mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
856f54df32
other file name changes
1970 lines
80 KiB
OpenSCAD
1970 lines
80 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: shapes.scad
|
|
// Common useful shapes and structured objects.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Cuboids
|
|
|
|
// Module: cuboid()
|
|
//
|
|
// Usage: Standard Cubes
|
|
// cuboid(size, [anchor=], [spin=], [orient=]);
|
|
// cuboid(size, p1=, ...);
|
|
// cuboid(p1=, p2=, ...);
|
|
// Usage: Chamfered Cubes
|
|
// cuboid(size, [chamfer=], [edges=], [except_edges=], [trimcorners=], ...);
|
|
// Usage: Rounded Cubes
|
|
// cuboid(size, [rounding=], [edges=], [except_edges=], [trimcorners=], ...);
|
|
// Usage: Attaching children
|
|
// cuboid(size, [anchor=], ...) [attachments];
|
|
//
|
|
// Description:
|
|
// Creates a cube or cuboid object, with optional chamfering or rounding.
|
|
// Negative chamfers and roundings can be applied to create external masks,
|
|
// but only apply to edges around the top or bottom faces.
|
|
//
|
|
// Arguments:
|
|
// size = The size of the cube.
|
|
// ---
|
|
// chamfer = Size of chamfer, inset from sides. Default: No chamfering.
|
|
// rounding = Radius of the edge rounding. Default: No rounding.
|
|
// edges = Edges to chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: All edges.
|
|
// except_edges = Edges to explicitly NOT chamfer/round. See the docs for [`edges()`](edges.scad#edges) to see acceptable values. Default: No edges.
|
|
// trimcorners = If true, rounds or chamfers corners where three chamfered/rounded edges meet. Default: `true`
|
|
// p1 = Align the cuboid's corner at `p1`, if given. Forces `anchor=ALLNEG`.
|
|
// p2 = If given with `p1`, defines the cornerpoints of the cuboid.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: Simple regular cube.
|
|
// cuboid(40);
|
|
// Example: Cube with minimum cornerpoint given.
|
|
// cuboid(20, p1=[10,0,0]);
|
|
// Example: Rectangular cube, with given X, Y, and Z sizes.
|
|
// cuboid([20,40,50]);
|
|
// Example: Cube by Opposing Corners.
|
|
// cuboid(p1=[0,10,0], p2=[20,30,30]);
|
|
// Example: Chamferred Edges and Corners.
|
|
// cuboid([30,40,50], chamfer=5);
|
|
// Example: Chamferred Edges, Untrimmed Corners.
|
|
// cuboid([30,40,50], chamfer=5, trimcorners=false);
|
|
// Example: Rounded Edges and Corners
|
|
// cuboid([30,40,50], rounding=10);
|
|
// Example: Rounded Edges, Untrimmed Corners
|
|
// cuboid([30,40,50], rounding=10, trimcorners=false);
|
|
// Example: Chamferring Selected Edges
|
|
// cuboid(
|
|
// [30,40,50], chamfer=5,
|
|
// edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT],
|
|
// $fn=24
|
|
// );
|
|
// Example: Rounding Selected Edges
|
|
// cuboid(
|
|
// [30,40,50], rounding=5,
|
|
// edges=[TOP+FRONT,TOP+RIGHT,FRONT+RIGHT],
|
|
// $fn=24
|
|
// );
|
|
// Example: Negative Chamferring
|
|
// cuboid(
|
|
// [30,40,50], chamfer=-5,
|
|
// edges=[TOP,BOT], except_edges=RIGHT,
|
|
// $fn=24
|
|
// );
|
|
// Example: Negative Chamferring, Untrimmed Corners
|
|
// cuboid(
|
|
// [30,40,50], chamfer=-5,
|
|
// edges=[TOP,BOT], except_edges=RIGHT,
|
|
// trimcorners=false, $fn=24
|
|
// );
|
|
// Example: Negative Rounding
|
|
// cuboid(
|
|
// [30,40,50], rounding=-5,
|
|
// edges=[TOP,BOT], except_edges=RIGHT,
|
|
// $fn=24
|
|
// );
|
|
// Example: Negative Rounding, Untrimmed Corners
|
|
// cuboid(
|
|
// [30,40,50], rounding=-5,
|
|
// edges=[TOP,BOT], except_edges=RIGHT,
|
|
// trimcorners=false, $fn=24
|
|
// );
|
|
// Example: Standard Connectors
|
|
// cuboid(40) show_anchors();
|
|
module cuboid(
|
|
size=[1,1,1],
|
|
p1, p2,
|
|
chamfer,
|
|
rounding,
|
|
edges=EDGES_ALL,
|
|
except_edges=[],
|
|
trimcorners=true,
|
|
anchor=CENTER,
|
|
spin=0,
|
|
orient=UP
|
|
) {
|
|
module corner_shape(corner) {
|
|
e = corner_edges(edges, corner);
|
|
cnt = sum(e);
|
|
r = first_defined([chamfer, rounding, 0]);
|
|
c = [min(r,size.x/2), min(r,size.y/2), min(r,size.z/2)];
|
|
c2 = v_mul(corner,c/2);
|
|
$fn = is_finite(chamfer)? 4 : segs(r);
|
|
translate(v_mul(corner, size/2-c)) {
|
|
if (cnt == 0 || approx(r,0)) {
|
|
translate(c2) cube(c, center=true);
|
|
} else if (cnt == 1) {
|
|
if (e.x) right(c2.x) xcyl(l=c.x, r=r);
|
|
if (e.y) back (c2.y) ycyl(l=c.y, r=r);
|
|
if (e.z) up (c2.z) zcyl(l=c.z, r=r);
|
|
} else if (cnt == 2) {
|
|
if (!e.x) {
|
|
intersection() {
|
|
ycyl(l=c.y*2, r=r);
|
|
zcyl(l=c.z*2, r=r);
|
|
}
|
|
} else if (!e.y) {
|
|
intersection() {
|
|
xcyl(l=c.x*2, r=r);
|
|
zcyl(l=c.z*2, r=r);
|
|
}
|
|
} else {
|
|
intersection() {
|
|
xcyl(l=c.x*2, r=r);
|
|
ycyl(l=c.y*2, r=r);
|
|
}
|
|
}
|
|
} else {
|
|
if (trimcorners) {
|
|
spheroid(r=r, style="octa");
|
|
} else {
|
|
intersection() {
|
|
xcyl(l=c.x*2, r=r);
|
|
ycyl(l=c.y*2, r=r);
|
|
zcyl(l=c.z*2, r=r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size = scalar_vec3(size);
|
|
edges = edges(edges, except=except_edges);
|
|
assert(is_vector(size,3));
|
|
assert(all_positive(size));
|
|
assert(is_undef(chamfer) || is_finite(chamfer));
|
|
assert(is_undef(rounding) || is_finite(rounding));
|
|
assert(is_undef(p1) || is_vector(p1));
|
|
assert(is_undef(p2) || is_vector(p2));
|
|
assert(is_bool(trimcorners));
|
|
if (!is_undef(p1)) {
|
|
if (!is_undef(p2)) {
|
|
translate(pointlist_bounds([p1,p2])[0]) {
|
|
cuboid(size=v_abs(p2-p1), chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children();
|
|
}
|
|
} else {
|
|
translate(p1) {
|
|
cuboid(size=size, chamfer=chamfer, rounding=rounding, edges=edges, trimcorners=trimcorners, anchor=ALLNEG) children();
|
|
}
|
|
}
|
|
} else {
|
|
if (is_finite(chamfer)) {
|
|
if (any(edges[0])) assert(chamfer <= size.y/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube length or height.");
|
|
if (any(edges[1])) assert(chamfer <= size.x/2 && chamfer <=size.z/2, "chamfer must be smaller than half the cube width or height.");
|
|
if (any(edges[2])) assert(chamfer <= size.x/2 && chamfer <=size.y/2, "chamfer must be smaller than half the cube width or length.");
|
|
}
|
|
if (is_finite(rounding)) {
|
|
if (any(edges[0])) assert(rounding <= size.y/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube length or height.");
|
|
if (any(edges[1])) assert(rounding <= size.x/2 && rounding<=size.z/2, "rounding radius must be smaller than half the cube width or height.");
|
|
if (any(edges[2])) assert(rounding <= size.x/2 && rounding<=size.y/2, "rounding radius must be smaller than half the cube width or length.");
|
|
}
|
|
majrots = [[0,90,0], [90,0,0], [0,0,0]];
|
|
attachable(anchor,spin,orient, size=size) {
|
|
if (is_finite(chamfer) && !approx(chamfer,0)) {
|
|
if (edges == EDGES_ALL && trimcorners) {
|
|
if (chamfer<0) {
|
|
cube(size, center=true) {
|
|
attach(TOP,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP);
|
|
attach(BOT,overlap=0) prismoid([size.x,size.y], [size.x-2*chamfer,size.y-2*chamfer], h=-chamfer, anchor=TOP);
|
|
}
|
|
} else {
|
|
isize = [for (v = size) max(0.001, v-2*chamfer)];
|
|
hull() {
|
|
cube([ size.x, isize.y, isize.z], center=true);
|
|
cube([isize.x, size.y, isize.z], center=true);
|
|
cube([isize.x, isize.y, size.z], center=true);
|
|
}
|
|
}
|
|
} else if (chamfer<0) {
|
|
assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative chamfer with Z aligned edges.");
|
|
ach = abs(chamfer);
|
|
cube(size, center=true);
|
|
|
|
// External-Chamfer mask edges
|
|
difference() {
|
|
union() {
|
|
for (i = [0:3], axis=[0:1]) {
|
|
if (edges[axis][i]>0) {
|
|
vec = EDGE_OFFSETS[axis][i];
|
|
translate(v_mul(vec/2, size+[ach,ach,-ach])) {
|
|
rotate(majrots[axis]) {
|
|
cube([ach, ach, size[axis]], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add multi-edge corners.
|
|
if (trimcorners) {
|
|
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
|
|
ce = corner_edges(edges, [xa,ya,za]);
|
|
if (ce.x + ce.y > 1) {
|
|
translate(v_mul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) {
|
|
cube([ach+0.01,ach+0.01,ach], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove bevels from overhangs.
|
|
for (i = [0:3], axis=[0:1]) {
|
|
if (edges[axis][i]>0) {
|
|
vec = EDGE_OFFSETS[axis][i];
|
|
translate(v_mul(vec/2, size+[2*ach,2*ach,-2*ach])) {
|
|
rotate(majrots[axis]) {
|
|
zrot(45) cube([ach*sqrt(2), ach*sqrt(2), size[axis]+2.1*ach], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
hull() {
|
|
corner_shape([-1,-1,-1]);
|
|
corner_shape([ 1,-1,-1]);
|
|
corner_shape([-1, 1,-1]);
|
|
corner_shape([ 1, 1,-1]);
|
|
corner_shape([-1,-1, 1]);
|
|
corner_shape([ 1,-1, 1]);
|
|
corner_shape([-1, 1, 1]);
|
|
corner_shape([ 1, 1, 1]);
|
|
}
|
|
}
|
|
} else if (is_finite(rounding) && !approx(rounding,0)) {
|
|
sides = quantup(segs(rounding),4);
|
|
if (edges == EDGES_ALL) {
|
|
if(rounding<0) {
|
|
cube(size, center=true);
|
|
zflip_copy() {
|
|
up(size.z/2) {
|
|
difference() {
|
|
down(-rounding/2) cube([size.x-2*rounding, size.y-2*rounding, -rounding], center=true);
|
|
down(-rounding) {
|
|
ycopies(size.y-2*rounding) xcyl(l=size.x-3*rounding, r=-rounding);
|
|
xcopies(size.x-2*rounding) ycyl(l=size.y-3*rounding, r=-rounding);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
isize = [for (v = size) max(0.001, v-2*rounding)];
|
|
minkowski() {
|
|
cube(isize, center=true);
|
|
if (trimcorners) {
|
|
spheroid(r=rounding, style="octa", $fn=sides);
|
|
} else {
|
|
intersection() {
|
|
cyl(r=rounding, h=rounding*2, $fn=sides);
|
|
rotate([90,0,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
|
|
rotate([0,90,0]) cyl(r=rounding, h=rounding*2, $fn=sides);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (rounding<0) {
|
|
assert(edges == EDGES_ALL || edges[2] == [0,0,0,0], "Cannot use negative rounding with Z aligned edges.");
|
|
ard = abs(rounding);
|
|
cube(size, center=true);
|
|
|
|
// External-Rounding mask edges
|
|
difference() {
|
|
union() {
|
|
for (i = [0:3], axis=[0:1]) {
|
|
if (edges[axis][i]>0) {
|
|
vec = EDGE_OFFSETS[axis][i];
|
|
translate(v_mul(vec/2, size+[ard,ard,-ard])) {
|
|
rotate(majrots[axis]) {
|
|
cube([ard, ard, size[axis]], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add multi-edge corners.
|
|
if (trimcorners) {
|
|
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
|
|
ce = corner_edges(edges, [xa,ya,za]);
|
|
if (ce.x + ce.y > 1) {
|
|
translate(v_mul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) {
|
|
cube([ard+0.01,ard+0.01,ard], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove roundings from overhangs.
|
|
for (i = [0:3], axis=[0:1]) {
|
|
if (edges[axis][i]>0) {
|
|
vec = EDGE_OFFSETS[axis][i];
|
|
translate(v_mul(vec/2, size+[2*ard,2*ard,-2*ard])) {
|
|
rotate(majrots[axis]) {
|
|
cyl(l=size[axis]+2.1*ard, r=ard);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
hull() {
|
|
corner_shape([-1,-1,-1]);
|
|
corner_shape([ 1,-1,-1]);
|
|
corner_shape([-1, 1,-1]);
|
|
corner_shape([ 1, 1,-1]);
|
|
corner_shape([-1,-1, 1]);
|
|
corner_shape([ 1,-1, 1]);
|
|
corner_shape([-1, 1, 1]);
|
|
corner_shape([ 1, 1, 1]);
|
|
}
|
|
}
|
|
} else {
|
|
cube(size=size, center=true);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
function cuboid(
|
|
size=[1,1,1],
|
|
p1, p2,
|
|
chamfer,
|
|
rounding,
|
|
edges=EDGES_ALL,
|
|
except_edges=[],
|
|
trimcorners=true,
|
|
anchor=CENTER,
|
|
spin=0,
|
|
orient=UP
|
|
) = no_function("cuboid");
|
|
|
|
|
|
|
|
// Section: Prismoids
|
|
|
|
|
|
// Function&Module: prismoid()
|
|
//
|
|
// Usage: Typical Prismoids
|
|
// prismoid(size1, size2, h|l, [shift], ...);
|
|
// Usage: Attaching Children
|
|
// prismoid(size1, size2, h|l, [shift], ...) [attachments];
|
|
// Usage: Chamfered Prismoids
|
|
// prismoid(size1, size2, h|l, [chamfer=], ...);
|
|
// prismoid(size1, size2, h|l, [chamfer1=], [chamfer2=], ...);
|
|
// Usage: Rounded Prismoids
|
|
// prismoid(size1, size2, h|l, [rounding=], ...);
|
|
// prismoid(size1, size2, h|l, [rounding1=], [rounding2=], ...);
|
|
// Usage: As Function
|
|
// vnf = prismoid(size1, size2, h|l, [shift], [rounding], [chamfer]);
|
|
// vnf = prismoid(size1, size2, h|l, [shift], [rounding1], [rounding2], [chamfer1], [chamfer2]);
|
|
//
|
|
// Description:
|
|
// Creates a rectangular prismoid shape with optional roundovers and chamfering.
|
|
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
|
|
// specify rounding and/or chamferring per-edge, and for top and bottom separately.
|
|
//
|
|
// Arguments:
|
|
// size1 = [width, length] of the bottom end of the prism.
|
|
// size2 = [width, length] of the top end of the prism.
|
|
// h|l = Height of the prism.
|
|
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
|
|
// ---
|
|
// rounding = The roundover radius for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
|
|
// rounding1 = The roundover radius for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
|
|
// rounding2 = The roundover radius for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
|
|
// chamfer = The chamfer size for the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
|
|
// chamfer1 = The chamfer size for the bottom of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
|
|
// chamfer2 = The chamfer size for the top of the vertical-ish edges of the prismoid. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-].
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// See Also: rounded_prism()
|
|
//
|
|
// Example: Rectangular Pyramid
|
|
// prismoid([40,40], [0,0], h=20);
|
|
// Example: Prism
|
|
// prismoid(size1=[40,40], size2=[0,40], h=20);
|
|
// Example: Truncated Pyramid
|
|
// prismoid(size1=[35,50], size2=[20,30], h=20);
|
|
// Example: Wedge
|
|
// prismoid(size1=[60,35], size2=[30,0], h=30);
|
|
// Example: Truncated Tetrahedron
|
|
// prismoid(size1=[10,40], size2=[40,10], h=40);
|
|
// Example: Inverted Truncated Pyramid
|
|
// prismoid(size1=[15,5], size2=[30,20], h=20);
|
|
// Example: Right Prism
|
|
// prismoid(size1=[30,60], size2=[0,60], shift=[-15,0], h=30);
|
|
// Example(FlatSpin,VPD=160,VPT=[0,0,10]): Shifting/Skewing
|
|
// prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5]);
|
|
// Example: Rounding
|
|
// prismoid(100, 80, rounding=10, h=30);
|
|
// Example: Outer Chamfer Only
|
|
// prismoid(100, 80, chamfer=5, h=30);
|
|
// Example: Gradiant Rounding
|
|
// prismoid(100, 80, rounding1=10, rounding2=0, h=30);
|
|
// Example: Per Corner Rounding
|
|
// prismoid(100, 80, rounding=[0,5,10,15], h=30);
|
|
// Example: Per Corner Chamfer
|
|
// prismoid(100, 80, chamfer=[0,5,10,15], h=30);
|
|
// Example: Mixing Chamfer and Rounding
|
|
// prismoid(
|
|
// 100, 80, h=30,
|
|
// chamfer=[0,5,0,10],
|
|
// rounding=[5,0,10,0]
|
|
// );
|
|
// Example: Really Mixing It Up
|
|
// prismoid(
|
|
// size1=[100,80], size2=[80,60], h=20,
|
|
// chamfer1=[0,5,0,10], chamfer2=[5,0,10,0],
|
|
// rounding1=[5,0,10,0], rounding2=[0,5,0,10]
|
|
// );
|
|
// Example(Spin,VPD=160,VPT=[0,0,10]): Standard Connectors
|
|
// prismoid(size1=[50,30], size2=[20,20], h=20, shift=[15,5])
|
|
// show_anchors();
|
|
module prismoid(
|
|
size1, size2, h, shift=[0,0],
|
|
rounding=0, rounding1, rounding2,
|
|
chamfer=0, chamfer1, chamfer2,
|
|
l, center,
|
|
anchor, spin=0, orient=UP
|
|
) {
|
|
assert(is_num(size1) || is_vector(size1,2));
|
|
assert(is_num(size2) || is_vector(size2,2));
|
|
assert(is_num(h) || is_num(l));
|
|
assert(is_vector(shift,2));
|
|
assert(is_num(rounding) || is_vector(rounding,4), "Bad rounding argument.");
|
|
assert(is_undef(rounding1) || is_num(rounding1) || is_vector(rounding1,4), "Bad rounding1 argument.");
|
|
assert(is_undef(rounding2) || is_num(rounding2) || is_vector(rounding2,4), "Bad rounding2 argument.");
|
|
assert(is_num(chamfer) || is_vector(chamfer,4), "Bad chamfer argument.");
|
|
assert(is_undef(chamfer1) || is_num(chamfer1) || is_vector(chamfer1,4), "Bad chamfer1 argument.");
|
|
assert(is_undef(chamfer2) || is_num(chamfer2) || is_vector(chamfer2,4), "Bad chamfer2 argument.");
|
|
eps = pow(2,-14);
|
|
size1 = is_num(size1)? [size1,size1] : size1;
|
|
size2 = is_num(size2)? [size2,size2] : size2;
|
|
assert(all_nonnegative(size1));
|
|
assert(all_nonnegative(size2));
|
|
assert(size1.x + size2.x > 0);
|
|
assert(size1.y + size2.y > 0);
|
|
s1 = [max(size1.x, eps), max(size1.y, eps)];
|
|
s2 = [max(size2.x, eps), max(size2.y, eps)];
|
|
rounding1 = default(rounding1, rounding);
|
|
rounding2 = default(rounding2, rounding);
|
|
chamfer1 = default(chamfer1, chamfer);
|
|
chamfer2 = default(chamfer2, chamfer);
|
|
anchor = get_anchor(anchor, center, BOT, BOT);
|
|
vnf = prismoid(
|
|
size1=size1, size2=size2, h=h, shift=shift,
|
|
rounding1=rounding1, rounding2=rounding2,
|
|
chamfer1=chamfer1, chamfer2=chamfer2,
|
|
l=l, center=CENTER
|
|
);
|
|
attachable(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift) {
|
|
vnf_polyhedron(vnf, convexity=4);
|
|
children();
|
|
}
|
|
}
|
|
|
|
function prismoid(
|
|
size1, size2, h, shift=[0,0],
|
|
rounding=0, rounding1, rounding2,
|
|
chamfer=0, chamfer1, chamfer2,
|
|
l, center,
|
|
anchor=DOWN, spin=0, orient=UP
|
|
) =
|
|
assert(is_vector(size1,2))
|
|
assert(is_vector(size2,2))
|
|
assert(is_num(h) || is_num(l))
|
|
assert(is_vector(shift,2))
|
|
assert(
|
|
(is_num(rounding) && rounding>=0) ||
|
|
(is_vector(rounding,4) && all_nonnegative(rounding)),
|
|
"Bad rounding argument."
|
|
)
|
|
assert(
|
|
is_undef(rounding1) || (is_num(rounding1) && rounding1>=0) ||
|
|
(is_vector(rounding1,4) && all_nonnegative(rounding1)),
|
|
"Bad rounding1 argument."
|
|
)
|
|
assert(
|
|
is_undef(rounding2) || (is_num(rounding2) && rounding2>=0) ||
|
|
(is_vector(rounding2,4) && all_nonnegative(rounding2)),
|
|
"Bad rounding2 argument."
|
|
)
|
|
assert(
|
|
(is_num(chamfer) && chamfer>=0) ||
|
|
(is_vector(chamfer,4) && all_nonnegative(chamfer)),
|
|
"Bad chamfer argument."
|
|
)
|
|
assert(
|
|
is_undef(chamfer1) || (is_num(chamfer1) && chamfer1>=0) ||
|
|
(is_vector(chamfer1,4) && all_nonnegative(chamfer1)),
|
|
"Bad chamfer1 argument."
|
|
)
|
|
assert(
|
|
is_undef(chamfer2) || (is_num(chamfer2) && chamfer2>=0) ||
|
|
(is_vector(chamfer2,4) && all_nonnegative(chamfer2)),
|
|
"Bad chamfer2 argument."
|
|
)
|
|
let(
|
|
eps = pow(2,-14),
|
|
h = first_defined([h,l,1]),
|
|
shiftby = point3d(point2d(shift)),
|
|
s1 = [max(size1.x, eps), max(size1.y, eps)],
|
|
s2 = [max(size2.x, eps), max(size2.y, eps)],
|
|
rounding1 = default(rounding1, rounding),
|
|
rounding2 = default(rounding2, rounding),
|
|
chamfer1 = default(chamfer1, chamfer),
|
|
chamfer2 = default(chamfer2, chamfer),
|
|
anchor = get_anchor(anchor, center, BOT, BOT),
|
|
vnf = (rounding1==0 && rounding2==0 && chamfer1==0 && chamfer2==0)? (
|
|
let(
|
|
corners = [[1,1],[1,-1],[-1,-1],[-1,1]] * 0.5,
|
|
points = [
|
|
for (p=corners) point3d(v_mul(s2,p), +h/2) + shiftby,
|
|
for (p=corners) point3d(v_mul(s1,p), -h/2)
|
|
],
|
|
faces=[
|
|
[0,1,2], [0,2,3], [0,4,5], [0,5,1],
|
|
[1,5,6], [1,6,2], [2,6,7], [2,7,3],
|
|
[3,7,4], [3,4,0], [4,7,6], [4,6,5],
|
|
]
|
|
) [points, faces]
|
|
) : (
|
|
let(
|
|
path1 = rect(size1, rounding=rounding1, chamfer=chamfer1, anchor=CTR),
|
|
path2 = rect(size2, rounding=rounding2, chamfer=chamfer2, anchor=CTR),
|
|
points = [
|
|
each path3d(path1, -h/2),
|
|
each path3d(move(shiftby, p=path2), +h/2),
|
|
],
|
|
faces = hull(points)
|
|
) [points, faces]
|
|
)
|
|
) reorient(anchor,spin,orient, size=[s1.x,s1.y,h], size2=s2, shift=shift, p=vnf);
|
|
|
|
|
|
// Module: rect_tube()
|
|
// Usage: Typical Rectangular Tubes
|
|
// rect_tube(h, size, isize, [center], [shift]);
|
|
// rect_tube(h, size, wall=, [center=]);
|
|
// rect_tube(h, isize=, wall=, [center=]);
|
|
// Usage: Tapering Rectangular Tubes
|
|
// rect_tube(h, size1=, size2=, wall=, ...);
|
|
// rect_tube(h, isize1=, isize2=, wall=, ...);
|
|
// rect_tube(h, size1=, size2=, isize1=, isize2=, ...);
|
|
// Usage: Chamfered
|
|
// rect_tube(h, size, isize, chamfer=, ...);
|
|
// rect_tube(h, size, isize, chamfer1=, chamfer2= ...);
|
|
// rect_tube(h, size, isize, ichamfer=, ...);
|
|
// rect_tube(h, size, isize, ichamfer1=, ichamfer2= ...);
|
|
// rect_tube(h, size, isize, chamfer=, ichamfer=, ...);
|
|
// Usage: Rounded
|
|
// rect_tube(h, size, isize, rounding=, ...);
|
|
// rect_tube(h, size, isize, rounding1=, rounding2= ...);
|
|
// rect_tube(h, size, isize, irounding=, ...);
|
|
// rect_tube(h, size, isize, irounding1=, irounding2= ...);
|
|
// rect_tube(h, size, isize, rounding=, irounding=, ...);
|
|
// Usage: Attaching Children
|
|
// rect_tube(h, size, isize, ...) [attachments];
|
|
//
|
|
// Description:
|
|
// Creates a rectangular or prismoid tube with optional roundovers and/or chamfers.
|
|
// You can only round or chamfer the vertical(ish) edges. For those edges, you can
|
|
// specify rounding and/or chamferring per-edge, and for top and bottom, inside and
|
|
// outside separately.
|
|
// Arguments:
|
|
// h|l = The height or length of the rectangular tube. Default: 1
|
|
// size = The outer [X,Y] size of the rectangular tube.
|
|
// isize = The inner [X,Y] size of the rectangular tube.
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
|
|
// shift = [X,Y] amount to shift the center of the top end with respect to the center of the bottom end.
|
|
// ---
|
|
// wall = The thickness of the rectangular tube wall.
|
|
// size1 = The [X,Y] size of the outside of the bottom of the rectangular tube.
|
|
// size2 = The [X,Y] size of the outside of the top of the rectangular tube.
|
|
// isize1 = The [X,Y] size of the inside of the bottom of the rectangular tube.
|
|
// isize2 = The [X,Y] size of the inside of the top of the rectangular tube.
|
|
// rounding = The roundover radius for the outside edges of the rectangular tube.
|
|
// rounding1 = The roundover radius for the outside bottom corner of the rectangular tube.
|
|
// rounding2 = The roundover radius for the outside top corner of the rectangular tube.
|
|
// chamfer = The chamfer size for the outside edges of the rectangular tube.
|
|
// chamfer1 = The chamfer size for the outside bottom corner of the rectangular tube.
|
|
// chamfer2 = The chamfer size for the outside top corner of the rectangular tube.
|
|
// irounding = The roundover radius for the inside edges of the rectangular tube. Default: Same as `rounding`
|
|
// irounding1 = The roundover radius for the inside bottom corner of the rectangular tube.
|
|
// irounding2 = The roundover radius for the inside top corner of the rectangular tube.
|
|
// ichamfer = The chamfer size for the inside edges of the rectangular tube. Default: Same as `chamfer`
|
|
// ichamfer1 = The chamfer size for the inside bottom corner of the rectangular tube.
|
|
// ichamfer2 = The chamfer size for the inside top corner of the rectangular tube.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `BOTTOM`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Examples:
|
|
// rect_tube(size=50, wall=5, h=30);
|
|
// rect_tube(size=[100,60], wall=5, h=30);
|
|
// rect_tube(isize=[60,80], wall=5, h=30);
|
|
// rect_tube(size=[100,60], isize=[90,50], h=30);
|
|
// rect_tube(size1=[100,60], size2=[70,40], wall=5, h=30);
|
|
// Example:
|
|
// rect_tube(
|
|
// size1=[100,60], size2=[70,40],
|
|
// isize1=[40,20], isize2=[65,35], h=15
|
|
// );
|
|
// Example: Outer Rounding Only
|
|
// rect_tube(size=100, wall=5, rounding=10, irounding=0, h=30);
|
|
// Example: Outer Chamfer Only
|
|
// rect_tube(size=100, wall=5, chamfer=5, ichamfer=0, h=30);
|
|
// Example: Outer Rounding, Inner Chamfer
|
|
// rect_tube(size=100, wall=5, rounding=10, ichamfer=8, h=30);
|
|
// Example: Inner Rounding, Outer Chamfer
|
|
// rect_tube(size=100, wall=5, chamfer=10, irounding=8, h=30);
|
|
// Example: Gradiant Rounding
|
|
// rect_tube(
|
|
// size1=100, size2=80, wall=5, h=30,
|
|
// rounding1=10, rounding2=0,
|
|
// irounding1=8, irounding2=0
|
|
// );
|
|
// Example: Per Corner Rounding
|
|
// rect_tube(
|
|
// size=100, wall=10, h=30,
|
|
// rounding=[0,5,10,15], irounding=0
|
|
// );
|
|
// Example: Per Corner Chamfer
|
|
// rect_tube(
|
|
// size=100, wall=10, h=30,
|
|
// chamfer=[0,5,10,15], ichamfer=0
|
|
// );
|
|
// Example: Mixing Chamfer and Rounding
|
|
// rect_tube(
|
|
// size=100, wall=10, h=30,
|
|
// chamfer=[0,5,0,10], ichamfer=0,
|
|
// rounding=[5,0,10,0], irounding=0
|
|
// );
|
|
// Example: Really Mixing It Up
|
|
// rect_tube(
|
|
// size1=[100,80], size2=[80,60],
|
|
// isize1=[50,30], isize2=[70,50], h=20,
|
|
// chamfer1=[0,5,0,10], ichamfer1=[0,3,0,8],
|
|
// chamfer2=[5,0,10,0], ichamfer2=[3,0,8,0],
|
|
// rounding1=[5,0,10,0], irounding1=[3,0,8,0],
|
|
// rounding2=[0,5,0,10], irounding2=[0,3,0,8]
|
|
// );
|
|
module rect_tube(
|
|
h, size, isize, center, shift=[0,0],
|
|
wall, size1, size2, isize1, isize2,
|
|
rounding=0, rounding1, rounding2,
|
|
irounding=0, irounding1, irounding2,
|
|
chamfer=0, chamfer1, chamfer2,
|
|
ichamfer=0, ichamfer1, ichamfer2,
|
|
anchor, spin=0, orient=UP,
|
|
l
|
|
) {
|
|
h = one_defined([h,l],"h,l");
|
|
assert(is_num(h), "l or h argument required.");
|
|
assert(is_vector(shift,2));
|
|
s1 = is_num(size1)? [size1, size1] :
|
|
is_vector(size1,2)? size1 :
|
|
is_num(size)? [size, size] :
|
|
is_vector(size,2)? size :
|
|
undef;
|
|
s2 = is_num(size2)? [size2, size2] :
|
|
is_vector(size2,2)? size2 :
|
|
is_num(size)? [size, size] :
|
|
is_vector(size,2)? size :
|
|
undef;
|
|
is1 = is_num(isize1)? [isize1, isize1] :
|
|
is_vector(isize1,2)? isize1 :
|
|
is_num(isize)? [isize, isize] :
|
|
is_vector(isize,2)? isize :
|
|
undef;
|
|
is2 = is_num(isize2)? [isize2, isize2] :
|
|
is_vector(isize2,2)? isize2 :
|
|
is_num(isize)? [isize, isize] :
|
|
is_vector(isize,2)? isize :
|
|
undef;
|
|
size1 = is_def(s1)? s1 :
|
|
(is_def(wall) && is_def(is1))? (is1+2*[wall,wall]) :
|
|
undef;
|
|
size2 = is_def(s2)? s2 :
|
|
(is_def(wall) && is_def(is2))? (is2+2*[wall,wall]) :
|
|
undef;
|
|
isize1 = is_def(is1)? is1 :
|
|
(is_def(wall) && is_def(s1))? (s1-2*[wall,wall]) :
|
|
undef;
|
|
isize2 = is_def(is2)? is2 :
|
|
(is_def(wall) && is_def(s2))? (s2-2*[wall,wall]) :
|
|
undef;
|
|
assert(wall==undef || is_num(wall));
|
|
assert(size1!=undef, "Bad size/size1 argument.");
|
|
assert(size2!=undef, "Bad size/size2 argument.");
|
|
assert(isize1!=undef, "Bad isize/isize1 argument.");
|
|
assert(isize2!=undef, "Bad isize/isize2 argument.");
|
|
assert(isize1.x < size1.x, "Inner size is larger than outer size.");
|
|
assert(isize1.y < size1.y, "Inner size is larger than outer size.");
|
|
assert(isize2.x < size2.x, "Inner size is larger than outer size.");
|
|
assert(isize2.y < size2.y, "Inner size is larger than outer size.");
|
|
anchor = get_anchor(anchor, center, BOT, BOT);
|
|
attachable(anchor,spin,orient, size=[each size1, h], size2=size2, shift=shift) {
|
|
diff("_H_o_L_e_")
|
|
prismoid(
|
|
size1, size2, h=h, shift=shift,
|
|
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
|
|
chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
|
|
anchor=CTR
|
|
) {
|
|
children();
|
|
tags("_H_o_L_e_") prismoid(
|
|
isize1, isize2, h=h+0.05, shift=shift,
|
|
rounding=irounding, rounding1=irounding1, rounding2=irounding2,
|
|
chamfer=ichamfer, chamfer1=ichamfer1, chamfer2=ichamfer2,
|
|
anchor=CTR
|
|
);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
function rect_tube(
|
|
h, size, isize, center, shift=[0,0],
|
|
wall, size1, size2, isize1, isize2,
|
|
rounding=0, rounding1, rounding2,
|
|
irounding=0, irounding1, irounding2,
|
|
chamfer=0, chamfer1, chamfer2,
|
|
ichamfer=0, ichamfer1, ichamfer2,
|
|
anchor, spin=0, orient=UP,
|
|
l
|
|
) = no_function("rect_tube");
|
|
|
|
|
|
// Module: right_triangle()
|
|
//
|
|
// Usage:
|
|
// right_triangle(size, [center]);
|
|
//
|
|
// Description:
|
|
// Creates a 3D right triangular prism with the hypotenuse in the X+Y+ quadrant.
|
|
//
|
|
// Arguments:
|
|
// size = [width, thickness, height]
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
|
|
// ---
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `ALLNEG`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: Centered
|
|
// right_triangle([60, 40, 10], center=true);
|
|
// Example: *Non*-Centered
|
|
// right_triangle([60, 40, 10]);
|
|
// Example: Standard Connectors
|
|
// right_triangle([60, 40, 15]) show_anchors();
|
|
module right_triangle(size=[1, 1, 1], center, anchor, spin=0, orient=UP)
|
|
{
|
|
size = scalar_vec3(size);
|
|
anchor = get_anchor(anchor, center, ALLNEG, ALLNEG);
|
|
attachable(anchor,spin,orient, size=size) {
|
|
if (size.z > 0) {
|
|
linear_extrude(height=size.z, convexity=2, center=true) {
|
|
polygon([[-size.x/2,-size.y/2], [-size.x/2,size.y/2], [size.x/2,-size.y/2]]);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
function right_triangle(size=[1,1,1], center, anchor, spin=0, orient=UP) =
|
|
no_function("right_triangle");
|
|
|
|
|
|
// Section: Cylindroids
|
|
|
|
|
|
// Module: cyl()
|
|
//
|
|
// Description:
|
|
// Creates cylinders in various anchorings and orientations, with optional rounding and chamfers.
|
|
// You can use `h` and `l` interchangably, and all variants allow specifying size by either `r`|`d`,
|
|
// or `r1`|`d1` and `r2`|`d2`. Note: the chamfers and rounding cannot be cumulatively longer than
|
|
// the cylinder's length.
|
|
//
|
|
// Usage: Normal Cylinders
|
|
// cyl(l|h, r, [center], [circum=], [realign=]);
|
|
// cyl(l|h, d=, ...);
|
|
// cyl(l|h, r1=, r2=, ...);
|
|
// cyl(l|h, d1=, d2=, ...);
|
|
//
|
|
// Usage: Chamferred Cylinders
|
|
// cyl(l|h, r|d, chamfer=, [chamfang=], [from_end=], ...);
|
|
// cyl(l|h, r|d, chamfer1=, [chamfang1=], [from_end=], ...);
|
|
// cyl(l|h, r|d, chamfer2=, [chamfang2=], [from_end=], ...);
|
|
// cyl(l|h, r|d, chamfer1=, chamfer2=, [chamfang1=], [chamfang2=], [from_end=], ...);
|
|
//
|
|
// Usage: Rounded End Cylinders
|
|
// cyl(l|h, r|d, rounding=, ...);
|
|
// cyl(l|h, r|d, rounding1=, ...);
|
|
// cyl(l|h, r|d, rounding2=, ...);
|
|
// cyl(l|h, r|d, rounding1=, rounding2=, ...);
|
|
//
|
|
// Arguments:
|
|
// l / h = Length of cylinder along oriented axis. Default: 1
|
|
// r = Radius of cylinder. Default: 1
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
|
|
// ---
|
|
// r1 = Radius of the negative (X-, Y-, Z-) end of cylinder.
|
|
// r2 = Radius of the positive (X+, Y+, Z+) end of cylinder.
|
|
// d = Diameter of cylinder.
|
|
// d1 = Diameter of the negative (X-, Y-, Z-) end of cylinder.
|
|
// d2 = Diameter of the positive (X+, Y+, Z+) end of cylinder.
|
|
// circum = If true, cylinder should circumscribe the circle of the given size. Otherwise inscribes. Default: `false`
|
|
// chamfer = The size of the chamfers on the ends of the cylinder. Default: none.
|
|
// chamfer1 = The size of the chamfer on the bottom end of the cylinder. Default: none.
|
|
// chamfer2 = The size of the chamfer on the top end of the cylinder. Default: none.
|
|
// chamfang = The angle in degrees of the chamfers on the ends of the cylinder.
|
|
// chamfang1 = The angle in degrees of the chamfer on the bottom end of the cylinder.
|
|
// chamfang2 = The angle in degrees of the chamfer on the top end of the cylinder.
|
|
// from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`.
|
|
// rounding = The radius of the rounding on the ends of the cylinder. Default: none.
|
|
// rounding1 = The radius of the rounding on the bottom end of the cylinder.
|
|
// rounding2 = The radius of the rounding on the top end of the cylinder.
|
|
// realign = If true, rotate the cylinder by half the angle of one face.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: By Radius
|
|
// xdistribute(30) {
|
|
// cyl(l=40, r=10);
|
|
// cyl(l=40, r1=10, r2=5);
|
|
// }
|
|
//
|
|
// Example: By Diameter
|
|
// xdistribute(30) {
|
|
// cyl(l=40, d=25);
|
|
// cyl(l=40, d1=25, d2=10);
|
|
// }
|
|
//
|
|
// Example: Chamferring
|
|
// xdistribute(60) {
|
|
// // Shown Left to right.
|
|
// cyl(l=40, d=40, chamfer=7); // Default chamfang=45
|
|
// cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=false);
|
|
// cyl(l=40, d=40, chamfer=7, chamfang=30, from_end=true);
|
|
// }
|
|
//
|
|
// Example: Rounding
|
|
// cyl(l=40, d=40, rounding=10);
|
|
//
|
|
// Example: Heterogenous Chamfers and Rounding
|
|
// ydistribute(80) {
|
|
// // Shown Front to Back.
|
|
// cyl(l=40, d=40, rounding1=15, orient=UP);
|
|
// cyl(l=40, d=40, chamfer2=5, orient=UP);
|
|
// cyl(l=40, d=40, chamfer1=12, rounding2=10, orient=UP);
|
|
// }
|
|
//
|
|
// Example: Putting it all together
|
|
// cyl(
|
|
// l=40, d1=25, d2=15,
|
|
// chamfer1=10, chamfang1=30,
|
|
// from_end=true, rounding2=5
|
|
// );
|
|
//
|
|
// Example: External Chamfers
|
|
// cyl(l=50, r=30, chamfer=-5, chamfang=30, $fa=1, $fs=1);
|
|
//
|
|
// Example: External Roundings
|
|
// cyl(l=50, r=30, rounding1=-5, rounding2=5, $fa=1, $fs=1);
|
|
//
|
|
// Example: Standard Connectors
|
|
// xdistribute(40) {
|
|
// cyl(l=30, d=25) show_anchors();
|
|
// cyl(l=30, d1=25, d2=10) show_anchors();
|
|
// }
|
|
//
|
|
module cyl(
|
|
h, r, center,
|
|
l, r1, r2,
|
|
d, d1, d2,
|
|
chamfer, chamfer1, chamfer2,
|
|
chamfang, chamfang1, chamfang2,
|
|
rounding, rounding1, rounding2,
|
|
circum=false, realign=false, from_end=false,
|
|
anchor, spin=0, orient=UP
|
|
) {
|
|
l = first_defined([l, h, 1]);
|
|
_r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
|
|
_r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
|
sides = segs(max(_r1,_r2));
|
|
sc = circum? 1/cos(180/sides) : 1;
|
|
r1=_r1*sc;
|
|
r2=_r2*sc;
|
|
phi = atan2(l, r2-r1);
|
|
anchor = get_anchor(anchor,center,BOT,CENTER);
|
|
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
|
|
zrot(realign? 180/sides : 0) {
|
|
if (!any_defined([chamfer, chamfer1, chamfer2, rounding, rounding1, rounding2])) {
|
|
cylinder(h=l, r1=r1, r2=r2, center=true, $fn=sides);
|
|
} else {
|
|
vang = atan2(l, r1-r2)/2;
|
|
chang1 = 90-first_defined([chamfang1, chamfang, vang]);
|
|
chang2 = 90-first_defined([chamfang2, chamfang, 90-vang]);
|
|
cham1 = u_mul(first_defined([chamfer1, chamfer]) , (from_end? 1 : tan(chang1)));
|
|
cham2 = u_mul(first_defined([chamfer2, chamfer]) , (from_end? 1 : tan(chang2)));
|
|
fil1 = first_defined([rounding1, rounding]);
|
|
fil2 = first_defined([rounding2, rounding]);
|
|
if (chamfer != undef) {
|
|
assert(chamfer <= r1, "chamfer is larger than the r1 radius of the cylinder.");
|
|
assert(chamfer <= r2, "chamfer is larger than the r2 radius of the cylinder.");
|
|
}
|
|
if (cham1 != undef) {
|
|
assert(cham1 <= r1, "chamfer1 is larger than the r1 radius of the cylinder.");
|
|
}
|
|
if (cham2 != undef) {
|
|
assert(cham2 <= r2, "chamfer2 is larger than the r2 radius of the cylinder.");
|
|
}
|
|
if (rounding != undef) {
|
|
assert(rounding <= r1, "rounding is larger than the r1 radius of the cylinder.");
|
|
assert(rounding <= r2, "rounding is larger than the r2 radius of the cylinder.");
|
|
}
|
|
if (fil1 != undef) {
|
|
assert(fil1 <= r1, "rounding1 is larger than the r1 radius of the cylinder.");
|
|
}
|
|
if (fil2 != undef) {
|
|
assert(fil2 <= r2, "rounding2 is larger than the r1 radius of the cylinder.");
|
|
}
|
|
dy1 = abs(first_defined([cham1, fil1, 0]));
|
|
dy2 = abs(first_defined([cham2, fil2, 0]));
|
|
assert(dy1+dy2 <= l, "Sum of fillets and chamfer sizes must be less than the length of the cylinder.");
|
|
|
|
path = concat(
|
|
[[0,l/2]],
|
|
|
|
!is_undef(cham2)? (
|
|
let(
|
|
p1 = [r2-cham2/tan(chang2),l/2],
|
|
p2 = lerp([r2,l/2],[r1,-l/2],abs(cham2)/l)
|
|
) [p1,p2]
|
|
) : !is_undef(fil2)? (
|
|
let(
|
|
cn = circle_2tangents([r2-fil2,l/2], [r2,l/2], [r1,-l/2], r=abs(fil2)),
|
|
ang = fil2<0? phi : phi-180,
|
|
steps = ceil(abs(ang)/360*segs(abs(fil2))),
|
|
step = ang/steps,
|
|
pts = [for (i=[0:1:steps]) let(a=90+i*step) cn[0]+abs(fil2)*[cos(a),sin(a)]]
|
|
) pts
|
|
) : [[r2,l/2]],
|
|
|
|
!is_undef(cham1)? (
|
|
let(
|
|
p1 = lerp([r1,-l/2],[r2,l/2],abs(cham1)/l),
|
|
p2 = [r1-cham1/tan(chang1),-l/2]
|
|
) [p1,p2]
|
|
) : !is_undef(fil1)? (
|
|
let(
|
|
cn = circle_2tangents([r1-fil1,-l/2], [r1,-l/2], [r2,l/2], r=abs(fil1)),
|
|
ang = fil1<0? 180-phi : -phi,
|
|
steps = ceil(abs(ang)/360*segs(abs(fil1))),
|
|
step = ang/steps,
|
|
pts = [for (i=[0:1:steps]) let(a=(fil1<0?180:0)+(phi-90)+i*step) cn[0]+abs(fil1)*[cos(a),sin(a)]]
|
|
) pts
|
|
) : [[r1,-l/2]],
|
|
|
|
[[0,-l/2]]
|
|
);
|
|
rotate_extrude(convexity=2) {
|
|
polygon(path);
|
|
}
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: xcyl()
|
|
//
|
|
// Description:
|
|
// Creates a cylinder oriented along the X axis.
|
|
//
|
|
// Usage: Typical
|
|
// xcyl(l|h, r, [anchor=]);
|
|
// xcyl(l|h, d=, [anchor=]);
|
|
// xcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
|
|
// Usage: Attaching Children
|
|
// xcyl(l|h, r, [anchor=]) [attachments];
|
|
//
|
|
// Arguments:
|
|
// l / h = Length of cylinder along oriented axis. Default: 1
|
|
// r = Radius of cylinder. Default: 1
|
|
// ---
|
|
// r1 = Optional radius of left (X-) end of cylinder.
|
|
// r2 = Optional radius of right (X+) end of cylinder.
|
|
// d = Optional diameter of cylinder. (use instead of `r`)
|
|
// d1 = Optional diameter of left (X-) end of cylinder.
|
|
// d2 = Optional diameter of right (X+) end of cylinder.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
//
|
|
// Example: By Radius
|
|
// ydistribute(50) {
|
|
// xcyl(l=35, r=10);
|
|
// xcyl(l=35, r1=15, r2=5);
|
|
// }
|
|
//
|
|
// Example: By Diameter
|
|
// ydistribute(50) {
|
|
// xcyl(l=35, d=20);
|
|
// xcyl(l=35, d1=30, d2=10);
|
|
// }
|
|
module xcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
|
|
{
|
|
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
|
|
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
|
l = first_defined([l, h, 1]);
|
|
attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=RIGHT) {
|
|
cyl(l=l, r1=r1, r2=r2, orient=RIGHT, anchor=CENTER);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: ycyl()
|
|
//
|
|
// Description:
|
|
// Creates a cylinder oriented along the Y axis.
|
|
//
|
|
// Usage: Typical
|
|
// ycyl(l|h, r, [anchor=]);
|
|
// ycyl(l|h, d=, [anchor=]);
|
|
// ycyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
|
|
// Usage: Attaching Children
|
|
// ycyl(l|h, r, [anchor=]) [attachments];
|
|
//
|
|
// Arguments:
|
|
// l / h = Length of cylinder along oriented axis. (Default: `1.0`)
|
|
// r = Radius of cylinder.
|
|
// ---
|
|
// r1 = Radius of front (Y-) end of cone.
|
|
// r2 = Radius of back (Y+) end of one.
|
|
// d = Diameter of cylinder.
|
|
// d1 = Diameter of front (Y-) end of one.
|
|
// d2 = Diameter of back (Y+) end of one.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
//
|
|
// Example: By Radius
|
|
// xdistribute(50) {
|
|
// ycyl(l=35, r=10);
|
|
// ycyl(l=35, r1=15, r2=5);
|
|
// }
|
|
//
|
|
// Example: By Diameter
|
|
// xdistribute(50) {
|
|
// ycyl(l=35, d=20);
|
|
// ycyl(l=35, d1=30, d2=10);
|
|
// }
|
|
module ycyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
|
|
{
|
|
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
|
|
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
|
|
l = first_defined([l, h, 1]);
|
|
attachable(anchor,0,UP, r1=r1, r2=r2, l=l, axis=BACK) {
|
|
cyl(l=l, h=h, r1=r1, r2=r2, orient=BACK, anchor=CENTER);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: zcyl()
|
|
//
|
|
// Description:
|
|
// Creates a cylinder oriented along the Z axis.
|
|
//
|
|
// Usage: Typical
|
|
// zcyl(l|h, r, [anchor=]);
|
|
// zcyl(l|h, d=, [anchor=]);
|
|
// zcyl(l|h, r1=|d1=, r2=|d2=, [anchor=]);
|
|
// Usage: Attaching Children
|
|
// zcyl(l|h, r, [anchor=]) [attachments];
|
|
//
|
|
// Arguments:
|
|
// l / h = Length of cylinder along oriented axis. (Default: 1.0)
|
|
// r = Radius of cylinder.
|
|
// ---
|
|
// r1 = Radius of front (Y-) end of cone.
|
|
// r2 = Radius of back (Y+) end of one.
|
|
// d = Diameter of cylinder.
|
|
// d1 = Diameter of front (Y-) end of one.
|
|
// d2 = Diameter of back (Y+) end of one.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
//
|
|
// Example: By Radius
|
|
// xdistribute(50) {
|
|
// zcyl(l=35, r=10);
|
|
// zcyl(l=35, r1=15, r2=5);
|
|
// }
|
|
//
|
|
// Example: By Diameter
|
|
// xdistribute(50) {
|
|
// zcyl(l=35, d=20);
|
|
// zcyl(l=35, d1=30, d2=10);
|
|
// }
|
|
module zcyl(h, r, d, r1, r2, d1, d2, l, anchor=CENTER)
|
|
{
|
|
cyl(l=l, h=h, r=r, r1=r1, r2=r2, d=d, d1=d1, d2=d2, orient=UP, anchor=anchor) children();
|
|
}
|
|
|
|
|
|
|
|
// Module: tube()
|
|
//
|
|
// Description:
|
|
// Makes a hollow tube with the given outer size and wall thickness.
|
|
//
|
|
// Usage: Typical
|
|
// tube(h|l, or, ir, [center], [realign=]);
|
|
// tube(h|l, or=|od=, ir=|id=, ...);
|
|
// tube(h|l, ir|id, wall, ...);
|
|
// tube(h|l, or|od, wall, ...);
|
|
// tube(h|l, ir1|id1, ir2|id2, wall, ...);
|
|
// tube(h|l, or1|od1, or2|od2, wall, ...);
|
|
// tube(h|l, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]);
|
|
// Usage: Attaching Children
|
|
// tube(h|l, or, ir, [center]) [attachments];
|
|
//
|
|
// Arguments:
|
|
// h / l = height of tube. Default: 1
|
|
// or = Outer radius of tube. Default: 1
|
|
// ir = Inner radius of tube.
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
|
|
// ---
|
|
// od = Outer diameter of tube.
|
|
// id = Inner diameter of tube.
|
|
// wall = horizontal thickness of tube wall. Default 0.5
|
|
// or1 = Outer radius of bottom of tube. Default: value of r)
|
|
// or2 = Outer radius of top of tube. Default: value of r)
|
|
// od1 = Outer diameter of bottom of tube.
|
|
// od2 = Outer diameter of top of tube.
|
|
// ir1 = Inner radius of bottom of tube.
|
|
// ir2 = Inner radius of top of tube.
|
|
// id1 = Inner diameter of bottom of tube.
|
|
// id2 = Inner diameter of top of tube.
|
|
// realign = If true, rotate the tube by half the angle of one face.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: These all Produce the Same Tube
|
|
// tube(h=30, or=40, wall=5);
|
|
// tube(h=30, ir=35, wall=5);
|
|
// tube(h=30, or=40, ir=35);
|
|
// tube(h=30, od=80, id=70);
|
|
// Example: These all Produce the Same Conical Tube
|
|
// tube(h=30, or1=40, or2=25, wall=5);
|
|
// tube(h=30, ir1=35, or2=20, wall=5);
|
|
// tube(h=30, or1=40, or2=25, ir1=35, ir2=20);
|
|
// Example: Circular Wedge
|
|
// tube(h=30, or1=40, or2=30, ir1=20, ir2=30);
|
|
// Example: Standard Connectors
|
|
// tube(h=30, or=40, wall=5) show_anchors();
|
|
module tube(
|
|
h, or, ir, center,
|
|
od, id, wall,
|
|
or1, or2, od1, od2,
|
|
ir1, ir2, id1, id2,
|
|
realign=false, l,
|
|
anchor, spin=0, orient=UP
|
|
) {
|
|
h = first_defined([h,l,1]);
|
|
orr1 = get_radius(r1=or1, r=or, d1=od1, d=od, dflt=undef);
|
|
orr2 = get_radius(r1=or2, r=or, d1=od2, d=od, dflt=undef);
|
|
irr1 = get_radius(r1=ir1, r=ir, d1=id1, d=id, dflt=undef);
|
|
irr2 = get_radius(r1=ir2, r=ir, d1=id2, d=id, dflt=undef);
|
|
r1 = default(orr1, u_add(irr1,wall));
|
|
r2 = default(orr2, u_add(irr2,wall));
|
|
ir1 = default(irr1, u_sub(orr1,wall));
|
|
ir2 = default(irr2, u_sub(orr2,wall));
|
|
assert(ir1 <= r1, "Inner radius is larger than outer radius.");
|
|
assert(ir2 <= r2, "Inner radius is larger than outer radius.");
|
|
sides = segs(max(r1,r2));
|
|
anchor = get_anchor(anchor, center, BOT, BOT);
|
|
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
|
|
zrot(realign? 180/sides : 0) {
|
|
difference() {
|
|
cyl(h=h, r1=r1, r2=r2, $fn=sides) children();
|
|
cyl(h=h+0.05, r1=ir1, r2=ir2);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: torus()
|
|
//
|
|
// Usage: Typical
|
|
// torus(r_maj|d_maj, r_min|d_min, [center], ...);
|
|
// torus(or|od, ir|id, ...);
|
|
// torus(r_maj|d_maj, or|od, ...);
|
|
// torus(r_maj|d_maj, ir|id, ...);
|
|
// torus(r_min|d_min, or|od, ...);
|
|
// torus(r_min|d_min, ir|id, ...);
|
|
// Usage: Attaching Children
|
|
// torus(or|od, ir|id, ...) [attachments];
|
|
//
|
|
// Description:
|
|
// Creates a torus shape.
|
|
//
|
|
// Figure(2D,Med):
|
|
// module text3d(t,size=8) text(text=t,size=size,font="Helvetica", halign="center",valign="center");
|
|
// module dashcirc(r,start=0,angle=359.9,dashlen=5) let(step=360*dashlen/(2*r*PI)) for(a=[start:step:start+angle]) stroke(arc(r=r,start=a,angle=step/2));
|
|
// r = 75; r2 = 30;
|
|
// down(r2+0.1) #torus(r_maj=r, r_min=r2, $fn=72);
|
|
// color("blue") linear_extrude(height=0.01) {
|
|
// dashcirc(r=r,start=15,angle=45);
|
|
// dashcirc(r=r-r2, start=90+15, angle=60);
|
|
// dashcirc(r=r+r2, start=180+45, angle=30);
|
|
// dashcirc(r=r+r2, start=15, angle=30);
|
|
// }
|
|
// rot(240) color("blue") linear_extrude(height=0.01) {
|
|
// stroke([[0,0],[r+r2,0]], endcaps="arrow2",width=2);
|
|
// right(r) fwd(9) rot(-240) text3d("or",size=10);
|
|
// }
|
|
// rot(135) color("blue") linear_extrude(height=0.01) {
|
|
// stroke([[0,0],[r-r2,0]], endcaps="arrow2",width=2);
|
|
// right((r-r2)/2) back(8) rot(-135) text3d("ir",size=10);
|
|
// }
|
|
// rot(45) color("blue") linear_extrude(height=0.01) {
|
|
// stroke([[0,0],[r,0]], endcaps="arrow2",width=2);
|
|
// right(r/2) back(8) text3d("r_maj",size=9);
|
|
// }
|
|
// rot(30) color("blue") linear_extrude(height=0.01) {
|
|
// stroke([[r,0],[r+r2,0]], endcaps="arrow2",width=2);
|
|
// right(r+r2/2) fwd(8) text3d("r_min",size=7);
|
|
// }
|
|
//
|
|
// Arguments:
|
|
// r_maj = major radius of torus ring. (use with 'r_min', or 'd_min')
|
|
// r_min = minor radius of torus ring. (use with 'r_maj', or 'd_maj')
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=DOWN`.
|
|
// ---
|
|
// d_maj = major diameter of torus ring. (use with 'r_min', or 'd_min')
|
|
// d_min = minor diameter of torus ring. (use with 'r_maj', or 'd_maj')
|
|
// or = outer radius of the torus. (use with 'ir', or 'id')
|
|
// ir = inside radius of the torus. (use with 'or', or 'od')
|
|
// od = outer diameter of the torus. (use with 'ir' or 'id')
|
|
// id = inside diameter of the torus. (use with 'or' or 'od')
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example:
|
|
// // These all produce the same torus.
|
|
// torus(r_maj=22.5, r_min=7.5);
|
|
// torus(d_maj=45, d_min=15);
|
|
// torus(or=30, ir=15);
|
|
// torus(od=60, id=30);
|
|
// torus(d_maj=45, id=30);
|
|
// torus(d_maj=45, od=60);
|
|
// torus(d_min=15, id=30);
|
|
// torus(d_min=15, od=60);
|
|
// Example: Standard Connectors
|
|
// torus(od=60, id=30) show_anchors();
|
|
module torus(
|
|
r_maj, r_min, center,
|
|
d_maj, d_min,
|
|
or, od, ir, id,
|
|
anchor, spin=0, orient=UP
|
|
) {
|
|
_or = get_radius(r=or, d=od, dflt=undef);
|
|
_ir = get_radius(r=ir, d=id, dflt=undef);
|
|
_r_maj = get_radius(r=r_maj, d=d_maj, dflt=undef);
|
|
_r_min = get_radius(r=r_min, d=d_min, dflt=undef);
|
|
majrad = is_finite(_r_maj)? _r_maj :
|
|
is_finite(_ir) && is_finite(_or)? (_or + _ir)/2 :
|
|
is_finite(_ir) && is_finite(_r_min)? (_ir + _r_min) :
|
|
is_finite(_or) && is_finite(_r_min)? (_or - _r_min) :
|
|
assert(false, "Bad Parameters");
|
|
minrad = is_finite(_r_min)? _r_min :
|
|
is_finite(_ir)? (majrad - _ir) :
|
|
is_finite(_or)? (_or - majrad) :
|
|
assert(false, "Bad Parameters");
|
|
anchor = get_anchor(anchor, center, BOT, CENTER);
|
|
attachable(anchor,spin,orient, r=(majrad+minrad), l=minrad*2) {
|
|
rotate_extrude(convexity=4) {
|
|
right(majrad) circle(r=minrad);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Spheroid
|
|
|
|
|
|
// Function&Module: spheroid()
|
|
// Usage: Typical
|
|
// spheroid(r|d, [circum], [style]);
|
|
// Usage: Attaching Children
|
|
// spheroid(r|d, [circum], [style]) [attachments];
|
|
// Usage: As Function
|
|
// vnf = spheroid(r|d, [circum], [style]);
|
|
// Description:
|
|
// Creates a spheroid object, with support for anchoring and attachments.
|
|
// This is a drop-in replacement for the built-in `sphere()` module.
|
|
// When called as a function, returns a [VNF](vnf.scad) for a spheroid.
|
|
// The exact triangulation of this spheroid can be controlled via the `style=`
|
|
// argument, where the value can be one of `"orig"`, `"aligned"`, `"stagger"`,
|
|
// `"octa"`, or `"icosa"`:
|
|
// - `style="orig"` constructs a sphere the same way that the OpenSCAD `sphere()` built-in does.
|
|
// - `style="aligned"` constructs a sphere where, if `$fn` is a multiple of 4, it has vertices at all axis maxima and minima. ie: its bounding box is exactly the sphere diameter in length on all three axes. This is the default.
|
|
// - `style="stagger"` forms a sphere where all faces are triangular, but the top and bottom poles have thinner triangles.
|
|
// - `style="octa"` forms a sphere by subdividing an octahedron (8-sided platonic solid). This makes more uniform faces over the entirety of the sphere, and guarantees the bounding box is the sphere diameter in size on all axes. The effective `$fn` value is quantized to a multiple of 4, though. This is used in constructing rounded corners for various other shapes.
|
|
// - `style="icosa"` forms a sphere by subdividing an icosahedron (20-sided platonic solid). This makes even more uniform faces over the entirety of the sphere. The effective `$fn` value is quantized to a multiple of 5, though.
|
|
// Arguments:
|
|
// r = Radius of the spheroid.
|
|
// style = The style of the spheroid's construction. One of "orig", "aligned", "stagger", "octa", or "icosa". Default: "aligned"
|
|
// ---
|
|
// d = Diameter of the spheroid.
|
|
// circum = If true, the spheroid is made large enough to circumscribe the sphere of the ideal side. Otherwise inscribes. Default: false (inscribes)
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Example: By Radius
|
|
// spheroid(r=50);
|
|
// Example: By Diameter
|
|
// spheroid(d=100);
|
|
// Example: style="orig"
|
|
// spheroid(d=100, style="orig", $fn=10);
|
|
// Example: style="aligned"
|
|
// spheroid(d=100, style="aligned", $fn=10);
|
|
// Example: style="stagger"
|
|
// spheroid(d=100, style="stagger", $fn=10);
|
|
// Example: style="octa", octahedral based tesselation.
|
|
// spheroid(d=100, style="octa", $fn=10);
|
|
// // In "octa" style, $fn is quantized
|
|
// // to the nearest multiple of 4.
|
|
// Example: style="icosa", icosahedral based tesselation.
|
|
// spheroid(d=100, style="icosa", $fn=10);
|
|
// // In "icosa" style, $fn is quantized
|
|
// // to the nearest multiple of 5.
|
|
// Example: Anchoring
|
|
// spheroid(d=100, anchor=FRONT);
|
|
// Example: Spin
|
|
// spheroid(d=100, anchor=FRONT, spin=45);
|
|
// Example: Orientation
|
|
// spheroid(d=100, anchor=FRONT, spin=45, orient=FWD);
|
|
// Example: Standard Connectors
|
|
// spheroid(d=50) show_anchors();
|
|
// Example: Called as Function
|
|
// vnf = spheroid(d=100, style="icosa");
|
|
// vnf_polyhedron(vnf);
|
|
module spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
r = get_radius(r=r, d=d, dflt=1);
|
|
sides = segs(r);
|
|
vsides = ceil(sides/2);
|
|
attachable(anchor,spin,orient, r=r) {
|
|
if (style=="orig") {
|
|
merids = [ for (i=[0:1:vsides-1]) 90-(i+0.5)*180/vsides ];
|
|
path = [
|
|
let(a = merids[0]) [0, sin(a)],
|
|
for (a=merids) [cos(a), sin(a)],
|
|
let(a = last(merids)) [0, sin(a)]
|
|
];
|
|
scale(r) rotate(180) rotate_extrude(convexity=2,$fn=sides) polygon(path);
|
|
} else {
|
|
vnf = spheroid(r=r, circum=circum, style=style);
|
|
vnf_polyhedron(vnf, convexity=2);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
function spheroid(r, style="aligned", d, circum=false, anchor=CENTER, spin=0, orient=UP) =
|
|
let(
|
|
r = get_radius(r=r, d=d, dflt=1),
|
|
hsides = segs(r),
|
|
vsides = max(2,ceil(hsides/2)),
|
|
octa_steps = round(max(4,hsides)/4),
|
|
icosa_steps = round(max(5,hsides)/5),
|
|
rr = circum? (r / cos(90/vsides) / cos(180/hsides)) : r,
|
|
stagger = style=="stagger",
|
|
verts = style=="orig"? [
|
|
for (i=[0:1:vsides-1]) let(phi = (i+0.5)*180/(vsides))
|
|
for (j=[0:1:hsides-1]) let(theta = j*360/hsides)
|
|
spherical_to_xyz(rr, theta, phi),
|
|
] : style=="aligned" || style=="stagger"? [
|
|
spherical_to_xyz(rr, 0, 0),
|
|
for (i=[1:1:vsides-1]) let(phi = i*180/vsides)
|
|
for (j=[0:1:hsides-1]) let(theta = (j+((stagger && i%2!=0)?0.5:0))*360/hsides)
|
|
spherical_to_xyz(rr, theta, phi),
|
|
spherical_to_xyz(rr, 0, 180)
|
|
] : style=="octa"? let(
|
|
meridians = [
|
|
1,
|
|
for (i = [1:1:octa_steps]) i*4,
|
|
for (i = [octa_steps-1:-1:1]) i*4,
|
|
1,
|
|
]
|
|
) [
|
|
for (i=idx(meridians), j=[0:1:meridians[i]-1])
|
|
spherical_to_xyz(rr, j*360/meridians[i], i*180/(len(meridians)-1))
|
|
] : style=="icosa"? [
|
|
for (tb=[0,1], j=[0,2], i = [0:1:4]) let(
|
|
theta0 = i*360/5,
|
|
theta1 = (i-0.5)*360/5,
|
|
theta2 = (i+0.5)*360/5,
|
|
phi0 = 180/3 * j,
|
|
phi1 = 180/3,
|
|
v0 = spherical_to_xyz(1,theta0,phi0),
|
|
v1 = spherical_to_xyz(1,theta1,phi1),
|
|
v2 = spherical_to_xyz(1,theta2,phi1),
|
|
ax0 = vector_axis(v0, v1),
|
|
ang0 = vector_angle(v0, v1),
|
|
ax1 = vector_axis(v0, v2),
|
|
ang1 = vector_angle(v0, v2)
|
|
)
|
|
for (k = [0:1:icosa_steps]) let(
|
|
u = k/icosa_steps,
|
|
vv0 = rot(ang0*u, ax0, p=v0),
|
|
vv1 = rot(ang1*u, ax1, p=v0),
|
|
ax2 = vector_axis(vv0, vv1),
|
|
ang2 = vector_angle(vv0, vv1)
|
|
)
|
|
for (l = [0:1:k]) let(
|
|
v = k? l/k : 0,
|
|
pt = rot(ang2*v, v=ax2, p=vv0) * rr * (tb? -1 : 1)
|
|
) pt
|
|
] : assert(in_list(style,["orig","aligned","stagger","octa","icosa"])),
|
|
lv = len(verts),
|
|
faces = style=="orig"? [
|
|
[for (i=[0:1:hsides-1]) hsides-i-1],
|
|
[for (i=[0:1:hsides-1]) lv-hsides+i],
|
|
for (i=[0:1:vsides-2], j=[0:1:hsides-1]) each [
|
|
[(i+1)*hsides+j, i*hsides+j, i*hsides+(j+1)%hsides],
|
|
[(i+1)*hsides+j, i*hsides+(j+1)%hsides, (i+1)*hsides+(j+1)%hsides],
|
|
]
|
|
] : style=="aligned" || style=="stagger"? [
|
|
for (i=[0:1:hsides-1]) let(
|
|
b2 = lv-2-hsides
|
|
) each [
|
|
[i+1, 0, ((i+1)%hsides)+1],
|
|
[lv-1, b2+i+1, b2+((i+1)%hsides)+1],
|
|
],
|
|
for (i=[0:1:vsides-3], j=[0:1:hsides-1]) let(
|
|
base = 1 + hsides*i
|
|
) each (
|
|
(stagger && i%2!=0)? [
|
|
[base+j, base+hsides+j%hsides, base+hsides+(j+hsides-1)%hsides],
|
|
[base+j, base+(j+1)%hsides, base+hsides+j],
|
|
] : [
|
|
[base+j, base+(j+1)%hsides, base+hsides+(j+1)%hsides],
|
|
[base+j, base+hsides+(j+1)%hsides, base+hsides+j],
|
|
]
|
|
)
|
|
] : style=="octa"? let(
|
|
meridians = [
|
|
0, 1,
|
|
for (i = [1:1:octa_steps]) i*4,
|
|
for (i = [octa_steps-1:-1:1]) i*4,
|
|
1,
|
|
],
|
|
offs = cumsum(meridians),
|
|
pc = last(offs)-1,
|
|
os = octa_steps * 2
|
|
) [
|
|
for (i=[0:1:3]) [0, 1+(i+1)%4, 1+i],
|
|
for (i=[0:1:3]) [pc-0, pc-(1+(i+1)%4), pc-(1+i)],
|
|
for (i=[1:1:octa_steps-1]) let(
|
|
m = meridians[i+2]/4
|
|
)
|
|
for (j=[0:1:3], k=[0:1:m-1]) let(
|
|
m1 = meridians[i+1],
|
|
m2 = meridians[i+2],
|
|
p1 = offs[i+0] + (j*m1/4 + k+0) % m1,
|
|
p2 = offs[i+0] + (j*m1/4 + k+1) % m1,
|
|
p3 = offs[i+1] + (j*m2/4 + k+0) % m2,
|
|
p4 = offs[i+1] + (j*m2/4 + k+1) % m2,
|
|
p5 = offs[os-i+0] + (j*m1/4 + k+0) % m1,
|
|
p6 = offs[os-i+0] + (j*m1/4 + k+1) % m1,
|
|
p7 = offs[os-i-1] + (j*m2/4 + k+0) % m2,
|
|
p8 = offs[os-i-1] + (j*m2/4 + k+1) % m2
|
|
) each [
|
|
[p1, p4, p3],
|
|
if (k<m-1) [p1, p2, p4],
|
|
[p5, p7, p8],
|
|
if (k<m-1) [p5, p8, p6],
|
|
],
|
|
] : style=="icosa"? let(
|
|
pyr = [for (x=[0:1:icosa_steps+1]) x],
|
|
tri = sum(pyr),
|
|
soff = cumsum(pyr)
|
|
) [
|
|
for (tb=[0,1], j=[0,1], i = [0:1:4]) let(
|
|
base = ((((tb*2) + j) * 5) + i) * tri
|
|
)
|
|
for (k = [0:1:icosa_steps-1])
|
|
for (l = [0:1:k]) let(
|
|
v1 = base + soff[k] + l,
|
|
v2 = base + soff[k+1] + l,
|
|
v3 = base + soff[k+1] + (l + 1),
|
|
faces = [
|
|
if(l>0) [v1-1,v1,v2],
|
|
[v1,v3,v2],
|
|
],
|
|
faces2 = (tb+j)%2? [for (f=faces) reverse(f)] : faces
|
|
) each faces2
|
|
] : []
|
|
) [reorient(anchor,spin,orient, r=r, p=verts), faces];
|
|
|
|
|
|
|
|
// Section: 3D Printing Shapes
|
|
|
|
|
|
// Module: teardrop()
|
|
//
|
|
// Description:
|
|
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
|
|
//
|
|
// Usage: Typical
|
|
// teardrop(h|l, r, [ang], [cap_h], ...);
|
|
// teardrop(h|l, d=, [ang=], [cap_h=], ...);
|
|
// Usage: Psuedo-Conical
|
|
// teardrop(h|l, r1=, r2=, [ang=], [cap_h1=], [cap_h2=], ...);
|
|
// teardrop(h|l, d1=, d2=, [ang=], [cap_h1=], [cap_h2=], ...);
|
|
// Usage: Attaching Children
|
|
// teardrop(h|l, r, ...) [attachments];
|
|
//
|
|
// Arguments:
|
|
// h / l = Thickness of teardrop. Default: 1
|
|
// r = Radius of circular part of teardrop. Default: 1
|
|
// ang = Angle of hat walls from the Z axis. Default: 45 degrees
|
|
// cap_h = If given, height above center where the shape will be truncated. Default: `undef` (no truncation)
|
|
// ---
|
|
// r1 = Radius of circular portion of the front end of the teardrop shape.
|
|
// r2 = Radius of circular portion of the back end of the teardrop shape.
|
|
// d = Diameter of circular portion of the teardrop shape.
|
|
// d1 = Diameter of circular portion of the front end of the teardrop shape.
|
|
// d2 = Diameter of circular portion of the back end of the teardrop shape.
|
|
// cap_h1 = If given, height above center where the shape will be truncated, on the front side. Default: `undef` (no truncation)
|
|
// cap_h2 = If given, height above center where the shape will be truncated, on the back side. Default: `undef` (no truncation)
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Extra Anchors:
|
|
// cap = The center of the top of the cap, oriented with the cap face normal.
|
|
// cap_fwd = The front edge of the cap.
|
|
// cap_back = The back edge of the cap.
|
|
//
|
|
// Example: Typical Shape
|
|
// teardrop(r=30, h=10, ang=30);
|
|
// Example: Crop Cap
|
|
// teardrop(r=30, h=10, ang=30, cap_h=40);
|
|
// Example: Close Crop
|
|
// teardrop(r=30, h=10, ang=30, cap_h=20);
|
|
// Example: Psuedo-Conical
|
|
// teardrop(r1=20, r2=30, h=40, cap_h1=25, cap_h2=35);
|
|
// Example: Standard Conical Connectors
|
|
// teardrop(d1=20, d2=30, h=20, cap_h1=11, cap_h2=16)
|
|
// show_anchors(custom=false);
|
|
// Example(Spin,VPD=275): Named Conical Connectors
|
|
// teardrop(d1=20, d2=30, h=20, cap_h1=11, cap_h2=16)
|
|
// show_anchors(std=false);
|
|
module teardrop(h, r, ang=45, cap_h, r1, r2, d, d1, d2, cap_h1, cap_h2, l, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
r1 = get_radius(r=r, r1=r1, d=d, d1=d1, dflt=1);
|
|
r2 = get_radius(r=r, r1=r2, d=d, d1=d2, dflt=1);
|
|
l = first_defined([l, h, 1]);
|
|
tip_y1 = adj_ang_to_hyp(r1, 90-ang);
|
|
tip_y2 = adj_ang_to_hyp(r2, 90-ang);
|
|
cap_h1 = min(first_defined([cap_h1, cap_h, tip_y1]), tip_y1);
|
|
cap_h2 = min(first_defined([cap_h2, cap_h, tip_y2]), tip_y2);
|
|
capvec = unit([0, cap_h1-cap_h2, l]);
|
|
anchors = [
|
|
anchorpt("cap", [0,0,(cap_h1+cap_h2)/2], capvec),
|
|
anchorpt("cap_fwd", [0,-l/2,cap_h1], unit((capvec+FWD)/2)),
|
|
anchorpt("cap_back", [0,+l/2,cap_h2], unit((capvec+BACK)/2), 180),
|
|
];
|
|
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l, axis=BACK, anchors=anchors) {
|
|
rot(from=UP,to=FWD) {
|
|
if (l > 0) {
|
|
if (r1 == r2) {
|
|
linear_extrude(height=l, center=true, slices=2) {
|
|
teardrop2d(r=r1, ang=ang, cap_h=cap_h);
|
|
}
|
|
} else {
|
|
hull() {
|
|
up(l/2-0.001) {
|
|
linear_extrude(height=0.001, center=false) {
|
|
teardrop2d(r=r1, ang=ang, cap_h=cap_h1);
|
|
}
|
|
}
|
|
down(l/2) {
|
|
linear_extrude(height=0.001, center=false) {
|
|
teardrop2d(r=r2, ang=ang, cap_h=cap_h2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: onion()
|
|
//
|
|
// Description:
|
|
// Creates a sphere with a conical hat, to make a 3D teardrop.
|
|
//
|
|
// Usage:
|
|
// onion(r|d, [ang], [cap_h]);
|
|
// Usage: Typical
|
|
// onion(r, [ang], [cap_h], ...);
|
|
// onion(d=, [ang=], [cap_h=], ...);
|
|
// Usage: Attaching Children
|
|
// onion(r, ...) [attachments];
|
|
//
|
|
// Arguments:
|
|
// r = radius of spherical portion of the bottom. Default: 1
|
|
// ang = Angle of cone on top from vertical. Default: 45 degrees
|
|
// cap_h = If given, height above sphere center to truncate teardrop shape. Default: `undef` (no truncation)
|
|
// ---
|
|
// d = diameter of spherical portion of bottom.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: Typical Shape
|
|
// onion(r=30, ang=30);
|
|
// Example: Crop Cap
|
|
// onion(r=30, ang=30, cap_h=40);
|
|
// Example: Close Crop
|
|
// onion(r=30, ang=30, cap_h=20);
|
|
// Example: Standard Connectors
|
|
// onion(r=30, ang=30, cap_h=40) show_anchors();
|
|
module onion(r, ang=45, cap_h, d, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
r = get_radius(r=r, d=d, dflt=1);
|
|
tip_y = adj_ang_to_hyp(r, 90-ang);
|
|
cap_h = min(default(cap_h,tip_y), tip_y);
|
|
anchors = [
|
|
["cap", [0,0,cap_h], UP, 0]
|
|
];
|
|
attachable(anchor,spin,orient, r=r, anchors=anchors) {
|
|
rotate_extrude(convexity=2) {
|
|
difference() {
|
|
teardrop2d(r=r, ang=ang, cap_h=cap_h);
|
|
left(r) square(size=[2*r,2*max(cap_h,r)+1], center=true);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Miscellaneous
|
|
|
|
|
|
// Module: nil()
|
|
//
|
|
// Description:
|
|
// Useful when you MUST pass a child to a module, but you want it to be nothing.
|
|
module nil() union(){}
|
|
|
|
|
|
// Module: noop()
|
|
//
|
|
// Description:
|
|
// Passes through the children passed to it, with no action at all. Useful while debugging when
|
|
// you want to replace a command. This is an attachable non-object.
|
|
//
|
|
// Arguments:
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
module noop(spin=0, orient=UP) attachable(CENTER,spin,orient, d=0.01) {nil(); children();}
|
|
|
|
|
|
// Module: pie_slice()
|
|
//
|
|
// Description:
|
|
// Creates a pie slice shape.
|
|
//
|
|
// Usage: Typical
|
|
// pie_slice(l|h, r, ang, [center]);
|
|
// pie_slice(l|h, d=, ang=, ...);
|
|
// pie_slice(l|h, r1=|d1=, r2=|d2=, ang=, ...);
|
|
// Usage: Attaching Children
|
|
// pie_slice(l|h, r, ang, ...) [attachments];
|
|
//
|
|
// Arguments:
|
|
// h / l = height of pie slice.
|
|
// r = radius of pie slice.
|
|
// ang = pie slice angle in degrees.
|
|
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=UP`.
|
|
// ---
|
|
// r1 = bottom radius of pie slice.
|
|
// r2 = top radius of pie slice.
|
|
// d = diameter of pie slice.
|
|
// d1 = bottom diameter of pie slice.
|
|
// d2 = top diameter of pie slice.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example: Cylindrical Pie Slice
|
|
// pie_slice(ang=45, l=20, r=30);
|
|
// Example: Conical Pie Slice
|
|
// pie_slice(ang=60, l=20, d1=50, d2=70);
|
|
module pie_slice(
|
|
h, r, ang=30, center,
|
|
r1, r2, d, d1, d2, l,
|
|
anchor, spin=0, orient=UP
|
|
) {
|
|
l = first_defined([l, h, 1]);
|
|
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=10);
|
|
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=10);
|
|
maxd = max(r1,r2)+0.1;
|
|
anchor = get_anchor(anchor, center, BOT, BOT);
|
|
attachable(anchor,spin,orient, r1=r1, r2=r2, l=l) {
|
|
difference() {
|
|
cyl(r1=r1, r2=r2, h=l);
|
|
if (ang<180) rotate(ang) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true);
|
|
difference() {
|
|
fwd(maxd/2) cube([2*maxd, maxd, l+0.2], center=true);
|
|
if (ang>180) rotate(ang-180) back(maxd/2) cube([2*maxd, maxd, l+0.1], center=true);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: interior_fillet()
|
|
//
|
|
// Description:
|
|
// Creates a shape that can be unioned into a concave joint between two faces, to fillet them.
|
|
// Center this part along the concave edge to be chamfered and union it in.
|
|
//
|
|
// Usage: Typical
|
|
// interior_fillet(l, r, [ang], [overlap], ...);
|
|
// interior_fillet(l, d=, [ang=], [overlap=], ...);
|
|
// Usage: Attaching Children
|
|
// interior_fillet(l, r, [ang], [overlap], ...) [attachments];
|
|
//
|
|
// Arguments:
|
|
// l = Length of edge to fillet.
|
|
// r = Radius of fillet.
|
|
// ang = Angle between faces to fillet.
|
|
// overlap = Overlap size for unioning with faces.
|
|
// ---
|
|
// d = Diameter of fillet.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `FRONT+LEFT`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
//
|
|
// Example:
|
|
// union() {
|
|
// translate([0,2,-4])
|
|
// cube([20, 4, 24], anchor=BOTTOM);
|
|
// translate([0,-10,-4])
|
|
// cube([20, 20, 4], anchor=BOTTOM);
|
|
// color("green")
|
|
// interior_fillet(
|
|
// l=20, r=10,
|
|
// spin=180, orient=RIGHT
|
|
// );
|
|
// }
|
|
//
|
|
// Example:
|
|
// interior_fillet(l=40, r=10, spin=-90);
|
|
//
|
|
// Example: Using with Attachments
|
|
// cube(50,center=true) {
|
|
// position(FRONT+LEFT)
|
|
// interior_fillet(l=50, r=10, spin=-90);
|
|
// position(BOT+FRONT)
|
|
// interior_fillet(l=50, r=10, spin=180, orient=RIGHT);
|
|
// }
|
|
module interior_fillet(l=1.0, r, ang=90, overlap=0.01, d, anchor=FRONT+LEFT, spin=0, orient=UP) {
|
|
r = get_radius(r=r, d=d, dflt=1);
|
|
dy = r/tan(ang/2);
|
|
steps = ceil(segs(r)*ang/360);
|
|
step = ang/steps;
|
|
attachable(anchor,spin,orient, size=[r,r,l]) {
|
|
if (l > 0) {
|
|
linear_extrude(height=l, convexity=4, center=true) {
|
|
path = concat(
|
|
[[0,0]],
|
|
[for (i=[0:1:steps]) let(a=270-i*step) r*[cos(a),sin(a)]+[dy,r]]
|
|
);
|
|
translate(-[r,r]/2) polygon(path);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Function&Module: heightfield()
|
|
// Usage: As Module
|
|
// heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], [convexity], ...);
|
|
// Usage: Attaching Children
|
|
// heightfield(data, [size], ...) [attachments];
|
|
// Usage: As Function
|
|
// vnf = heightfield(data, [size], [bottom], [maxz], [xrange], [yrange], [style], ...);
|
|
// Description:
|
|
// Given a regular rectangular 2D grid of scalar values, or a function literal, generates a 3D
|
|
// surface where the height at any given point is the scalar value for that position.
|
|
// Arguments:
|
|
// data = This is either the 2D rectangular array of heights, or a function literal that takes X and Y arguments.
|
|
// size = The [X,Y] size of the surface to create. If given as a scalar, use it for both X and Y sizes. Default: `[100,100]`
|
|
// bottom = The Z coordinate for the bottom of the heightfield object to create. Any heights lower than this will be truncated to very slightly above this height. Default: -20
|
|
// maxz = The maximum height to model. Truncates anything taller to this height. Default: 99
|
|
// xrange = A range of values to iterate X over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
|
|
// yrange = A range of values to iterate Y over when calculating a surface from a function literal. Default: [-1 : 0.01 : 1]
|
|
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx". Default: "default"
|
|
// ---
|
|
// convexity = Max number of times a line could intersect a wall of the surface being formed. Module only. Default: 10
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Example:
|
|
// heightfield(size=[100,100], bottom=-20, data=[
|
|
// for (y=[-180:4:180]) [
|
|
// for(x=[-180:4:180])
|
|
// 10*cos(3*norm([x,y]))
|
|
// ]
|
|
// ]);
|
|
// Example:
|
|
// intersection() {
|
|
// heightfield(size=[100,100], data=[
|
|
// for (y=[-180:5:180]) [
|
|
// for(x=[-180:5:180])
|
|
// 10+5*cos(3*x)*sin(3*y)
|
|
// ]
|
|
// ]);
|
|
// cylinder(h=50,d=100);
|
|
// }
|
|
// Example: Heightfield by Function
|
|
// fn = function (x,y) 10*sin(x*360)*cos(y*360);
|
|
// heightfield(size=[100,100], data=fn);
|
|
// Example: Heightfield by Function, with Specific Ranges
|
|
// fn = function (x,y) 2*cos(5*norm([x,y]));
|
|
// heightfield(
|
|
// size=[100,100], bottom=-20, data=fn,
|
|
// xrange=[-180:2:180], yrange=[-180:2:180]
|
|
// );
|
|
module heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", convexity=10, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
size = is_num(size)? [size,size] : point2d(size);
|
|
vnf = heightfield(data=data, size=size, xrange=xrange, yrange=yrange, bottom=bottom, maxz=maxz, style=style);
|
|
attachable(anchor,spin,orient, vnf=vnf) {
|
|
vnf_polyhedron(vnf, convexity=convexity);
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
function heightfield(data, size=[100,100], bottom=-20, maxz=100, xrange=[-1:0.04:1], yrange=[-1:0.04:1], style="default", anchor=CENTER, spin=0, orient=UP) =
|
|
assert(is_list(data) || is_function(data))
|
|
let(
|
|
size = is_num(size)? [size,size] : point2d(size),
|
|
xvals = is_list(data)
|
|
? [for (i=idx(data[0])) i]
|
|
: assert(is_list(xrange)||is_range(xrange)) [for (x=xrange) x],
|
|
yvals = is_list(data)
|
|
? [for (i=idx(data)) i]
|
|
: assert(is_list(yrange)||is_range(yrange)) [for (y=yrange) y],
|
|
xcnt = len(xvals),
|
|
minx = min(xvals),
|
|
maxx = max(xvals),
|
|
ycnt = len(yvals),
|
|
miny = min(yvals),
|
|
maxy = max(yvals),
|
|
verts = is_list(data) ? [
|
|
for (y = [0:1:ycnt-1]) [
|
|
for (x = [0:1:xcnt-1]) [
|
|
size.x * (x/(xcnt-1)-0.5),
|
|
size.y * (y/(ycnt-1)-0.5),
|
|
data[y][x]
|
|
]
|
|
]
|
|
] : [
|
|
for (y = yrange) [
|
|
for (x = xrange) let(
|
|
z = data(x,y)
|
|
) [
|
|
size.x * ((x-minx)/(maxx-minx)-0.5),
|
|
size.y * ((y-miny)/(maxy-miny)-0.5),
|
|
min(maxz, max(bottom+0.1, default(z,0)))
|
|
]
|
|
]
|
|
],
|
|
vnf = vnf_merge([
|
|
vnf_vertex_array(verts, style=style, reverse=true),
|
|
vnf_vertex_array([
|
|
verts[0],
|
|
[for (v=verts[0]) [v.x, v.y, bottom]],
|
|
]),
|
|
vnf_vertex_array([
|
|
[for (v=verts[ycnt-1]) [v.x, v.y, bottom]],
|
|
verts[ycnt-1],
|
|
]),
|
|
vnf_vertex_array([
|
|
[for (r=verts) let(v=r[0]) [v.x, v.y, bottom]],
|
|
[for (r=verts) let(v=r[0]) v],
|
|
]),
|
|
vnf_vertex_array([
|
|
[for (r=verts) let(v=r[xcnt-1]) v],
|
|
[for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom]],
|
|
]),
|
|
vnf_vertex_array([
|
|
[
|
|
for (v=verts[0]) [v.x, v.y, bottom],
|
|
for (r=verts) let(v=r[xcnt-1]) [v.x, v.y, bottom],
|
|
], [
|
|
for (r=verts) let(v=r[0]) [v.x, v.y, bottom],
|
|
for (v=verts[ycnt-1]) [v.x, v.y, bottom],
|
|
]
|
|
])
|
|
])
|
|
) reorient(anchor,spin,orient, vnf=vnf, p=vnf);
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|