BOSL2/shapes2d.scad

1865 lines
83 KiB
OpenSCAD

//////////////////////////////////////////////////////////////////////
// LibFile: shapes2d.scad
// Common useful 2D shapes.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: 2D Drawing Helpers
// Module: stroke()
// Usage:
// stroke(path, [width], [closed], [endcaps], [endcap_width], [endcap_length], [endcap_extent], [trim]);
// stroke(path, [width], [closed], [endcap1], [endcap2], [endcap_width1], [endcap_width2], [endcap_length1], [endcap_length2], [endcap_extent1], [endcap_extent2], [trim1], [trim2]);
// Description:
// Draws a 2D or 3D path with a given line width. Endcaps can be specified for each end individually.
// Figure(2D,Big): Endcap Types
// endcaps = [
// ["butt", "square", "round", "chisel", "tail", "tail2"],
// ["line", "cross", "dot", "diamond", "x", "arrow", "arrow2"]
// ];
// for (x=idx(endcaps), y=idx(endcaps[x])) {
// cap = endcaps[x][y];
// right(x*60-60+5) fwd(y*10+15) {
// right(28) color("black") text(text=cap, size=5, halign="left", valign="center");
// stroke([[0,0], [20,0]], width=3, endcap_width=3, endcap1=false, endcap2=cap);
// color("black") stroke([[0,0], [20,0]], width=0.25, endcaps=false);
// }
// }
// Arguments:
// path = The 2D path to draw along.
// width = The width of the line to draw. If given as a list of widths, (one for each path point), draws the line with varying thickness to each point.
// closed = If true, draw an additional line from the end of the path to the start.
// endcaps = Specifies the endcap type for both ends of the line. If a 2D path is given, use that to draw custom endcaps.
// endcap1 = Specifies the endcap type for the start of the line. If a 2D path is given, use that to draw a custom endcap.
// endcap2 = Specifies the endcap type for the end of the line. If a 2D path is given, use that to draw a custom endcap.
// endcap_width = Some endcap types are wider than the line. This specifies the size of endcaps, in multiples of the line width. Default: 3.5
// endcap_width1 = This specifies the size of starting endcap, in multiples of the line width. Default: 3.5
// endcap_width2 = This specifies the size of ending endcap, in multiples of the line width. Default: 3.5
// endcap_length = Length of endcaps, in multiples of the line width. Default: `endcap_width*0.5`
// endcap_length1 = Length of starting endcap, in multiples of the line width. Default: `endcap_width1*0.5`
// endcap_length2 = Length of ending endcap, in multiples of the line width. Default: `endcap_width2*0.5`
// endcap_extent = Extents length of endcaps, in multiples of the line width. Default: `endcap_width*0.5`
// endcap_extent1 = Extents length of starting endcap, in multiples of the line width. Default: `endcap_width1*0.5`
// endcap_extent2 = Extents length of ending endcap, in multiples of the line width. Default: `endcap_width2*0.5`
// endcap_angle = Extra axial rotation given to flat endcaps for 3D paths, in degrees. If not given, the endcaps are fully spun. Default: `undef` (Fully spun cap)
// endcap_angle1 = Extra axial rotation given to a flat starting endcap for 3D paths, in degrees. If not given, the endcap is fully spun. Default: `undef` (Fully spun cap)
// endcap_angle2 = Extra axial rotation given to a flat ending endcap for 3D paths, in degrees. If not given, the endcap is fully spun. Default: `undef` (Fully spun cap)
// trim = Trim the the start and end line segments by this much, to keep them from interfering with custom endcaps.
// trim1 = Trim the the starting line segment by this much, to keep it from interfering with a custom endcap.
// trim2 = Trim the the ending line segment by this much, to keep it from interfering with a custom endcap.
// convexity = Max number of times a line could intersect a wall of an endcap.
// hull = If true, use `hull()` to make higher quality joints between segments, at the cost of being much slower. Default: true
// Example(2D): Drawing a Path
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20);
// Example(2D): Closing a Path
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20, endcaps=true, closed=true);
// Example(2D): Fancy Arrow Endcaps
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcaps="arrow2");
// Example(2D): Modified Fancy Arrow Endcaps
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcaps="arrow2", endcap_width=6, endcap_length=3, endcap_extent=2);
// Example(2D): Mixed Endcaps
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcap1="tail2", endcap2="arrow2");
// Example(2D): Custom Endcap Shapes
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// arrow = [[0,0], [2,-3], [0.5,-2.3], [2,-4], [0.5,-3.5], [-0.5,-3.5], [-2,-4], [-0.5,-2.3], [-2,-3]];
// stroke(path, width=10, trim=3.5, endcaps=arrow);
// Example(2D): Variable Line Width
// path = circle(d=50,$fn=18);
// widths = [for (i=idx(path)) 10*i/len(path)+2];
// stroke(path,width=widths,$fa=1,$fs=1);
// Example: 3D Path with Endcaps
// path = rot([15,30,0], p=path3d(pentagon(d=50)));
// stroke(path, width=2, endcaps="arrow2", $fn=18);
// Example: 3D Path with Flat Endcaps
// path = rot([15,30,0], p=path3d(pentagon(d=50)));
// stroke(path, width=2, endcaps="arrow2", endcap_angle=0, $fn=18);
// Example: 3D Path with Mixed Endcaps
// path = rot([15,30,0], p=path3d(pentagon(d=50)));
// stroke(path, width=2, endcap1="arrow2", endcap2="tail", endcap_angle2=0, $fn=18);
module stroke(
path, width=1, closed=false,
endcaps, endcap1, endcap2,
trim, trim1, trim2,
endcap_width, endcap_width1, endcap_width2,
endcap_length, endcap_length1, endcap_length2,
endcap_extent, endcap_extent1, endcap_extent2,
endcap_angle, endcap_angle1, endcap_angle2,
convexity=10, hull=true
) {
function _endcap_shape(cap,linewidth,w,l,l2) = (
let(sq2=sqrt(2), l3=l-l2)
(cap=="round" || cap==true)? circle(d=1, $fn=max(8, segs(w/2))) :
cap=="chisel"? [[-0.5,0], [0,0.5], [0.5,0], [0,-0.5]] :
cap=="square"? [[-0.5,-0.5], [-0.5,0.5], [0.5,0.5], [0.5,-0.5]] :
cap=="diamond"? [[0,w/2], [w/2,0], [0,-w/2], [-w/2,0]] :
cap=="dot"? circle(d=3, $fn=max(12, segs(w*3/2))) :
cap=="x"? [for (a=[0:90:270]) each rot(a,p=[[w+sq2/2,w-sq2/2]/2, [w-sq2/2,w+sq2/2]/2, [0,sq2/2]]) ] :
cap=="cross"? [for (a=[0:90:270]) each rot(a,p=[[1,w]/2, [-1,w]/2, [-1,1]/2]) ] :
cap=="line"? [[w/2,0.5], [w/2,-0.5], [-w/2,-0.5], [-w/2,0.5]] :
cap=="arrow"? [[0,0], [w/2,-l2], [w/2,-l2-l], [0,-l], [-w/2,-l2-l], [-w/2,-l2]] :
cap=="arrow2"? [[0,0], [w/2,-l2-l], [0,-l], [-w/2,-l2-l]] :
cap=="tail"? [[0,0], [w/2,l2], [w/2,l2-l], [0,-l], [-w/2,l2-l], [-w/2,l2]] :
cap=="tail2"? [[w/2,0], [w/2,-l], [0,-l-l2], [-w/2,-l], [-w/2,0]] :
is_path(cap)? cap :
[]
) * linewidth;
assert(is_bool(closed));
assert(is_list(path));
if (len(path) > 1) {
assert(is_path(path,[2,3]), "The path argument must be a list of 2D or 3D points.");
}
path = deduplicate( closed? close_path(path) : path );
assert(is_num(width) || (is_vector(width) && len(width)==len(path)));
width = is_num(width)? [for (x=path) width] : width;
endcap1 = first_defined([endcap1, endcaps, "round"]);
endcap2 = first_defined([endcap2, endcaps, "round"]);
assert(is_bool(endcap1) || is_string(endcap1) || is_path(endcap1));
assert(is_bool(endcap2) || is_string(endcap2) || is_path(endcap2));
endcap_width1 = first_defined([endcap_width1, endcap_width, 3.5]);
endcap_width2 = first_defined([endcap_width2, endcap_width, 3.5]);
assert(is_num(endcap_width1));
assert(is_num(endcap_width2));
endcap_length1 = first_defined([endcap_length1, endcap_length, endcap_width1*0.5]);
endcap_length2 = first_defined([endcap_length2, endcap_length, endcap_width2*0.5]);
assert(is_num(endcap_length1));
assert(is_num(endcap_length2));
endcap_extent1 = first_defined([endcap_extent1, endcap_extent, endcap_width1*0.5]);
endcap_extent2 = first_defined([endcap_extent2, endcap_extent, endcap_width2*0.5]);
assert(is_num(endcap_extent1));
assert(is_num(endcap_extent2));
endcap_angle1 = first_defined([endcap_angle1, endcap_angle]);
endcap_angle2 = first_defined([endcap_angle2, endcap_angle]);
assert(is_undef(endcap_angle1)||is_num(endcap_angle1));
assert(is_undef(endcap_angle2)||is_num(endcap_angle2));
endcap_shape1 = _endcap_shape(endcap1, select(width,0), endcap_width1, endcap_length1, endcap_extent1);
endcap_shape2 = _endcap_shape(endcap2, select(width,-1), endcap_width2, endcap_length2, endcap_extent2);
trim1 = select(width,0) * first_defined([
trim1, trim,
(endcap1=="arrow")? endcap_length1-0.01 :
(endcap1=="arrow2")? endcap_length1*3/4 :
0
]);
assert(is_num(trim1));
trim2 = select(width,-1) * first_defined([
trim2, trim,
(endcap2=="arrow")? endcap_length2-0.01 :
(endcap2=="arrow2")? endcap_length2*3/4 :
0
]);
assert(is_num(trim2));
if (len(path) == 1) {
if (len(path[0]) == 2) {
translate(path[0]) circle(d=width[0]);
} else {
translate(path[0]) sphere(d=width[0]);
}
} else {
spos = path_pos_from_start(path,trim1,closed=false);
epos = path_pos_from_end(path,trim2,closed=false);
path2 = path_subselect(path, spos[0], spos[1], epos[0], epos[1]);
widths = concat(
[lerp(width[spos[0]], width[(spos[0]+1)%len(width)], spos[1])],
[for (i = [spos[0]+1:1:epos[0]]) width[i]],
[lerp(width[epos[0]], width[(epos[0]+1)%len(width)], epos[1])]
);
start_vec = select(path,0) - select(path,1);
end_vec = select(path,-1) - select(path,-2);
if (len(path[0]) == 2) {
// Straight segments
for (i = idx(path2,end=-2)) {
seg = select(path2,i,i+1);
delt = seg[1] - seg[0];
translate(seg[0]) {
rot(from=BACK,to=delt) {
trapezoid(w1=widths[i], w2=widths[i+1], h=norm(delt), anchor=FRONT);
}
}
}
// Joints
for (i = [1:1:len(path2)-2]) {
$fn = quantup(segs(widths[i]/2),4);
if (hull) {
hull() {
translate(path2[i]) {
rot(from=BACK, to=path2[i]-path2[i-1])
circle(d=widths[i]);
rot(from=BACK, to=path2[i+1]-path2[i])
circle(d=widths[i]);
}
}
} else {
translate(path2[i]) {
rot(from=BACK, to=path2[i]-path2[i-1])
circle(d=widths[i]);
rot(from=BACK, to=path2[i+1]-path2[i])
circle(d=widths[i]);
}
}
}
// Endcap1
translate(path[0]) {
start_vec = select(path,0) - select(path,1);
rot(from=BACK, to=start_vec) {
polygon(endcap_shape1);
}
}
// Endcap2
translate(select(path,-1)) {
rot(from=BACK, to=end_vec) {
polygon(endcap_shape2);
}
}
} else {
quatsums = Q_Cumulative([
for (i = idx(path2,end=-2)) let(
vec1 = i==0? UP : unit(path2[i]-path2[i-1], UP),
vec2 = unit(path2[i+1]-path2[i], UP),
axis = vector_axis(vec1,vec2),
ang = vector_angle(vec1,vec2)
) Quat(axis,ang)
]);
rotmats = [for (q=quatsums) Q_Matrix4(q)];
sides = [
for (i = idx(path2,end=-2))
quantup(segs(max(widths[i],widths[i+1])/2),4)
];
// Straight segments
for (i = idx(path2,end=-2)) {
dist = norm(path2[i+1] - path2[i]);
w1 = widths[i]/2;
w2 = widths[i+1]/2;
$fn = sides[i];
translate(path2[i]) {
multmatrix(rotmats[i]) {
cylinder(r1=w1, r2=w2, h=dist, center=false);
}
}
}
// Joints
for (i = [1:1:len(path2)-2]) {
$fn = sides[i];
translate(path2[i]) {
if (hull) {
hull(){
multmatrix(rotmats[i]) {
sphere(d=widths[i]);
}
multmatrix(rotmats[i-1]) {
sphere(d=widths[i]);
}
}
} else {
multmatrix(rotmats[i]) {
sphere(d=widths[i]);
}
multmatrix(rotmats[i-1]) {
sphere(d=widths[i]);
}
}
}
}
// Endcap1
translate(path[0]) {
multmatrix(rotmats[0] * xrot(180)) {
$fn = sides[0];
if (is_undef(endcap_angle1)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape1);
}
}
} else {
rotate([90,0,endcap_angle1]) {
linear_extrude(height=widths[0], center=true, convexity=convexity) {
polygon(endcap_shape1);
}
}
}
}
}
// Endcap2
translate(select(path,-1)) {
multmatrix(select(rotmats,-1)) {
$fn = select(sides,-1);
if (is_undef(endcap_angle2)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape2);
}
}
} else {
rotate([90,0,endcap_angle2]) {
linear_extrude(height=select(widths,-1), center=true, convexity=convexity) {
polygon(endcap_shape2);
}
}
}
}
}
}
}
}
// Function&Module: arc()
// Usage: 2D arc from 0º to `angle` degrees.
// arc(N, r|d, angle);
// Usage: 2D arc from START to END degrees.
// arc(N, r|d, angle=[START,END])
// Usage: 2D arc from `start` to `start+angle` degrees.
// arc(N, r|d, start, angle)
// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis.
// arc(N, width, thickness)
// Usage: Shortest 2D or 3D arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`.
// arc(N, cp, points=[P0,P1],[long],[cw],[ccw])
// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`.
// arc(N, points=[P0,P1,P2])
// Description:
// If called as a function, returns a 2D or 3D path forming an arc.
// If called as a module, creates a 2D arc polygon or pie slice shape.
// Arguments:
// N = Number of vertices to form the arc curve from.
// r = Radius of the arc.
// d = Diameter of the arc.
// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles.
// cp = Centerpoint of arc.
// points = Points on the arc.
// long = if given with cp and points takes the long arc instead of the default short arc. Default: false
// cw = if given with cp and 2 points takes the arc in the clockwise direction. Default: false
// ccw = if given with cp and 2 points takes the arc in the counter-clockwise direction. Default: false
// width = If given with `thickness`, arc starts and ends on X axis, to make a circle segment.
// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment.
// start = Start angle of arc.
// wedge = If true, include centerpoint `cp` in output to form pie slice shape.
// Examples(2D):
// arc(N=4, r=30, angle=30, wedge=true);
// arc(r=30, angle=30, wedge=true);
// arc(d=60, angle=30, wedge=true);
// arc(d=60, angle=120);
// arc(d=60, angle=120, wedge=true);
// arc(r=30, angle=[75,135], wedge=true);
// arc(r=30, start=45, angle=75, wedge=true);
// arc(width=60, thickness=20);
// arc(cp=[-10,5], points=[[20,10],[0,35]], wedge=true);
// arc(points=[[30,-5],[20,10],[-10,20]], wedge=true);
// arc(points=[[5,30],[-10,-10],[30,5]], wedge=true);
// Example(2D):
// path = arc(points=[[5,30],[-10,-10],[30,5]], wedge=true);
// stroke(closed=true, path);
// Example(FlatSpin):
// path = arc(points=[[0,30,0],[0,0,30],[30,0,0]]);
// trace_polyline(path, showpts=true, color="cyan");
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false, long=false, cw=false, ccw=false) =
// First try for 2D arc specified by width and thickness
is_def(width) && is_def(thickness)? (
assert(!any_defined([r,cp,points]) && !any([cw,ccw,long]),"Conflicting or invalid parameters to arc")
assert(width>0, "Width must be postive")
assert(thickness>0, "Thickness must be positive")
arc(N,points=[[width/2,0], [0,thickness], [-width/2,0]],wedge=wedge)
) : is_def(angle)? (
let(
parmok = !any_defined([points,width,thickness]) &&
((is_vector(angle,2) && is_undef(start)) || is_num(angle))
)
assert(parmok,"Invalid parameters in arc")
let(
cp = first_defined([cp,[0,0]]),
start = is_def(start)? start : is_vector(angle) ? angle[0] : 0,
angle = is_vector(angle)? angle[1]-angle[0] : angle,
r = get_radius(r=r, d=d)
)
assert(is_vector(cp,2),"Centerpoint must be a 2d vector")
assert(angle!=0, "Arc has zero length")
assert(r>0, "Arc radius invalid")
let(
N = max(3, is_undef(N)? ceil(segs(r)*abs(angle)/360) : N),
arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp],
extra = wedge? [cp] : []
)
concat(extra,arcpoints)
) :
assert(is_path(points,[2,3]),"Point list is invalid")
// Arc is 3D, so transform points to 2D and make a recursive call, then remap back to 3D
len(points[0])==3? (
assert(!(cw || ccw), "(Counter)clockwise isn't meaningful in 3d, so `cw` and `ccw` must be false")
assert(is_undef(cp) || is_vector(cp,3),"points are 3d so cp must be 3d")
let(
thirdpoint = is_def(cp) ? cp : points[2],
center2d = is_def(cp) ? project_plane(cp,thirdpoint,points[0],points[1]) : undef,
points2d = project_plane(points,thirdpoint,points[0],points[1])
)
lift_plane(arc(N,cp=center2d,points=points2d,wedge=wedge,long=long),thirdpoint,points[0],points[1])
) : is_def(cp)? (
// Arc defined by center plus two points, will have radius defined by center and points[0]
// and extent defined by direction of point[1] from the center
assert(is_vector(cp,2), "Centerpoint must be a 2d vector")
assert(len(points)==2, "When pointlist has length 3 centerpoint is not allowed")
assert(points[0]!=points[1], "Arc endpoints are equal")
assert(cp!=points[0]&&cp!=points[1], "Centerpoint equals an arc endpoint")
assert(count_true([long,cw,ccw])<=1, str("Only one of `long`, `cw` and `ccw` can be true",cw,ccw,long))
let(
angle = vector_angle(points[0], cp, points[1]),
v1 = points[0]-cp,
v2 = points[1]-cp,
prelim_dir = sign(det2([v1,v2])), // z component of cross product
dir = prelim_dir != 0
? prelim_dir
: assert(cw || ccw, "Collinear inputs don't define a unique arc")
1,
r=norm(v1),
final_angle = long || (ccw && dir<0) || (cw && dir>0) ? -dir*(360-angle) : dir*angle
)
arc(N,cp=cp,r=r,start=atan2(v1.y,v1.x),angle=final_angle,wedge=wedge)
) : (
// Final case is arc passing through three points, starting at point[0] and ending at point[3]
let(col = collinear(points[0],points[1],points[2]))
assert(!col, "Collinear inputs do not define an arc")
let(
cp = line_intersection(_normal_segment(points[0],points[1]),_normal_segment(points[1],points[2])),
// select order to be counterclockwise
dir = det2([points[1]-points[0],points[2]-points[1]]) > 0,
points = dir? select(points,[0,2]) : select(points,[2,0]),
r = norm(points[0]-cp),
theta_start = atan2(points[0].y-cp.y, points[0].x-cp.x),
theta_end = atan2(points[1].y-cp.y, points[1].x-cp.x),
angle = posmod(theta_end-theta_start, 360),
arcpts = arc(N,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge)
)
dir ? arcpts : reverse(arcpts)
);
module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false)
{
path = arc(N=N, r=r, angle=angle, d=d, cp=cp, points=points, width=width, thickness=thickness, start=start, wedge=wedge);
polygon(path);
}
function _normal_segment(p1,p2) =
let(center = (p1+p2)/2)
[center, center + norm(p1-p2)/2 * line_normal(p1,p2)];
// Function: turtle()
// Usage:
// turtle(commands, [state], [return_state])
// Description:
// Use a sequence of turtle graphics commands to generate a path. The parameter `commands` is a list of
// turtle commands and optional parameters for each command. The turtle state has a position, movement direction,
// movement distance, and default turn angle. If you do not give `state` as input then the turtle starts at the
// origin, pointed along the positive x axis with a movement distance of 1. By default, `turtle` returns just
// the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state.
// You can invoke `turtle` again with this full state to continue the turtle path where you left off.
//
// The turtle state is a list with three entries: the path constructed so far, the current step as a 2-vector, and the current default angle.
//
// For the list below, `dist` is the current movement distance.
//
// Commands | Arguments | What it does
// ------------ | ------------------ | -------------------------------
// "move" | [dist] | Move turtle scale*dist units in the turtle direction. Default dist=1.
// "xmove" | [dist] | Move turtle scale*dist units in the x direction. Default dist=1. Does not change turtle direction.
// "ymove" | [dist] | Move turtle scale*dist units in the y direction. Default dist=1. Does not change turtle direction.
// "xymove" | vector | Move turtle by the specified vector. Does not change turtle direction.
// "untilx" | xtarget | Move turtle in turtle direction until x==xtarget. Produces an error if xtarget is not reachable.
// "untily" | ytarget | Move turtle in turtle direction until y==ytarget. Produces an error if xtarget is not reachable.
// "jump" | point | Move the turtle to the specified point
// "xjump" | x | Move the turtle's x position to the specified value
// "yjump | y | Move the turtle's y position to the specified value
// "turn" | [angle] | Turn turtle direction by specified angle, or the turtle's default turn angle. The default angle starts at 90.
// "left" | [angle] | Same as "turn"
// "right" | [angle] | Same as "turn", -angle
// "angle" | angle | Set the default turn angle.
// "setdir" | dir | Set turtle direction. The parameter `dir` can be an angle or a vector.
// "length" | length | Change the turtle move distance to `length`
// "scale" | factor | Multiply turtle move distance by `factor`
// "addlength" | length | Add `length` to the turtle move distance
// "repeat" | count, commands | Repeats a list of commands `count` times.
// "arcleft" | radius, [angle] | Draw an arc from the current position toward the left at the specified radius and angle. The turtle turns by `angle`. A negative angle draws the arc to the right instead of the left, and leaves the turtle facing right. A negative radius draws the arc to the right but leaves the turtle facing left.
// "arcright" | radius, [angle] | Draw an arc from the current position toward the right at the specified radius and angle
// "arcleftto" | radius, angle | Draw an arc at the given radius turning toward the left until reaching the specified absolute angle.
// "arcrightto" | radius, angle | Draw an arc at the given radius turning toward the right until reaching the specified absolute angle.
// "arcsteps" | count | Specifies the number of segments to use for drawing arcs. If you set it to zero then the standard `$fn`, `$fa` and `$fs` variables define the number of segments.
//
// Arguments:
// commands = List of turtle commands
// state = Starting turtle state (from previous call) or starting point. Default: start at the origin, pointing right.
// full_state = If true return the full turtle state for continuing the path in subsequent turtle calls. Default: false
// repeat = Number of times to repeat the command list. Default: 1
//
// Example(2D): Simple rectangle
// path = turtle(["xmove",3, "ymove", "xmove",-3, "ymove",-1]);
// stroke(path,width=.1);
// Example(2D): Pentagon
// path=turtle(["angle",360/5,"move","turn","move","turn","move","turn","move"]);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagon using the repeat argument
// path=turtle(["move","turn",360/5],repeat=5);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagon using the repeat turtle command, setting the turn angle
// path=turtle(["angle",360/5,"repeat",5,["move","turn"]]);
// stroke(path,width=.1,closed=true);
// Example(2D): Pentagram
// path = turtle(["move","left",144], repeat=4);
// stroke(path,width=.05,closed=true);
// Example(2D): Sawtooth path
// path = turtle([
// "turn", 55,
// "untily", 2,
// "turn", -55-90,
// "untily", 0,
// "turn", 55+90,
// "untily", 2.5,
// "turn", -55-90,
// "untily", 0,
// "turn", 55+90,
// "untily", 3,
// "turn", -55-90,
// "untily", 0
// ]);
// stroke(path, width=.1);
// Example(2D): Simpler way to draw the sawtooth. The direction of the turtle is preserved when executing "yjump".
// path = turtle([
// "turn", 55,
// "untily", 2,
// "yjump", 0,
// "untily", 2.5,
// "yjump", 0,
// "untily", 3,
// "yjump", 0,
// ]);
// stroke(path, width=.1);
// Example(2DMed): square spiral
// path = turtle(["move","left","addlength",1],repeat=50);
// stroke(path,width=.2);
// Example(2DMed): pentagonal spiral
// path = turtle(["move","left",360/5,"addlength",1],repeat=50);
// stroke(path,width=.2);
// Example(2DMed): yet another spiral, without using `repeat`
// path = turtle(concat(["angle",71],flatten(repeat(["move","left","addlength",1],50))));
// stroke(path,width=.2);
// Example(2DMed): The previous spiral grows linearly and eventually intersects itself. This one grows geometrically and does not.
// path = turtle(["move","left",71,"scale",1.05],repeat=50);
// stroke(path,width=.05);
// Example(2D): Koch Snowflake
// function koch_unit(depth) =
// depth==0 ? ["move"] :
// concat(
// koch_unit(depth-1),
// ["right"],
// koch_unit(depth-1),
// ["left","left"],
// koch_unit(depth-1),
// ["right"],
// koch_unit(depth-1)
// );
// koch=concat(["angle",60,"repeat",3],[concat(koch_unit(3),["left","left"])]);
// polygon(turtle(koch));
function turtle(commands, state=[[[0,0]],[1,0],90,0], full_state=false, repeat=1) =
let( state = is_vector(state) ? [[state],[1,0],90,0] : state )
repeat == 1?
_turtle(commands,state,full_state) :
_turtle_repeat(commands, state, full_state, repeat);
function _turtle_repeat(commands, state, full_state, repeat) =
repeat==1?
_turtle(commands,state,full_state) :
_turtle_repeat(commands, _turtle(commands, state, true), full_state, repeat-1);
function _turtle_command_len(commands, index) =
let( one_or_two_arg = ["arcleft","arcright", "arcleftto", "arcrightto"] )
commands[index] == "repeat"? 3 : // Repeat command requires 2 args
// For these, the first arg is required, second arg is present if it is not a string
in_list(commands[index], one_or_two_arg) && len(commands)>index+2 && !is_string(commands[index+2]) ? 3 :
is_string(commands[index+1])? 1 : // If 2nd item is a string it's must be a new command
2; // Otherwise we have command and arg
function _turtle(commands, state, full_state, index=0) =
index < len(commands) ?
_turtle(commands,
_turtle_command(commands[index],commands[index+1],commands[index+2],state,index),
full_state,
index+_turtle_command_len(commands,index)
) :
( full_state ? state : state[0] );
// Turtle state: state = [path, step_vector, default angle]
function _turtle_command(command, parm, parm2, state, index) =
command == "repeat"?
assert(is_num(parm),str("\"repeat\" command requires a numeric repeat count at index ",index))
assert(is_list(parm2),str("\"repeat\" command requires a command list parameter at index ",index))
_turtle_repeat(parm2, state, true, parm) :
let(
path = 0,
step=1,
angle=2,
arcsteps=3,
parm = !is_string(parm) ? parm : undef,
parm2 = !is_string(parm2) ? parm2 : undef,
needvec = ["jump", "xymove"],
neednum = ["untilx","untily","xjump","yjump","angle","length","scale","addlength"],
needeither = ["setdir"],
chvec = !in_list(command,needvec) || is_vector(parm,2),
chnum = !in_list(command,neednum) || is_num(parm),
vec_or_num = !in_list(command,needeither) || (is_num(parm) || is_vector(parm,2)),
lastpt = select(state[path],-1)
)
assert(chvec,str("\"",command,"\" requires a vector parameter at index ",index))
assert(chnum,str("\"",command,"\" requires a numeric parameter at index ",index))
assert(vec_or_num,str("\"",command,"\" requires a vector or numeric parameter at index ",index))
command=="move" ? list_set(state, path, concat(state[path],[default(parm,1)*state[step]+lastpt])) :
command=="untilx" ? (
let(
int = line_intersection([lastpt,lastpt+state[step]], [[parm,0],[parm,1]]),
xgood = sign(state[step].x) == sign(int.x-lastpt.x)
)
assert(xgood,str("\"untilx\" never reaches desired goal at index ",index))
list_set(state,path,concat(state[path],[int]))
) :
command=="untily" ? (
let(
int = line_intersection([lastpt,lastpt+state[step]], [[0,parm],[1,parm]]),
ygood = is_def(int) && sign(state[step].y) == sign(int.y-lastpt.y)
)
assert(ygood,str("\"untily\" never reaches desired goal at index ",index))
list_set(state,path,concat(state[path],[int]))
) :
command=="xmove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[1,0]+lastpt])):
command=="ymove" ? list_set(state, path, concat(state[path],[default(parm,1)*norm(state[step])*[0,1]+lastpt])):
command=="xymove" ? list_set(state, path, concat(state[path], [lastpt+parm])):
command=="jump" ? list_set(state, path, concat(state[path],[parm])):
command=="xjump" ? list_set(state, path, concat(state[path],[[parm,lastpt.y]])):
command=="yjump" ? list_set(state, path, concat(state[path],[[lastpt.x,parm]])):
command=="turn" || command=="left" ? list_set(state, step, rot(default(parm,state[angle]),p=state[step],planar=true)) :
command=="right" ? list_set(state, step, rot(-default(parm,state[angle]),p=state[step],planar=true)) :
command=="angle" ? list_set(state, angle, parm) :
command=="setdir" ? (
is_vector(parm) ?
list_set(state, step, norm(state[step]) * unit(parm)) :
list_set(state, step, norm(state[step]) * [cos(parm),sin(parm)])
) :
command=="length" ? list_set(state, step, parm*unit(state[step])) :
command=="scale" ? list_set(state, step, parm*state[step]) :
command=="addlength" ? list_set(state, step, state[step]+unit(state[step])*parm) :
command=="arcsteps" ? list_set(state, arcsteps, parm) :
command=="arcleft" || command=="arcright" ?
assert(is_num(parm),str("\"",command,"\" command requires a numeric radius value at index ",index))
let(
myangle = default(parm2,state[angle]),
lrsign = command=="arcleft" ? 1 : -1,
radius = parm*sign(myangle),
center = lastpt + lrsign*radius*line_normal([0,0],state[step]),
steps = state[arcsteps]==0 ? segs(abs(radius)) : state[arcsteps],
arcpath = myangle == 0 || radius == 0 ? [] : arc(
steps,
points = [
lastpt,
rot(cp=center, p=lastpt, a=sign(parm)*lrsign*myangle/2),
rot(cp=center, p=lastpt, a=sign(parm)*lrsign*myangle)
]
)
)
list_set(
state, [path,step], [
concat(state[path], slice(arcpath,1,-1)),
rot(lrsign * myangle,p=state[step],planar=true)
]
) :
command=="arcleftto" || command=="arcrightto" ?
assert(is_num(parm),str("\"",command,"\" command requires a numeric radius value at index ",index))
assert(is_num(parm2),str("\"",command,"\" command requires a numeric angle value at index ",index))
let(
radius = parm,
lrsign = command=="arcleftto" ? 1 : -1,
center = lastpt + lrsign*radius*line_normal([0,0],state[step]),
steps = state[arcsteps]==0 ? segs(abs(radius)) : state[arcsteps],
start_angle = posmod(atan2(state[step].y, state[step].x),360),
end_angle = posmod(parm2,360),
delta_angle = -start_angle + (lrsign * end_angle < lrsign*start_angle ? end_angle+lrsign*360 : end_angle),
arcpath = delta_angle == 0 || radius==0 ? [] : arc(
steps,
points = [
lastpt,
rot(cp=center, p=lastpt, a=sign(radius)*delta_angle/2),
rot(cp=center, p=lastpt, a=sign(radius)*delta_angle)
]
)
)
list_set(
state, [path,step], [
concat(state[path], slice(arcpath,1,-1)),
rot(delta_angle,p=state[step],planar=true)
]
) :
assert(false,str("Unknown turtle command \"",command,"\" at index",index))
[];
// Section: 2D Primitives
// Function&Module: rect()
// Usage:
// rect(size, [center], [rounding], [chamfer], [anchor], [spin])
// Description:
// When called as a module, creates a 2D rectangle of the given size, with optional rounding or chamfering.
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
// Arguments:
// size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size.
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D):
// rect(40);
// Example(2D): Centered
// rect([40,30], center=true);
// Example(2D): Anchored
// rect([40,30], anchor=FRONT);
// Example(2D): Spun
// rect([40,30], anchor=FRONT, spin=30);
// Example(2D): Chamferred Rect
// rect([40,30], chamfer=5, center=true);
// Example(2D): Rounded Rect
// rect([40,30], rounding=5, center=true);
// Example(2D): Mixed Chamferring and Rounding
// rect([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = rect([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
// move_copies(path) color("blue") circle(d=2,$fn=8);
module rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) {
size = is_num(size)? [size,size] : point2d(size);
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT);
if (rounding==0 && chamfer==0) {
attachable(anchor,spin, two_d=true, size=size) {
square(size, center=true);
children();
}
} else {
pts = rect(size=size, rounding=rounding, chamfer=chamfer, center=true);
attachable(anchor,spin, two_d=true, path=pts) {
polygon(pts);
children();
}
}
}
function rect(size=1, center, rounding=0, chamfer=0, anchor, spin=0) =
assert(is_num(size) || is_vector(size))
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
let(
size = is_num(size)? [size,size] : point2d(size),
anchor = get_anchor(anchor, center, FRONT+LEFT, FRONT+LEFT),
complex = rounding!=0 || chamfer!=0
)
(rounding==0 && chamfer==0)? let(
path = [
[ size.x/2, -size.y/2],
[-size.x/2, -size.y/2],
[-size.x/2, size.y/2],
[ size.x/2, size.y/2]
]
) rot(spin, p=move(-vmul(anchor,size/2), p=path)) :
let(
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
quadorder = [3,2,1,0],
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
)
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the rect width.")
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the rect height.")
let(
path = [
for(i = [0:3])
let(
quad = quadorder[i],
inset = insets[quad],
cverts = quant(segs(inset),4)/4,
cp = vmul(size/2-[inset,inset], quadpos[quad]),
step = 90/cverts,
angs =
chamfer[quad] > 0? [0,-90]-90*[i,i] :
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
[0]
)
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
]
) complex?
reorient(anchor,spin, two_d=true, path=path, p=path) :
reorient(anchor,spin, two_d=true, size=size, p=path);
// Function&Module: oval()
// Usage:
// oval(r|d, [realign], [circum])
// Description:
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
// Arguments:
// r = Radius of the circle/oval to create. Can be a scalar, or a list of sizes per axis.
// d = Diameter of the circle/oval to create. Can be a scalar, or a list of sizes per axis.
// realign = If true, rotates the polygon that approximates the circle/oval by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D): By Radius
// oval(r=25);
// Example(2D): By Diameter
// oval(d=50);
// Example(2D): Anchoring
// oval(d=50, anchor=FRONT);
// Example(2D): Spin
// oval(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = oval(d=50, anchor=FRONT, spin=45);
module oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
r = get_radius(r=r, d=d, dflt=1);
sides = segs(max(r));
sc = circum? (1 / cos(180/sides)) : 1;
rx = default(r[0],r) * sc;
ry = default(r[1],r) * sc;
attachable(anchor,spin, two_d=true, r=[rx,ry]) {
if (rx < ry) {
xscale(rx/ry) {
zrot(realign? 180/sides : 0) {
circle(r=ry, $fn=sides);
}
}
} else {
yscale(ry/rx) {
zrot(realign? 180/sides : 0) {
circle(r=rx, $fn=sides);
}
}
}
children();
}
}
function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(max(r)),
offset = realign? 180/sides : 0,
sc = circum? (1 / cos(180/sides)) : 1,
rx = default(r[0],r) * sc,
ry = default(r[1],r) * sc,
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) [rx*cos(a), ry*sin(a)]]
) reorient(anchor,spin, two_d=true, r=[rx,ry], p=pts);
// Section: 2D N-Gons
// Function&Module: regular_ngon()
// Usage:
// regular_ngon(n, r|d|or|od, [realign]);
// regular_ngon(n, ir|id, [realign]);
// regular_ngon(n, side, [realign]);
// Description:
// When called as a function, returns a 2D path for a regular N-sided polygon.
// When called as a module, creates a 2D regular N-sided polygon.
// Arguments:
// n = The number of sides.
// or = Outside radius, at points.
// r = Same as or
// od = Outside diameter, at points.
// d = Same as od
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Extra Anchors:
// "tip0", "tip1", etc. = Each tip has an anchor, pointing outwards.
// "side0", "side1", etc. = The center of each side has an anchor, pointing outwards.
// Example(2D): by Outer Size
// regular_ngon(n=5, or=30);
// regular_ngon(n=5, od=60);
// Example(2D): by Inner Size
// regular_ngon(n=5, ir=30);
// regular_ngon(n=5, id=60);
// Example(2D): by Side Length
// regular_ngon(n=8, side=20);
// Example(2D): Realigned
// regular_ngon(n=8, side=20, realign=true);
// Example(2D): Rounded
// regular_ngon(n=5, od=100, rounding=20, $fn=20);
// Example(2D): Called as Function
// stroke(closed=true, regular_ngon(n=6, or=30));
function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
let(
sc = 1/cos(180/n),
r = get_radius(r1=ir*sc, r2=or, r=r, d1=id*sc, d2=od, d=d, dflt=side/2/sin(180/n))
)
assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.")
let(
inset = opp_ang_to_hyp(rounding, (180-360/n)/2),
path = rounding==0? oval(r=r, realign=realign, $fn=n) : (
let(
steps = floor(segs(r)/n),
step = 360/n/steps,
path2 = [
for (i = [0:1:n-1]) let(
a = 360 - i*360/n - (realign? 180/n : 0),
p = polar_to_xy(r-inset, a)
)
each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n)
],
maxx_idx = max_index(subindex(path2,0)),
path3 = polygon_shift(path2,maxx_idx)
) path3
),
anchors = !is_string(anchor)? [] : [
for (i = [0:1:n-1]) let(
a1 = 360 - i*360/n - (realign? 180/n : 0),
a2 = a1 - 360/n,
p1 = polar_to_xy(r,a1),
p2 = polar_to_xy(r,a2),
tipp = polar_to_xy(r-inset+rounding,a1),
pos = (p1+p2)/2
) each [
anchorpt(str("tip",i), tipp, unit(tipp,BACK), 0),
anchorpt(str("side",i), pos, unit(pos,BACK), 0),
]
]
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path, anchors=anchors);
module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) {
sc = 1/cos(180/n);
r = get_radius(r1=ir*sc, r2=or, r=r, d1=id*sc, d2=od, d=d, dflt=side/2/sin(180/n));
assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.");
path = regular_ngon(n=n, r=r, rounding=rounding, realign=realign);
inset = opp_ang_to_hyp(rounding, (180-360/n)/2);
anchors = [
for (i = [0:1:n-1]) let(
a1 = 360 - i*360/n - (realign? 180/n : 0),
a2 = a1 - 360/n,
p1 = polar_to_xy(r,a1),
p2 = polar_to_xy(r,a2),
tipp = polar_to_xy(r-inset+rounding,a1),
pos = (p1+p2)/2
) each [
anchorpt(str("tip",i), tipp, unit(tipp,BACK), 0),
anchorpt(str("side",i), pos, unit(pos,BACK), 0),
]
];
attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) {
polygon(path);
children();
}
}
// Function&Module: pentagon()
// Usage:
// pentagon(or|od, [realign]);
// pentagon(ir|id, [realign]);
// pentagon(side, [realign]);
// Description:
// When called as a function, returns a 2D path for a regular pentagon.
// When called as a module, creates a 2D regular pentagon.
// Arguments:
// or = Outside radius, at points.
// r = Same as or.
// od = Outside diameter, at points.
// d = Same as od.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Extra Anchors:
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
// "side0" ... "side4" = The center of each side has an anchor, pointing outwards.
// Example(2D): by Outer Size
// pentagon(or=30);
// pentagon(od=60);
// Example(2D): by Inner Size
// pentagon(ir=30);
// pentagon(id=60);
// Example(2D): by Side Length
// pentagon(side=20);
// Example(2D): Realigned
// pentagon(side=20, realign=true);
// Example(2D): Rounded
// pentagon(od=100, rounding=20, $fn=20);
// Example(2D): Called as Function
// stroke(closed=true, pentagon(or=30));
function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
// Function&Module: hexagon()
// Usage:
// hexagon(or, od, ir, id, side);
// Description:
// When called as a function, returns a 2D path for a regular hexagon.
// When called as a module, creates a 2D regular hexagon.
// Arguments:
// or = Outside radius, at points.
// r = Same as or
// od = Outside diameter, at points.
// d = Same as od
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Extra Anchors:
// "tip0" ... "tip5" = Each tip has an anchor, pointing outwards.
// "side0" ... "side5" = The center of each side has an anchor, pointing outwards.
// Example(2D): by Outer Size
// hexagon(or=30);
// hexagon(od=60);
// Example(2D): by Inner Size
// hexagon(ir=30);
// hexagon(id=60);
// Example(2D): by Side Length
// hexagon(side=20);
// Example(2D): Realigned
// hexagon(side=20, realign=true);
// Example(2D): Rounded
// hexagon(od=100, rounding=20, $fn=20);
// Example(2D): Called as Function
// stroke(closed=true, hexagon(or=30));
function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
// Function&Module: octagon()
// Usage:
// octagon(or, od, ir, id, side);
// Description:
// When called as a function, returns a 2D path for a regular octagon.
// When called as a module, creates a 2D regular octagon.
// Arguments:
// or = Outside radius, at points.
// r = Same as or
// od = Outside diameter, at points.
// d = Same as od
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Extra Anchors:
// "tip0" ... "tip7" = Each tip has an anchor, pointing outwards.
// "side0" ... "side7" = The center of each side has an anchor, pointing outwards.
// Example(2D): by Outer Size
// octagon(or=30);
// octagon(od=60);
// Example(2D): by Inner Size
// octagon(ir=30);
// octagon(id=60);
// Example(2D): by Side Length
// octagon(side=20);
// Example(2D): Realigned
// octagon(side=20, realign=true);
// Example(2D): Rounded
// octagon(od=100, rounding=20, $fn=20);
// Example(2D): Called as Function
// stroke(closed=true, octagon(or=30));
function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
// Section: Other 2D Shapes
// Function&Module: trapezoid()
// Usage:
// trapezoid(h, w1, w2);
// Description:
// When called as a function, returns a 2D path for a trapezoid with parallel front and back sides.
// When called as a module, creates a 2D trapezoid with parallel front and back sides.
// Arguments:
// h = The Y axis height of the trapezoid.
// w1 = The X axis width of the front end of the trapezoid.
// w2 = The X axis width of the back end of the trapezoid.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Examples(2D):
// trapezoid(h=30, w1=40, w2=20);
// trapezoid(h=25, w1=20, w2=35);
// trapezoid(h=20, w1=40, w2=0);
// Example(2D): Called as Function
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
function trapezoid(h, w1, w2, anchor=CENTER, spin=0) =
let(
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2]]
) reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, p=path);
module trapezoid(h, w1, w2, anchor=CENTER, spin=0) {
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2]];
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2) {
polygon(path);
children();
}
}
// Function&Module: teardrop2d()
//
// Description:
// Makes a 2D teardrop shape. Useful for extruding into 3D printable holes.
//
// Usage:
// teardrop2d(r|d, [ang], [cap_h]);
//
// Arguments:
// r = radius of circular part of teardrop. (Default: 1)
// d = diameter of spherical portion of bottom. (Use instead of r)
// ang = angle of hat walls from the Y axis. (Default: 45 degrees)
// cap_h = if given, height above center where the shape will be truncated.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
//
// Example(2D): Typical Shape
// teardrop2d(r=30, ang=30);
// Example(2D): Crop Cap
// teardrop2d(r=30, ang=30, cap_h=40);
// Example(2D): Close Crop
// teardrop2d(r=30, ang=30, cap_h=20);
module teardrop2d(r, d, ang=45, cap_h, anchor=CENTER, spin=0)
{
path = teardrop2d(r=r, d=d, ang=ang, cap_h=cap_h);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
function teardrop2d(r, d, ang=45, cap_h, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
cord = 2 * r * cos(ang),
cord_h = r * sin(ang),
tip_y = (cord/2)/tan(ang),
cap_h = min((!is_undef(cap_h)? cap_h : tip_y+cord_h), tip_y+cord_h),
cap_w = cord * (1 - (cap_h - cord_h)/tip_y),
ang = min(ang,asin(cap_h/r)),
sa = 180 - ang,
ea = 360 + ang,
steps = segs(r)*(ea-sa)/360,
step = (ea-sa)/steps,
path = deduplicate(
[
[ cap_w/2,cap_h],
for (i=[0:1:steps]) let(a=ea-i*step) r*[cos(a),sin(a)],
[-cap_w/2,cap_h]
], closed=true
),
maxx_idx = max_index(subindex(path,0)),
path2 = polygon_shift(path,maxx_idx)
) reorient(anchor,spin, two_d=true, path=path2, p=path2);
// Function&Module: glued_circles()
// Usage:
// glued_circles(r|d, spread, tangent);
// Description:
// When called as a function, returns a 2D path forming a shape of two circles joined by curved waist.
// When called as a module, creates a 2D shape of two circles joined by curved waist.
// Arguments:
// r = The radius of the end circles.
// d = The diameter of the end circles.
// spread = The distance between the centers of the end circles.
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Examples(2D):
// glued_circles(r=15, spread=40, tangent=45);
// glued_circles(d=30, spread=30, tangent=30);
// glued_circles(d=30, spread=30, tangent=15);
// glued_circles(d=30, spread=30, tangent=-30);
// Example(2D): Called as Function
// stroke(closed=true, glued_circles(r=15, spread=40, tangent=45));
function glued_circles(r, d, spread=10, tangent=30, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=10),
r2 = (spread/2 / sin(tangent)) - r,
cp1 = [spread/2, 0],
cp2 = [0, (r+r2)*cos(tangent)],
sa1 = 90-tangent,
ea1 = 270+tangent,
lobearc = ea1-sa1,
lobesegs = floor(segs(r)*lobearc/360),
lobestep = lobearc / lobesegs,
sa2 = 270-tangent,
ea2 = 270+tangent,
subarc = ea2-sa2,
arcsegs = ceil(segs(r2)*abs(subarc)/360),
arcstep = subarc / arcsegs,
path = concat(
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep) r * [cos(a),sin(a)] - cp1],
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep+180) r2 * [cos(a),sin(a)] - cp2],
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
),
maxx_idx = max_index(subindex(path,0)),
path2 = reverse_polygon(polygon_shift(path,maxx_idx))
) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2);
module glued_circles(r, d, spread=10, tangent=30, anchor=CENTER, spin=0) {
path = glued_circles(r=r, d=d, spread=spread, tangent=tangent);
attachable(anchor,spin, two_d=true, path=path, extent=true) {
polygon(path);
children();
}
}
// Function&Module: star()
// Usage:
// star(n, r|d|or|od, ir|id|step, [realign]);
// Description:
// When called as a function, returns the path needed to create a star polygon with N points.
// When called as a module, creates a star polygon with N points.
// Arguments:
// n = The number of stellate tips on the star.
// r = The radius to the tips of the star.
// or = Same as r
// d = The diameter to the tips of the star.
// od = Same as d
// ir = The radius to the inner corners of the star.
// id = The diameter to the inner corners of the star.
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Extra Anchors:
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
// "corner0" ... "corner4" = The inside corner between each tip has an anchor, pointing outwards.
// "midpt0" ... "midpt4" = The center-point between each pair or tips has an anchor, pointing outwards.
// Examples(2D):
// star(n=5, r=50, ir=25);
// star(n=5, r=50, step=2);
// star(n=7, r=50, step=2);
// star(n=7, r=50, step=3);
// Example(2D): Realigned
// star(n=7, r=50, step=3, realign=true);
// Example(2D): Called as Function
// stroke(closed=true, star(n=5, r=50, ir=25));
function star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=0) =
let(
r = get_radius(r1=or, d1=od, r=r, d=d),
count = num_defined([ir,id,step]),
stepOK = is_undef(step) || (step>1 && step<n/2)
)
assert(is_def(n), "Must specify number of points, n")
assert(count==1, "Must specify exactly one of ir, id, step")
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
let(
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
ir = get_radius(r=ir, d=id, dflt=stepr),
offset = realign? 180/n : 0,
path = [for(i=[2*n:-1:1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
anchors = !is_string(anchor)? [] : [
for (i = [0:1:n-1]) let(
a1 = 360 - i*360/n - (realign? 180/n : 0),
a2 = a1 - 180/n,
a3 = a1 - 360/n,
p1 = polar_to_xy(r,a1),
p2 = polar_to_xy(ir,a2),
p3 = polar_to_xy(r,a3),
pos = (p1+p3)/2
) each [
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
anchorpt(str("corner",i), p2, unit(p2,BACK), 0),
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
]
]
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
module star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=0) {
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
ir = get_radius(r=ir, d=id, dflt=stepr);
path = star(n=n, r=r, ir=ir, realign=realign);
anchors = [
for (i = [0:1:n-1]) let(
a1 = 360 - i*360/n - (realign? 180/n : 0),
a2 = a1 - 180/n,
a3 = a1 - 360/n,
p1 = polar_to_xy(r,a1),
p2 = polar_to_xy(ir,a2),
p3 = polar_to_xy(r,a3),
pos = (p1+p3)/2
) each [
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
anchorpt(str("corner",i), p2, unit(p2,BACK), 0),
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
]
];
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
polygon(path);
children();
}
}
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
// Function&Module: supershape()
// Usage:
// supershape(step,[m1],[m2],[n1],[n2],[n3],[a],[b],[r|d]);
// Description:
// When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
// m1 = The m1 argument for the superformula. Default: 4.
// m2 = The m2 argument for the superformula. Default: m1.
// n1 = The n1 argument for the superformula. Default: 1.
// n2 = The n2 argument for the superformula. Default: n1.
// n3 = The n3 argument for the superformula. Default: n2.
// a = The a argument for the superformula. Default: 1.
// b = The b argument for the superformula. Default: a.
// r = Radius of the shape. Scale shape to fit in a circle of radius r.
// d = Diameter of the shape. Scale shape to fit in a circle of diameter d.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// Example(2D):
// supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,r=50);
// Example(2D): Called as Function
// stroke(closed=true, supershape(step=0.5,m1=16,m2=16,n1=0.5,n2=0.5,n3=16,d=100));
// Examples(2D,Med):
// for(n=[2:5]) right(2.5*(n-2)) supershape(m1=4,m2=4,n1=n,a=1,b=2); // Superellipses
// m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(.5,m1=m[i],n1=1);
// m=[6,8,10,12]; for(i=[0:3]) right(2.7*i) supershape(.5,m1=m[i],n1=1,b=1.5); // m should be even
// m=[1,2,3,5]; for(i=[0:3]) fwd(1.5*i) supershape(m1=m[i],n1=0.4);
// supershape(m1=5, n1=4, n2=1); right(2.5) supershape(m1=5, n1=40, n2=10);
// m=[2,3,5,7]; for(i=[0:3]) right(2.5*i) supershape(m1=m[i], n1=60, n2=55, n3=30);
// n=[0.5,0.2,0.1,0.02]; for(i=[0:3]) right(2.5*i) supershape(m1=5,n1=n[i], n2=1.7);
// supershape(m1=2, n1=1, n2=4, n3=8);
// supershape(m1=7, n1=2, n2=8, n3=4);
// supershape(m1=7, n1=3, n2=4, n3=17);
// supershape(m1=4, n1=1/2, n2=1/2, n3=4);
// supershape(m1=4, n1=4.0,n2=16, n3=1.5, a=0.9, b=9);
// for(i=[1:4]) right(3*i) supershape(m1=i, m2=3*i, n1=2);
// m=[4,6,10]; for(i=[0:2]) right(i*5) supershape(m1=m[i], n1=12, n2=8, n3=5, a=2.7);
// for(i=[-1.5:3:1.5]) right(i*1.5) supershape(m1=2,m2=10,n1=i,n2=1);
// for(i=[1:3],j=[-1,1]) translate([3.5*i,1.5*j])supershape(m1=4,m2=6,n1=i*j,n2=1);
// for(i=[1:3]) right(2.5*i)supershape(step=.5,m1=88, m2=64, n1=-i*i,n2=1,r=1);
// Examples:
// linear_extrude(height=0.3, scale=0) supershape(step=1, m1=6, n1=0.4, n2=0, n3=6);
// linear_extrude(height=5, scale=0) supershape(step=1, b=3, m1=6, n1=3.8, n2=16, n3=10);
function supershape(step=0.5,m1=4,m2=undef,n1=1,n2=undef,n3=undef,a=1,b=undef,r=undef,d=undef,anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=undef),
m2 = is_def(m2) ? m2 : m1,
n2 = is_def(n2) ? n2 : n1,
n3 = is_def(n3) ? n3 : n2,
b = is_def(b) ? b : a,
steps = ceil(360/step),
step = 360/steps,
angs = [for (i = [0:steps]) step*i],
rads = [for (theta = angs) _superformula(theta=theta,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b)],
scale = is_def(r) ? r/max(rads) : 1,
path = [for (i = [steps:-1:1]) let(a=angs[i]) scale*rads[i]*[cos(a), sin(a)]]
) reorient(anchor,spin, two_d=true, path=path, p=path);
module supershape(step=0.5,m1=4,m2=undef,n1,n2=undef,n3=undef,a=1,b=undef, r=undef, d=undef, anchor=CENTER, spin=0) {
path = supershape(step=step,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b,r=r,d=d);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
// Section: 2D Masking Shapes
// Function&Module: mask2d_roundover()
// Usage:
// mask2d_roundover(r|d, [inset], [excess]);
// Description:
// Creates a 2D roundover/bead mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// r = Radius of the roundover.
// d = Diameter of the roundover.
// inset = Optional bead inset size. Default: 0
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Roundover Mask
// mask2d_roundover(r=10);
// Example(2D): 2D Bead Mask
// mask2d_roundover(r=10,inset=2);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_roundover(r=10, inset=2);
module mask2d_roundover(r, d, excess, inset=0, anchor=CENTER,spin=0) {
path = mask2d_roundover(r=r,d=d,excess=excess,inset=inset);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
function mask2d_roundover(r, d, excess, inset=0, anchor=CENTER,spin=0) =
assert(is_num(r)||is_num(d))
assert(is_undef(excess)||is_num(excess))
assert(is_num(inset)||(is_vector(inset)&&len(inset)==2))
let(
inset = is_list(inset)? inset : [inset,inset],
excess = default(excess,$overlap),
r = get_radius(r=r,d=d,dflt=1),
steps = quantup(segs(r),4)/4,
step = 90/steps,
path = [
[r+inset.x,-excess],
[-excess,-excess],
[-excess, r+inset.y],
for (i=[0:1:steps]) [r,r] + inset + polar_to_xy(r,180+i*step)
]
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
// Function&Module: mask2d_cove()
// Usage:
// mask2d_cove(r|d, [inset], [excess]);
// Description:
// Creates a 2D cove mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// r = Radius of the cove.
// d = Diameter of the cove.
// inset = Optional amount to inset code from corner. Default: 0
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Cove Mask
// mask2d_cove(r=10);
// Example(2D): 2D Inset Cove Mask
// mask2d_cove(r=10,inset=3);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_cove(r=10, inset=2);
module mask2d_cove(r, d, inset=0, excess, anchor=CENTER,spin=0) {
path = mask2d_cove(r=r,d=d,excess=excess,inset=inset);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
function mask2d_cove(r, d, inset=0, excess, anchor=CENTER,spin=0) =
assert(is_num(r)||is_num(d))
assert(is_undef(excess)||is_num(excess))
assert(is_num(inset)||(is_vector(inset)&&len(inset)==2))
let(
inset = is_list(inset)? inset : [inset,inset],
excess = default(excess,$overlap),
r = get_radius(r=r,d=d,dflt=1),
steps = quantup(segs(r),4)/4,
step = 90/steps,
path = [
[r+inset.x,-excess],
[-excess,-excess],
[-excess, r+inset.y],
for (i=[0:1:steps]) inset + polar_to_xy(r,90-i*step)
]
) reorient(anchor,spin, two_d=true, path=path, p=path);
// Function&Module: mask2d_chamfer()
// Usage:
// mask2d_chamfer(x|y|edge, [angle], [inset], [excess]);
// Description:
// Creates a 2D chamfer mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// x = The width of the chamfer.
// y = The height of the chamfer.
// edge = The length of the edge of the chamfer.
// angle = The angle of the chamfer edge, away from vertical. Default: 45.
// inset = Optional amount to inset code from corner. Default: 0
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Chamfer Mask
// mask2d_chamfer(x=10);
// Example(2D): 2D Chamfer Mask by Width.
// mask2d_chamfer(x=10, angle=30);
// Example(2D): 2D Chamfer Mask by Height.
// mask2d_chamfer(y=10, angle=30);
// Example(2D): 2D Inset Chamfer Mask
// mask2d_chamfer(x=10, inset=2);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_chamfer(x=10, inset=2);
module mask2d_chamfer(x, y, edge, angle=45, excess, inset=0, anchor=CENTER,spin=0) {
path = mask2d_chamfer(x=x, y=y, edge=edge, angle=angle, excess=excess, inset=inset);
attachable(anchor,spin, two_d=true, path=path, extent=true) {
polygon(path);
children();
}
}
function mask2d_chamfer(x, y, edge, angle=45, excess, inset=0, anchor=CENTER,spin=0) =
assert(num_defined([x,y,edge])==1)
assert(is_num(first_defined([x,y,edge])))
assert(is_num(angle))
assert(is_undef(excess)||is_num(excess))
assert(is_num(inset)||(is_vector(inset)&&len(inset)==2))
let(
inset = is_list(inset)? inset : [inset,inset],
excess = default(excess,$overlap),
x = !is_undef(x)? x :
!is_undef(y)? adj_ang_to_opp(adj=y,ang=angle) :
hyp_ang_to_opp(hyp=edge,ang=angle),
y = opp_ang_to_adj(opp=x,ang=angle),
path = [
[x+inset.x, -excess],
[-excess, -excess],
[-excess, y+inset.y],
[inset.x, y+inset.y],
[x+inset.x, inset.y]
]
) reorient(anchor,spin, two_d=true, path=path, extent=true, p=path);
// Function&Module: mask2d_rabbet()
// Usage:
// mask2d_rabbet(size, [excess]);
// Description:
// Creates a 2D rabbet mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// size = The size of the rabbet, either as a scalar or an [X,Y] list.
// inset = Optional amount to inset code from corner. Default: 0
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Rabbet Mask
// mask2d_rabbet(size=10);
// Example(2D): 2D Asymmetrical Rabbet Mask
// mask2d_rabbet(size=[5,10]);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_rabbet(size=10);
module mask2d_rabbet(size, excess, anchor=CENTER,spin=0) {
path = mask2d_rabbet(size=size, excess=excess);
attachable(anchor,spin, two_d=true, path=path, extent=false) {
polygon(path);
children();
}
}
function mask2d_rabbet(size, excess, anchor=CENTER,spin=0) =
assert(is_num(size)||(is_vector(size)&&len(size)==2))
assert(is_undef(excess)||is_num(excess))
let(
excess = default(excess,$overlap),
size = is_list(size)? size : [size,size],
path = [
[size.x, -excess],
[-excess, -excess],
[-excess, size.y],
size
]
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path);
// Function&Module: mask2d_dovetail()
// Usage:
// mask2d_dovetail(x|y|edge, [angle], [inset], [shelf], [excess]);
// Description:
// Creates a 2D dovetail mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// Arguments:
// x = The width of the dovetail.
// y = The height of the dovetail.
// edge = The length of the edge of the dovetail.
// angle = The angle of the chamfer edge, away from vertical. Default: 30.
// inset = Optional amount to inset code from corner. Default: 0
// shelf = The extra height to add to the inside corner of the dovetail. Default: 0
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Dovetail Mask
// mask2d_dovetail(x=10);
// Example(2D): 2D Dovetail Mask by Width.
// mask2d_dovetail(x=10, angle=30);
// Example(2D): 2D Dovetail Mask by Height.
// mask2d_dovetail(y=10, angle=30);
// Example(2D): 2D Inset Dovetail Mask
// mask2d_dovetail(x=10, inset=2);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile([TOP,"Z"],except=[BACK,TOP+LEFT])
// mask2d_dovetail(x=10, inset=2);
module mask2d_dovetail(x, y, edge, angle=30, inset=0, shelf=0, excess, anchor=CENTER, spin=0) {
path = mask2d_dovetail(x=x, y=y, edge=edge, angle=angle, inset=inset, shelf=shelf, excess=excess);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
function mask2d_dovetail(x, y, edge, angle=30, inset=0, shelf=0, excess, anchor=CENTER, spin=0) =
assert(num_defined([x,y,edge])==1)
assert(is_num(first_defined([x,y,edge])))
assert(is_num(angle))
assert(is_undef(excess)||is_num(excess))
assert(is_num(inset)||(is_vector(inset)&&len(inset)==2))
let(
inset = is_list(inset)? inset : [inset,inset],
excess = default(excess,$overlap),
x = !is_undef(x)? x :
!is_undef(y)? adj_ang_to_opp(adj=y,ang=angle) :
hyp_ang_to_opp(hyp=edge,ang=angle),
y = opp_ang_to_adj(opp=x,ang=angle),
path = [
[inset.x,0],
[-excess, 0],
[-excess, y+inset.y+shelf],
inset+[x,y+shelf],
inset+[x,y],
inset
]
) reorient(anchor,spin, two_d=true, path=path, p=path);
// Function&Module: mask2d_teardrop()
// Usage:
// mask2d_teardrop(r|d, [angle], [excess]);
// Description:
// Creates a 2D teardrop mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be differenced away from the edge of a shape that is in the first (X+Y+) quadrant.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
// This is particularly useful to make partially rounded bottoms, that don't need support to print.
// Arguments:
// r = Radius of the rounding.
// d = Diameter of the rounding.
// angle = The maximum angle from vertical.
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
// Example(2D): 2D Teardrop Mask
// mask2d_teardrop(r=10);
// Example(2D): Using a Custom Angle
// mask2d_teardrop(r=10,angle=30);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile(BOT)
// mask2d_teardrop(r=10, angle=40);
function mask2d_teardrop(r,d,angle=45,excess=0.1,anchor=CENTER,spin=0) =
assert(is_num(angle))
assert(angle>0 && angle<90)
assert(is_num(excess))
let(
r = get_radius(r=r, d=d, dflt=1),
n = ceil(segs(r) * angle/360),
cp = [r,r],
tp = cp + polar_to_xy(r,180+angle),
bp = [tp.x+adj_ang_to_opp(tp.y,angle), 0],
step = angle/n,
path = [
bp, bp-[0,excess], [-excess,-excess], [-excess,r],
for (i=[0:1:n]) cp+polar_to_xy(r,180+i*step)
]
) reorient(anchor,spin, two_d=true, path=path, p=path);
module mask2d_teardrop(r,d,angle=45,excess=0.1,anchor=CENTER,spin=0) {
path = mask2d_teardrop(r=r, d=d, angle=angle, excess=excess);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
// Function&Module: mask2d_ogee()
// Usage:
// mask2d_ogee(pattern, [excess]);
//
// Description:
// Creates a 2D Ogee mask shape that is useful for extruding into a 3D mask for a 90º edge.
// This 2D mask is designed to be `difference()`d away from the edge of a shape that is in the first (X+Y+) quadrant.
// Since there are a number of shapes that fall under the name ogee, the shape of this mask is given as a pattern.
// Patterns are given as TYPE, VALUE pairs. ie: `["fillet",10, "xstep",2, "step",[5,5], ...]`. See Patterns below.
// If called as a function, this just returns a 2D path of the outline of the mask shape.
//
// ### Patterns
//
// Type | Argument | Description
// -------- | --------- | ----------------
// "step" | [x,y] | Makes a line to a point `x` right and `y` down.
// "xstep" | dist | Makes a `dist` length line towards X+.
// "ystep" | dist | Makes a `dist` length line towards Y-.
// "round" | radius | Makes an arc that will mask a roundover.
// "fillet" | radius | Makes an arc that will mask a fillet.
//
// Arguments:
// pattern = A list of pattern pieces to describe the Ogee.
// excess = Extra amount of mask shape to creates on the X- and Y- sides of the shape.
//
// Example(2D): 2D Ogee Mask
// mask2d_ogee([
// "xstep",1, "ystep",1, // Starting shoulder.
// "fillet",5, "round",5, // S-curve.
// "ystep",1, "xstep",1 // Ending shoulder.
// ]);
// Example: Masking by Edge Attachment
// diff("mask")
// cube([50,60,70],center=true)
// edge_profile(TOP)
// mask2d_ogee([
// "xstep",1, "ystep",1, // Starting shoulder.
// "fillet",5, "round",5, // S-curve.
// "ystep",1, "xstep",1 // Ending shoulder.
// ]);
module mask2d_ogee(pattern, excess, anchor=CENTER,spin=0) {
path = mask2d_ogee(pattern, excess=excess);
attachable(anchor,spin, two_d=true, path=path) {
polygon(path);
children();
}
}
function mask2d_ogee(pattern, excess, anchor=CENTER, spin=0) =
assert(is_list(pattern))
assert(len(pattern)>0)
assert(len(pattern)%2==0,"pattern must be a list of TYPE, VAL pairs.")
assert(all([for (i = idx(pattern,step=2)) in_list(pattern[i],["step","xstep","ystep","round","fillet"])]))
let(
excess = default(excess,$overlap),
x = concat([0], cumsum([
for (i=idx(pattern,step=2)) let(
type = pattern[i],
val = pattern[i+1]
) (
type=="step"? val.x :
type=="xstep"? val :
type=="round"? val :
type=="fillet"? val :
0
)
])),
y = concat([0], cumsum([
for (i=idx(pattern,step=2)) let(
type = pattern[i],
val = pattern[i+1]
) (
type=="step"? val.y :
type=="ystep"? val :
type=="round"? val :
type=="fillet"? val :
0
)
])),
tot_x = select(x,-1),
tot_y = select(y,-1),
data = [
for (i=idx(pattern,step=2)) let(
type = pattern[i],
val = pattern[i+1],
pt = [x[i/2], tot_y-y[i/2]] + (
type=="step"? [val.x,-val.y] :
type=="xstep"? [val,0] :
type=="ystep"? [0,-val] :
type=="round"? [val,0] :
type=="fillet"? [0,-val] :
[0,0]
)
) [type, val, pt]
],
path = [
[tot_x,-excess],
[-excess,-excess],
[-excess,tot_y],
for (pat = data) each
pat[0]=="step"? [pat[2]] :
pat[0]=="xstep"? [pat[2]] :
pat[0]=="ystep"? [pat[2]] :
let(
r = pat[1],
steps = segs(abs(r)),
step = 90/steps
) [
for (i=[0:1:steps]) let(
a = pat[0]=="round"? (180+i*step) : (90-i*step)
) pat[2] + abs(r)*[cos(a),sin(a)]
]
],
path2 = deduplicate(path)
) reorient(anchor,spin, two_d=true, path=path2, p=path2);
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap