test_pair(length=12, width=10, snap=1, thickness=1.2, compression=0.2);
// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
// test_pair(length=8, width=7, snap=0.75, thickness=0.8, compression=0.2, lock=true); // With lock, very firm and irreversible
// }
// Example: Double clip to connect two sockets
// rabbit_clip("double",length=8, width=7, snap=0.75, thickness=0.8, compression=0.2,depth=5);
// Example: A modified version of the clip that acts like a backpack strap clip, where it locks tightly but you can squeeze to release.
// cuboid([25,15,5],anchor=BOTTOM)
// attach(BACK)rabbit_clip("pin", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5, lock_clearance=3);
// left(32)
// diff("remove")
// cuboid([30,30,11],orient=BACK,anchor=BACK){
// tag("remove")attach(BACK)rabbit_clip("socket", length=25, width=25, thickness=1.5, snap=2, compression=0, lock=true, depth=5.5, lock_clearance=3);
// xflip_copy()
// position(FRONT+LEFT)
// xscale(0.8)
// tag("remove")zcyl(l=20,r=13.5, $fn=64);
// }
function rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0,
splinesteps=8, anchor, orient, spin=0) = no_function("rabbit_clip");
module rabbit_clip(type, length, width, snap, thickness, depth, compression=0.1, clearance=.1, lock=false, lock_clearance=0,
splinesteps=8, anchor, orient, spin=0)
{
legal_types = ["pin","socket","male","female","double"];
check =
assert(is_num(width) && width>0,"Width must be a positive value")
assert(is_num(length) && length>0, "Length must be a positive value")
assert(is_num(thickness) && thickness>0, "Thickness must be a positive value")
assert(is_num(snap) && snap>=0, "Snap must be a non-negative value")
assert(is_num(depth) && depth>0, "Depth must be a positive value")
assert(is_num(compression) && compression >= 0, "Compression must be a nonnegative value")
assert(is_bool(lock))
assert(is_num(lock_clearance))
assert(in_list(type,legal_types),str("type must be one of ",legal_types));
if (type=="double") {
attachable(size=[width+2*compression, depth, 2*length], anchor=default(anchor,BACK), spin=spin, orient=default(orient,BACK)){
union(){
rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
lock=lock, anchor=BOTTOM, orient=UP);
rabbit_clip("pin", length=length, width=width, snap=snap, thickness=thickness, depth=depth, compression=compression,
lock=lock, anchor=BOTTOM, orient=DOWN);
cuboid([width-thickness, depth, thickness]);
}
children();
}
} else {
anchor = default(anchor,BOTTOM);
is_pin = in_list(type,["pin","male"]);
//default_overlap = 0.01 * (is_pin?1:-1); // Shift by this much to undo default overlap
default_overlap = 0;
extra = 0.02; // Amount of extension below nominal based position for the socket, must exceed default overlap of 0.01
clearance = is_pin ? 0 : clearance;
compression = is_pin ? compression : 0;
orient = is_def(orient) ? orient
: is_pin ? UP
: DOWN;
earwidth = 2*thickness+snap;
point_length = earwidth/2.15;
// The adjustment is using cos(theta)*earwidth/2 and sin(theta)*point_length, but the computation
// is obscured because theta is atan(length/2/snap)
scaled_len = length - 0.5 * (earwidth * snap + point_length * length) / sqrt(sqr(snap)+sqr(length/2));
bottom_pt = [0,max(scaled_len*0.15+thickness, 2*thickness)];
ctr = [width/2,scaled_len] + line_normal([width/2-snap, scaled_len/2], [width/2, scaled_len]) * earwidth/2;
inside_pt = circle_circle_tangents(0, bottom_pt, earwidth/2, ctr)[0][1];
sidepath =[
[width/2,0],
[width/2-snap,scaled_len/2],
[width/2+(is_pin?compression:0), scaled_len],
ctr - point_length * line_normal([width/2,scaled_len], inside_pt),
inside_pt
];
fullpath = concat(
sidepath,
[bottom_pt],
reverse(apply(xflip(),sidepath))
);
dummy2 = assert(fullpath[4].y < fullpath[3].y, "Pin is too wide for its length");
snapmargin = -snap + last(sidepath).x;// - compression;
if (is_pin){
if (snapmargin<0) echo("WARNING: The snap is too large for the clip to squeeze to fit its socket")
echo(snapmargin=snapmargin);
}
// Force tangent to be vertical at the outer edge of the clip to avoid overshoot
fulltangent = list_set(path_tangents(fullpath, uniform=false),[2,8], [[0,1],[0,-1]]);
subset = is_pin ? [0:10] : [0,1,2,3, 7,8,9,10]; // Remove internal points from the socket
tangent = select(fulltangent, subset);
path = select(fullpath, subset);
socket_smooth = .04;
pin_smooth = [.075, .075, .15, .12, .06];
smoothing = is_pin
? concat(pin_smooth, reverse(pin_smooth))
: let(side_smooth=select(pin_smooth, 0, 2))
concat(side_smooth, [socket_smooth], reverse(side_smooth));
bez = path_to_bezpath(path,relsize=smoothing,tangents=tangent);
rounded = bezpath_curve(bez,splinesteps=splinesteps);
bounds = pointlist_bounds(rounded);
extrapt = is_pin ? [] : [rounded[0] - [0,extra]];
finalpath = is_pin ? rounded
: let(withclearance=offset(rounded, r=-clearance, closed=false))
concat( [[withclearance[0].x,-extra]],
withclearance,
[[-withclearance[0].x,-extra]]);
attachable(size=[bounds[1].x-bounds[0].x, depth, bounds[1].y-bounds[0].y], anchor=anchor, spin=spin, orient=orient){
xrot(90)
translate([0,-(bounds[1].y-bounds[0].y)/2+default_overlap,-depth/2])
linear_extrude(height=depth, convexity=10) {
if (lock)
xflip_copy()
right(clearance)
polygon([sidepath[1]+[-thickness/10,lock_clearance],
sidepath[2]-[thickness*.75,0],
sidepath[2],
[sidepath[2].x,sidepath[1].y+lock_clearance]]);
if (is_pin)
offset_stroke(finalpath, width=[thickness,0]);
else
polygon(finalpath);
}
children();
}
}
}
// Section: Splines
// Module: hirth()
// Usage:
// hirth(n, ir|id=, or|od=, tooth_angle, [cone_angle=], [chamfer=], [base=], [crop=], [anchor=], [spin=], [orient=]
// Description:
// Create a Hirth face spline. The Hirth face spline is a joint that locks together two cylinders using radially
// positioned triangular teeth on the ends of the cylinders. If the joint is held together (e.g. with a screw) then
// the two parts will rotate (or not) together. The two parts of the regular Hirth spline joint are identical.
// Each tooth is a triangle that grows larger with radius. You specify a nominal tooth angle; the actual tooth
// angle will be slightly different.
// .
// You can also specify a cone_angle which raises or lowers the angle of the teeth. When you do this you ened to
// mate splines with opposite angles such as -20 and +20. The splines appear centered at the origin so that two
// splines will mate if their centers coincide. Therefore `attach(CENTER,CENTER)` will produce two mating splines
// assuming that they are rotated correctly. The bottom anchors will be at the bottom of the spline base. The top
// anchors are at an arbitrary location and are not useful.
// .
// By default the spline is created as a polygon with `2n` edges and the radius is the outer radius to the unchamfered corners.
// For large choices of `n` this will produce result that is close to circular. For small `n` the result will be obviously polygonal.
// If you want a cylindrical result then set `crop=true`, which will intersect an oversized version of the joint with a suitable cylinder.
// Note that cropping makes the most difference when the tooth count is low.
// .
// The teeth are chamfered proportionally based on the `chamfer` argument which specifies the fraction of the teeth tips
// to remove. The teeth valleys are chamfered by half the specified value to ensure that there is room for the parts
// to mate. The base is added based on the unchamfered dimensions of the joint, and the "teeth_bot" anchor is located
// based on the unchamfered dimensions.
// Named Anchors:
// "teeth_bot" = center of the joint, aligned with the bottom of the (unchamfered) teeth, pointing DOWN.
// "mate" = center of the joint, pointing UP, but with the correct spin so that the part will mate with a compatible parent joint.
// Arguments:
// n = number of teeth
// ir/id = inner radius or diameter
// or/od = outer radius or diameter
// tooth_angle = nominal tooth angle. Default: 60
// cone_angle = raise or lower the angle of the teeth in the radial direction. Default: 0
// chamfer = chamfer teeth by this fraction at tips and half this fraction at valleys. Default: 0.05
// base = add base of this height to the bottom. Default: 1
// crop = crop to a cylindrical shape. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
// Example: Basic uncropped hirth spline
// hirth(32,20,50, tooth_angle=60,chamfer=.05);
// Example: Raise cone angle
// hirth(32,20,50, tooth_angle=60,cone_angle=30,chamfer=.05);
// Example: Lower cone angle
// hirth(32,20,50, tooth_angle=60,cone_angle=-30,chamfer=.05);
// Example: Only 8 teeth
// hirth(8,20,50, tooth_angle=60,base=10,chamfer=.05);
// Example: Only 8 teeth, cropped
// hirth(8,20,50, tooth_angle=60,base=10,chamfer=.05, crop=true);
// Example: Two identical parts joined together (with 1 unit offset to reveal the joint line). With odd tooth count you can use the CENTER anchor for the child and the teeth line up correctly.
// hirth(27,20,50, tooth_angle=60,base=2,chamfer=.05)
// up(1) attach(CENTER,CENTER)
// hirth(27,20,50, tooth_angle=60,base=2,chamfer=.05);
// Example: Two conical parts joined together, with opposite cone angles for a correct joint. With an even tooth count you must use the "mate" anchor for correct alignment of the teeth.
// hirth(26,20,50, tooth_angle=60,base=2,cone_angle=30,chamfer=.05)
// up(1) attach(CENTER,"mate")
// hirth(26,20,50, tooth_angle=60,base=2,cone_angle=-30, chamfer=.05);
module hirth(n, ir, or, id, od, tooth_angle=60, cone_angle=0, chamfer=0.05, base=1, crop=false, orient,anchor,spin)
{
ir = get_radius(r=ir,d=id);
or = get_radius(r=or,d=od);
dummy = assert(all_positive([ir]), "ir/id must be a positive value")
assert(all_positive([or]), "or/od must be a positive value")
assert(ir<or, "inside radius (ir/id) must be smaller than outside radius (or/od)")
assert(all_positive([tooth_angle]) && tooth_angle<360*(n-1)/2/n, str("tooth angle must be between 0 and ",360*(n-1)/2/n," for spline with ",n," teeth."))
assert(all_nonnegative([chamfer]) && chamfer<1/2, "chamfer must be a non-negative value smaller than 1/2")
assert(all_positive([base]), "base must be a positive value") ;
factor = crop ? 2/cos(cone_angle) : 1;
// inner/outer radius to the side face of the end of a tooth profile, adjusted to provide excess for making the shape round at the end
ir_side = ir/factor*cos(180/n);
or_side = or*factor*cos(180/n);
outside_halfseg = or_side*2*tan(90/n); // Side length of 2n-gon
outside_botseg = or_side*2*tan(180/n); // Side length of n-gon
// Decrease in outer radius needed for the triangles to touch each other around the edge
delta = or_side*(1 - 2*outside_halfseg/outside_botseg);
tooth_height = 0.5/tan(tooth_angle/2); // Unscaled tooth height (for tooth with width 1)
h = tooth_height * 2*outside_halfseg; // Scaled tooth height
lean = asin(2*delta/h); // Angle at which triangle needs to tilt for valid joint
profpts = [
[0,-1/2+chamfer/4,(-1/2+chamfer/2)*tooth_height],
[0,-chamfer/2,(1/2-chamfer)*tooth_height]
];
profile = concat(profpts, reverse(yflip(profpts)));
trans_prof = function(R,data)
let(halfseg = R*2*tan(90/n))
yrot(cone_angle,right(R, 2*halfseg*cos(cone_angle)*yrot(lean-cone_angle,data)));
// used to get top ridge line range
topspan = [
trans_prof(ir_side, [0,1/2,tooth_height/2]),
trans_prof(or_side, [0,1/2,tooth_height/2])
];
// For uncropped case we scale to match user's desired radius exactly
real_or = topspan[1].x;
real_ir = topspan[0].x;
scale = crop ? 1 : or/real_or;
echo(scaled_ir=real_ir*scale);
// used to get true bottom at true target radius; has the endpoints of the bottom valley without chamfer/rounding
botspan = zrot(-180/n, [
trans_prof(ir_side, [0,1/2,-tooth_height/2]),
trans_prof(or_side, [0,1/2,-tooth_height/2])
]);
// Bottom guaranteed to be lower than anything in the polyhedron so it doesn't self-intersect
safebottom = min(column(botspan,2))-base/scale-(crop?1:0);
// Actual bottom interpolated at the specified ir/or
bottom = crop ? let(bottab = submatrix(botspan, [0,1], [0,2]))
min(lookup(ir,bottab), lookup(or,bottab))-base/scale
: safebottom;
// Vertical correction for cone angle so that center of the joint is at the origin
zshift = crop ? sin(cone_angle)*or : sin(cone_angle)*real_or;
topouter = [for(ang=lerpn(0,360,n,endpoint=false)) each zrot(ang,trans_prof(or_side, profile))];
topinner = [for(ang=lerpn(0,360,n,endpoint=false)) each zrot(ang,trans_prof(ir_side, profile))];
botinner = [for(val=topinner) [val.x,val.y,safebottom]];
botouter = [for(val=topouter) [val.x,val.y,safebottom]];
vert = [topouter, topinner, botinner, botouter];
anchors = [
named_anchor("teeth_bot", [0,0,(bottom+zshift)*scale+base], DOWN),
named_anchor("mate", [0,0,0], UP, spin=n%2==0 ? 180/n : 0)
];
attachable(anchor=anchor,spin=spin,orient=orient, r=or, h=-2*(bottom+zshift)*scale,anchors=anchors){
scale(scale)
up(zshift){
zrot_copies(n=n)
stroke(trans_prof(or_side,profile),color="red", closed=false,width=.01);
intersection(){
vnf_polyhedron(vnf_vertex_array(vert, reverse=true, col_wrap=true, row_wrap=true),convexity=20);
if (crop)
zmove(bottom)tube(or=or,ir=ir,height=4*or,anchor=BOT);
}
}
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap