mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
294 lines
11 KiB
OpenSCAD
294 lines
11 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: skin.scad
|
|
// Functions to skin arbitrary 2D profiles/paths in 3-space.
|
|
// To use, add the following line to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/skin.scad>
|
|
// ```
|
|
// Derived from list-comprehension-demos skin():
|
|
// - https://github.com/openscad/list-comprehension-demos/blob/master/skin.scad
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <vnf.scad>
|
|
|
|
|
|
// Section: Skinning
|
|
|
|
|
|
// Function&Module: skin()
|
|
// Usage: As Module
|
|
// skin(profiles, [closed], [method]);
|
|
// Usage: As Function
|
|
// vnf = skin(profiles, [closed], [caps], [method]);
|
|
// Description
|
|
// Given a list of two or more path `profiles` in 3D-space, produces faces to skin a surface between
|
|
// consecutive profiles. Optionally, the first and last profiles can have endcaps, or the last and
|
|
// first profiles can be skinned together. Each profile should be roughly planar, but some variance
|
|
// is allowed. The orientation of the first vertex of each profile should be relatively aligned with
|
|
// that of the next profile. Each profile should rotate the same clockwise direction.
|
|
// If called as a function, returns a [VNF structure](vnf.scad) like `[VERTICES, FACES]`.
|
|
// If called as a module, creates a polyhedron of the skinned profiles.
|
|
// The vertex matching methods are as follows:
|
|
// - `"distance"`: Chooses face configurations with shorter edge lengths.
|
|
// - `"angle"`: Chooses face configurations with edge angles closest to vertical.
|
|
// - `"convex"`: Chooses the more convex of possible face configurations.
|
|
// - `"uniform"`: Vertices are uniformly matched between profiles, such that a point 30% of the way through one profile, will be matched to a vertex 30% of the way through the other profile, based on vertex count.
|
|
// Arguments:
|
|
// profiles = A list of 2D paths that have been moved and/or rotated into 3D-space.
|
|
// closed = If true, the last profile is skinned to the first profile, to allow for making a closed loop. Assumes `caps=false`. Default: false
|
|
// caps = If true, endcap faces are created. Assumes `closed=false`. Default: true
|
|
// method = Specifies the method used to match up vertices between profiles, to create faces. Given as a string, one of `"distance"`, `"angle"`, or `"uniform"`. If given as a list of strings, equal in number to the number of profile transitions, lets you specify the method used for each transition. Default: "uniform"
|
|
// convexity = Max number of times a line could intersect a wall of the shape. (Module use only.) Default: 2.
|
|
// Example(FlatSpin):
|
|
// skin([
|
|
// scale([2,1,1], p=path3d(circle(d=100,$fn=48))),
|
|
// path3d(circle(d=100,$fn=4),100),
|
|
// path3d(circle(d=100,$fn=12),200),
|
|
// ], method="distance");
|
|
// Example(FlatSpin):
|
|
// skin([
|
|
// for (ang = [0:10:90])
|
|
// rot([0,ang,0], cp=[200,0,0], p=path3d(circle(d=100,$fn=3+(ang/10))))
|
|
// ]);
|
|
// Example(FlatSpin): Möbius Strip
|
|
// skin([
|
|
// for (ang = [0:10:360])
|
|
// rot([0,ang,0], cp=[100,0,0], p=rot(ang/2, p=path3d(square([1,30],center=true))))
|
|
// ], caps=false);
|
|
// Example(FlatSpin): Closed Loop
|
|
// skin([
|
|
// for (i = [0:5])
|
|
// rot([0,i*60,0], cp=[100,0,0], p=path3d(circle(d=30,$fn=3+i%3)))
|
|
// ], closed=true, caps=false);
|
|
// Example(FlatSpin): Method "distance" is a good general purpose vertex matching method.
|
|
// method = "distance";
|
|
// xdistribute(150) {
|
|
// $fn=24;
|
|
// skin([
|
|
// yscale(2, p=path3d(circle(d=75))),
|
|
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
|
|
// ], method=method);
|
|
// skin([
|
|
// for (b=[0,90]) [
|
|
// for (a=[360:-360/$fn:0.01])
|
|
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
|
|
// ]
|
|
// ], method=method);
|
|
// skin([
|
|
// scale([1,2,1],p=path3d(circle(d=50))),
|
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
|
// ], method=method);
|
|
// }
|
|
// Example(FlatSpin): Method "angle" works subtly better with profiles created from a polar function.
|
|
// method = "angle";
|
|
// xdistribute(150) {
|
|
// $fn=24;
|
|
// skin([
|
|
// yscale(2, p=path3d(circle(d=75))),
|
|
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
|
|
// ], method=method);
|
|
// skin([
|
|
// for (b=[0,90]) [
|
|
// for (a=[360:-360/$fn:0.01])
|
|
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
|
|
// ]
|
|
// ], method=method);
|
|
// skin([
|
|
// scale([1,2,1],p=path3d(circle(d=50))),
|
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
|
// ], method=method);
|
|
// }
|
|
// Example(FlatSpin): Method "convex" maximizes convexity.
|
|
// method = "convex";
|
|
// xdistribute(150) {
|
|
// $fn=24;
|
|
// skin([
|
|
// yscale(2, p=path3d(circle(d=75))),
|
|
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
|
|
// ], method=method);
|
|
// skin([
|
|
// for (b=[0,90]) [
|
|
// for (a=[360:-360/$fn:0.01])
|
|
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
|
|
// ]
|
|
// ], method=method);
|
|
// skin([
|
|
// scale([1,2,1],p=path3d(circle(d=50))),
|
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
|
// ], method=method);
|
|
// }
|
|
// Example(FlatSpin): Method "uniform" works well with symmetrical profiles that are regularly spaced.
|
|
// method = "uniform";
|
|
// xdistribute(150) {
|
|
// $fn=24;
|
|
// skin([
|
|
// yscale(2, p=path3d(circle(d=75))),
|
|
// [[40,0,100], [35,-15,100], [20,-30,100],[0,-40,100],[-40,0,100],[0,40,100],[20,30,100], [35,15,100]]
|
|
// ], method=method);
|
|
// skin([
|
|
// for (b=[0,90]) [
|
|
// for (a=[360:-360/$fn:0.01])
|
|
// point3d(polar_to_xy((100+50*cos((a+b)*2))/2,a),b/90*100)
|
|
// ]
|
|
// ], method=method);
|
|
// skin([
|
|
// scale([1,2,1],p=path3d(circle(d=50))),
|
|
// scale([2,1,1],p=path3d(circle(d=50),100))
|
|
// ], method=method);
|
|
// }
|
|
// Example:
|
|
// include <BOSL2/rounding.scad>
|
|
// fn=32;
|
|
// base = round_corners(square([2,4],center=true), measure="radius", size=0.5, $fn=fn);
|
|
// skin([
|
|
// path3d(base,0),
|
|
// path3d(base,2),
|
|
// path3d(circle($fn=fn,r=0.5),3),
|
|
// path3d(circle($fn=fn,r=0.5),4),
|
|
// path3d(circle($fn=fn,r=0.6),4),
|
|
// path3d(circle($fn=fn,r=0.5),5),
|
|
// path3d(circle($fn=fn,r=0.6),5),
|
|
// path3d(circle($fn=fn,r=0.5),6),
|
|
// path3d(circle($fn=fn,r=0.6),6),
|
|
// path3d(circle($fn=fn,r=0.5),7),
|
|
// ],method="uniform");
|
|
// Example: Forma Candle Holder
|
|
// r = 50;
|
|
// height = 140;
|
|
// layers = 10;
|
|
// wallthickness = 5;
|
|
// holeradius = r - wallthickness;
|
|
// difference() {
|
|
// skin([for (i=[0:layers-1]) zrot(-30*i,p=path3d(hexagon(ir=r),i*height/layers))]);
|
|
// up(height/layers) cylinder(r=holeradius, h=height);
|
|
// }
|
|
// Example: Beware Self-intersecting Creases!
|
|
// skin([
|
|
// for (a = [0:30:180]) let(
|
|
// pos = [-60*sin(a), 0, a ],
|
|
// pos2 = [-60*sin(a+0.1), 0, a+0.1]
|
|
// ) move(pos,
|
|
// p=rot(from=UP, to=pos2-pos,
|
|
// p=path3d(circle(d=150))
|
|
// )
|
|
// )
|
|
// ]);
|
|
// color("red") {
|
|
// zrot(25) fwd(130) xrot(75) {
|
|
// linear_extrude(height=0.1) {
|
|
// ydistribute(25) {
|
|
// text(text="BAD POLYHEDRONS!", size=20, halign="center", valign="center");
|
|
// text(text="CREASES MAKE", size=20, halign="center", valign="center");
|
|
// }
|
|
// }
|
|
// }
|
|
// up(160) zrot(25) fwd(130) xrot(75) {
|
|
// stroke(zrot(30, p=yscale(0.5, p=circle(d=120))),width=10,closed=true);
|
|
// }
|
|
// }
|
|
// Example: Beware Making Incomplete Polyhedrons!
|
|
// skin([
|
|
// move([0,0, 0], p=path3d(circle(d=100,$fn=36))),
|
|
// move([0,0,50], p=path3d(circle(d=100,$fn=6)))
|
|
// ], caps=false);
|
|
module skin(profiles, closed=false, caps=true, method="uniform", convexity=2) {
|
|
vnf_polyhedron(skin(profiles, caps=caps, closed=closed, method=method), convexity=convexity);
|
|
}
|
|
|
|
|
|
function skin(profiles, closed=false, caps=true, method="uniform") =
|
|
assert(is_list(profiles))
|
|
assert(all([for (profile=profiles) is_list(profile) && len(profile[0])==3]), "All profiles must be 3D paths.")
|
|
assert(is_bool(closed))
|
|
assert(is_bool(caps))
|
|
assert(!closed||!caps)
|
|
assert(is_string(method)||is_list(method))
|
|
let(
|
|
method = is_list(method)? method : [for (pidx=idx(profiles,end=closed?-1:-2)) method],
|
|
vertices = [for (prof=profiles) each prof],
|
|
plens = [for (prof=profiles) len(prof)]
|
|
)
|
|
assert(len(method) == len(profiles)-closed?0:1)
|
|
let(
|
|
sidefaces = [
|
|
for(pidx=idx(profiles,end=closed? -1 : -2))
|
|
let(
|
|
prof1 = profiles[pidx%len(profiles)],
|
|
prof2 = profiles[(pidx+1)%len(profiles)],
|
|
cp1 = centroid(prof1),
|
|
cp2 = centroid(prof2),
|
|
midpt = (cp1+cp2)/2,
|
|
n1 = plane_normal(plane_from_pointslist(prof1)),
|
|
n2 = plane_normal(plane_from_pointslist(prof2)),
|
|
midn = normalize((n1+n2)/2),
|
|
match = method[pidx],
|
|
voff = default(sum([for (i=[0:1:pidx-1]) plens[i]]),0),
|
|
faces = [
|
|
for(
|
|
first = true,
|
|
finishing = false,
|
|
finished = false,
|
|
plen1 = len(prof1),
|
|
plen2 = len(prof2),
|
|
i=0, j=0, side=0;
|
|
|
|
!finished;
|
|
|
|
side =
|
|
i>=plen1*2? 0 :
|
|
j>=plen2*2? 1 :
|
|
let(
|
|
p1a = prof1[(i+0)%plen1],
|
|
p1b = prof1[(i+1)%plen1],
|
|
p2a = prof2[(j+0)%plen2],
|
|
p2b = prof2[(j+1)%plen2]
|
|
)
|
|
match=="distance"? let(
|
|
dist1 = norm(p1a-p2b),
|
|
dist2 = norm(p1b-p2a)
|
|
) (dist1>dist2? 1 : 0) :
|
|
match=="angle"? let(
|
|
delta1 = rot(from=midn, to=UP, p=p2b - p1a),
|
|
delta2 = rot(from=midn, to=UP, p=p2a - p1b),
|
|
dist1 = atan2(norm([delta1.x, delta1.y]), abs(delta1.z)),
|
|
dist2 = atan2(norm([delta2.x, delta2.y]), abs(delta2.z))
|
|
) (dist1>dist2? 1 : 0) :
|
|
match=="convex"? let(
|
|
mid1 = (p2b + p1a)/2,
|
|
mid2 = (p2a + p1b)/2,
|
|
dist1 = norm(mid1-midpt),
|
|
dist2 = norm(mid2-midpt)
|
|
) (dist1<dist2? 1 : 0) :
|
|
match=="uniform"? let(
|
|
pctdist1 = abs((i/plen1) - ((j+1)/plen2)),
|
|
pctdist2 = abs((j/plen2) - ((i+1)/plen1))
|
|
) (pctdist1>pctdist2? 1 : 0) :
|
|
assert(in_list(match,["distance","angle","convex","uniform"]),str("Got `",method,"'")),
|
|
p1 = voff + (i%plen1),
|
|
p2 = voff + (j%plen2) + plen1,
|
|
p3 = voff + (side? ((i+1)%plen1) : (((j+1)%plen2) + plen1)),
|
|
face = [p1, p3, p2],
|
|
i = i + (side? 1 : 0),
|
|
j = j + (side? 0 : 1),
|
|
first = false,
|
|
finished = finishing,
|
|
finishing = i>=plen1 && j>=plen2
|
|
) if (!first) face
|
|
]
|
|
) each faces
|
|
],
|
|
capfaces = closed||!caps? [] : let(
|
|
prof1 = profiles[0],
|
|
prof2 = select(profiles,-1),
|
|
eoff = sum(select(plens,0,-2))
|
|
) [
|
|
[for (i=idx(prof1)) plens[0]-1-i],
|
|
[for (i=idx(prof2)) eoff+i]
|
|
],
|
|
vnfout = [vertices, concat(sidefaces,capfaces)]
|
|
) vnfout;
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|