BOSL2/hull.scad
2020-05-29 19:04:34 -07:00

241 lines
9.3 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: hull.scad
// Functions to create 2D and 3D convex hulls.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/hull.scad>
// ```
// Derived from Oskar Linde's Hull:
// - https://github.com/openscad/scad-utils
//////////////////////////////////////////////////////////////////////
// Section: Convex Hulls
// Function: hull()
// Usage:
// hull(points);
// Description:
// Takes a list of 2D or 3D points (but not both in the same list) and returns either the list of
// indexes into `points` that forms the 2D convex hull perimeter path, or the list of faces that
// form the 3d convex hull surface. Each face is a list of indexes into `points`. If the input
// points are co-linear, the result will be the indexes of the two extrema points. If the input
// points are co-planar, the results will be a simple list of vertex indices that will form a planar
// perimeter. Otherwise a list of faces will be returned, where each face is a simple list of
// vertex indices for the perimeter of the face.
// Arguments:
// points = The set of 2D or 3D points to find the hull of.
function hull(points) = let(two_d = len(points[0]) == 2) two_d? hull2d_path(points) : hull3d_faces(points);
// Module: hull_points()
// Usage:
// hull_points(points, [fast]);
// Description:
// If given a list of 2D points, creates a 2D convex hull polygon that encloses all those points.
// If given a list of 3D points, creates a 3D polyhedron that encloses all the points. This should
// handle about 4000 points in slow mode. If `fast` is set to true, this should be able to handle
// far more.
// Arguments:
// points = The list of points to form a hull around.
// fast = If true, uses a faster cheat that may handle more points, but also may emit warnings that can stop your script if you have "Halt on first warning" enabled. Default: false
// Example(2D):
// pts = [[-10,-10], [0,10], [10,10], [12,-10]];
// hull_points(pts);
// Example:
// pts = [for (phi = [30:60:150], theta = [0:60:359]) spherical_to_xyz(10, theta, phi)];
// hull_points(pts);
module hull_points(points, fast=false) {
assert(is_list(points));
if (points) {
assert(is_list(points[0]));
if (fast) {
if (len(points[0]) == 2) {
hull() polygon(points=points);
} else {
extra = len(points)%3;
faces = concat(
[[for(i=[0:1:extra+2])i]],
[for(i=[extra+3:3:len(points)-3])[i,i+1,i+2]]
);
hull() polyhedron(points=points, faces=faces);
}
} else {
perim = hull(points);
if (is_num(perim[0])) {
polygon(points=points, paths=[perim]);
} else {
polyhedron(points=points, faces=perim);
}
}
}
}
// Function: hull2d_path()
// Usage:
// hull2d_path(points)
// Description:
// Takes a list of arbitrary 2D points, and finds the minimal convex hull polygon to enclose them.
// Returns a path as a list of indices into `points`.
// Example(2D):
// pts = [[-10,-10], [0,10], [10,10], [12,-10]];
// path = hull2d_path(pts);
// move_copies(pts) color("red") sphere(1);
// polygon(points=pts, paths=[path]);
function hull2d_path(points) =
(len(points) < 3)? [] : let(
a=0, b=1,
c = first_noncollinear(a, b, points)
) (c == len(points))? _hull2d_collinear(points) : let(
remaining = [ for (i = [2:1:len(points)-1]) if (i != c) i ],
ccw = triangle_area(points[a], points[b], points[c]) > 0,
polygon = ccw? [a,b,c] : [a,c,b]
) _hull2d_iterative(points, polygon, remaining);
// Adds the remaining points one by one to the convex hull
function _hull2d_iterative(points, polygon, remaining, _i=0) =
(_i >= len(remaining))? polygon : let (
// pick a point
i = remaining[_i],
// find the segments that are in conflict with the point (point not inside)
conflicts = _find_conflicting_segments(points, polygon, points[i])
// no conflicts, skip point and move on
) (len(conflicts) == 0)? _hull2d_iterative(points, polygon, remaining, _i+1) : let(
// find the first conflicting segment and the first not conflicting
// conflict will be sorted, if not wrapping around, do it the easy way
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
) _hull2d_iterative(points, polygon, remaining, _i+1);
function _hull2d_collinear(points) =
let(
a = points[0],
n = points[1] - a,
points1d = [ for(p = points) (p-a)*n ],
min_i = min_index(points1d),
max_i = max_index(points1d)
) [min_i, max_i];
function _find_conflicting_segments(points, polygon, point) = [
for (i = [0:1:len(polygon)-1]) let(
j = (i+1) % len(polygon),
p1 = points[polygon[i]],
p2 = points[polygon[j]],
area = triangle_area(p1, p2, point)
) if (area < 0) i
];
// remove the conflicting segments from the polygon
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
(conflicts[0] == 0)? let(
nonconflicting = [ for(i = [0:1:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
polygon = concat([ for (i = new_indices) polygon[i] ], point)
) polygon : let(
before_conflicts = [ for(i = [0:1:min(conflicts)]) polygon[i] ],
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:1:len(polygon)-1]) polygon[i] ],
polygon = concat(before_conflicts, point, after_conflicts)
) polygon;
// Function: hull3d_faces()
// Usage:
// hull3d_faces(points)
// Description:
// Takes a list of arbitrary 3D points, and finds the minimal convex hull polyhedron to enclose
// them. Returns a list of faces, where each face is a list of indexes into the given `points`
// list. If all points passed to it are coplanar, then the return is the list of indices of points
// forming the minimal convex hull polygon.
// Example(3D):
// pts = [[-20,-20,0], [20,-20,0], [0,20,5], [0,0,20]];
// faces = hull3d_faces(pts);
// move_copies(pts) color("red") sphere(1);
// %polyhedron(points=pts, faces=faces);
function hull3d_faces(points) =
(len(points) < 3)? list_range(len(points)) : let (
// start with a single non-collinear triangle
a = 0,
b = 1,
c = first_noncollinear(a, b, points)
) (c == len(points))? _hull2d_collinear(points) : let(
plane = plane3pt_indexed(points, a, b, c),
d = _find_first_noncoplanar(plane, points, 3)
) (d == len(points))? /* all coplanar*/ let (
pts2d = [ for (p = points) project_plane(p, points[a], points[b], points[c]) ],
hull2d = hull2d_path(pts2d)
) hull2d : let(
remaining = [for (i = [3:1:len(points)-1]) if (i != d) i],
// Build an initial tetrahedron.
// Swap b, c if d is in front of triangle t.
ifop = in_front_of_plane(plane, points[d]),
bc = ifop? [c,b] : [b,c],
b = bc[0],
c = bc[1],
triangles = [
[a,b,c],
[d,b,a],
[c,d,a],
[b,d,c]
],
// calculate the plane equations
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _hull3d_iterative(points, triangles, planes, remaining);
// Adds the remaining points one by one to the convex hull
function _hull3d_iterative(points, triangles, planes, remaining, _i=0) =
_i >= len(remaining) ? triangles :
let (
// pick a point
i = remaining[_i],
// find the triangles that are in conflict with the point (point not inside)
conflicts = _find_conflicts(points[i], planes),
// for all triangles that are in conflict, collect their halfedges
halfedges = [
for(c = conflicts, i = [0:2]) let(
j = (i+1)%3
) [triangles[c][i], triangles[c][j]]
],
// find the outer perimeter of the set of conflicting triangles
horizon = _remove_internal_edges(halfedges),
// generate a new triangle for each horizon halfedge together with the picked point i
new_triangles = [ for (h = horizon) concat(h,i) ],
// calculate the corresponding plane equations
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _hull3d_iterative(
points,
// remove the conflicting triangles and add the new ones
concat(list_remove(triangles, conflicts), new_triangles),
concat(list_remove(planes, conflicts), new_planes),
remaining,
_i+1
);
function _remove_internal_edges(halfedges) = [
for (h = halfedges)
if (!in_list(reverse(h), halfedges))
h
];
function _find_conflicts(point, planes) = [
for (i = [0:1:len(planes)-1])
if (in_front_of_plane(planes[i], point))
i
];
function _find_first_noncoplanar(plane, points, i) =
(i >= len(points) || !coplanar(plane, points[i]))? i :
_find_first_noncoplanar(plane, points, i+1);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap