mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
538 lines
17 KiB
OpenSCAD
538 lines
17 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: vnf.scad
|
|
// VNF structures, holding Vertices 'N' Faces for use with `polyhedron().`
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// use <BOSL2/vnf.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <triangulation.scad>
|
|
|
|
|
|
// Section: Creating Polyhedrons with VNF Structures
|
|
// VNF stands for "Vertices'N'Faces". VNF structures are 2-item lists, `[VERTICES,FACES]` where the
|
|
// first item is a list of vertex points, and the second is a list of face indices into the vertex
|
|
// list. Each VNF is self contained, with face indices referring only to its own vertex list.
|
|
// You can construct a `polyhedron()` in parts by describing each part in a self-contained VNF, then
|
|
// merge the various VNFs to get the completed polyhedron vertex list and faces.
|
|
|
|
|
|
EMPTY_VNF = [[],[]]; // The standard empty VNF with no vertices or faces.
|
|
|
|
|
|
// Function: is_vnf()
|
|
// Description: Returns true if the given value looks passingly like a VNF structure.
|
|
function is_vnf(x) = is_list(x) && len(x)==2 && is_list(x[0]) && is_list(x[1]) && (x[0]==[] || is_vector(x[0][0])) && (x[1]==[] || is_vector(x[1][0]));
|
|
|
|
|
|
// Function: is_vnf_list()
|
|
// Description: Returns true if the given value looks passingly like a list of VNF structures.
|
|
function is_vnf_list(x) = is_list(x) && all([for (v=x) is_vnf(v)]);
|
|
|
|
|
|
// Function: vnf_vertices()
|
|
// Description: Given a VNF structure, returns the list of vertex points.
|
|
function vnf_vertices(vnf) = vnf[0];
|
|
|
|
|
|
// Function: vnf_faces()
|
|
// Description: Given a VNF structure, returns the list of faces, where each face is a list of indices into the VNF vertex list.
|
|
function vnf_faces(vnf) = vnf[1];
|
|
|
|
|
|
// Function: vnf_get_vertex()
|
|
// Usage:
|
|
// vvnf = vnf_get_vertex(vnf, p);
|
|
// Description:
|
|
// Finds the index number of the given vertex point `p` in the given VNF structure `vnf`. If said
|
|
// point does not already exist in the VNF vertex list, it is added. Returns: `[INDEX, VNF]` where
|
|
// INDEX if the index of the point, and VNF is the possibly modified new VNF structure.
|
|
// If `p` is given as a list of points, then INDEX will be a list of indices.
|
|
// Arguments:
|
|
// vnf = The VNF structue to get the point index from.
|
|
// p = The point, or list of points to get the index of.
|
|
// Example:
|
|
// vnf1 = vnf_get_vertex(p=[3,5,8]); // Returns: [0, [[[3,5,8]],[]]]
|
|
// vnf2 = vnf_get_vertex(vnf1, p=[3,2,1]); // Returns: [1, [[[3,5,8],[3,2,1]],[]]]
|
|
// vnf3 = vnf_get_vertex(vnf2, p=[3,5,8]); // Returns: [0, [[[3,5,8],[3,2,1]],[]]]
|
|
// vnf4 = vnf_get_vertex(vnf3, p=[[1,3,2],[3,2,1]]); // Returns: [[1,2], [[[3,5,8],[3,2,1],[1,3,2]],[]]]
|
|
function vnf_get_vertex(vnf=EMPTY_VNF, p) =
|
|
is_path(p)? _vnf_get_vertices(vnf, p) :
|
|
assert(is_vnf(vnf))
|
|
assert(is_vector(p))
|
|
let(
|
|
p = quant(p,1/1024), // OpenSCAD internally quantizes objects to 1/1024.
|
|
v = search([p], vnf[0])[0]
|
|
) [
|
|
v != []? v : len(vnf[0]),
|
|
[
|
|
concat(vnf[0], v != []? [] : [p]),
|
|
vnf[1]
|
|
]
|
|
];
|
|
|
|
|
|
// Internal use only
|
|
function _vnf_get_vertices(vnf=EMPTY_VNF, pts, _i=0, _idxs=[]) =
|
|
_i>=len(pts)? [_idxs, vnf] :
|
|
let(
|
|
vvnf = vnf_get_vertex(vnf, pts[_i])
|
|
) _vnf_get_vertices(vvnf[1], pts, _i=_i+1, _idxs=concat(_idxs,[vvnf[0]]));
|
|
|
|
|
|
// Function: vnf_add_face()
|
|
// Usage:
|
|
// vnf_add_face(vnf, pts);
|
|
// Description:
|
|
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure.
|
|
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
|
|
// sure that the points are in the correct order to make the face normal point outwards.
|
|
// Arguments:
|
|
// vnf = The VNF structure to add a face to.
|
|
// pts = The vertex points for the face.
|
|
function vnf_add_face(vnf=EMPTY_VNF, pts) =
|
|
assert(is_vnf(vnf))
|
|
assert(is_path(pts))
|
|
let(
|
|
vvnf = vnf_get_vertex(vnf, pts),
|
|
face = deduplicate(vvnf[0], closed=true),
|
|
vnf2 = vvnf[1]
|
|
) [
|
|
vnf_vertices(vnf2),
|
|
concat(vnf_faces(vnf2), len(face)>2? [face] : [])
|
|
];
|
|
|
|
|
|
// Function: vnf_add_faces()
|
|
// Usage:
|
|
// vnf_add_faces(vnf, faces);
|
|
// Description:
|
|
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
|
|
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
|
|
// It is up to the caller to make sure that the points are in the correct order to make the face
|
|
// normals point outwards.
|
|
// Arguments:
|
|
// vnf = The VNF structure to add a face to.
|
|
// faces = The list of faces, where each face is given as a list of vertex points.
|
|
function vnf_add_faces(vnf=EMPTY_VNF, faces, _i=0) =
|
|
(assert(is_vnf(vnf)) assert(is_list(faces)) _i>=len(faces))? vnf :
|
|
vnf_add_faces(vnf_add_face(vnf, faces[_i]), faces, _i=_i+1);
|
|
|
|
|
|
// Function: vnf_merge()
|
|
// Usage:
|
|
// vnf = vnf_merge([VNF, VNF, VNF, ...]);
|
|
// Description:
|
|
// Given a list of VNF structures, merges them all into a single VNF structure.
|
|
function vnf_merge(vnfs=[],_i=0,_acc=EMPTY_VNF) =
|
|
(assert(is_vnf_list(vnfs)) _i>=len(vnfs))? _acc :
|
|
vnf_merge(
|
|
vnfs, _i=_i+1,
|
|
_acc = let(base=len(_acc[0])) [
|
|
concat(_acc[0], vnfs[_i][0]),
|
|
concat(_acc[1], [for (f=vnfs[_i][1]) [for (i=f) i+base]]),
|
|
]
|
|
);
|
|
|
|
// Function: vnf_compact()
|
|
// Usage:
|
|
// cvnf = vnf_compact(vnf);
|
|
// Description:
|
|
// Takes a VNF and consolidates all duplicate vertices, and drops unreferenced vertices.
|
|
function vnf_compact(vnf) =
|
|
let(
|
|
verts = vnf[0],
|
|
faces = [
|
|
for (face=vnf[1]) [
|
|
for (i=face) verts[i]
|
|
]
|
|
]
|
|
) vnf_add_faces(faces=faces);
|
|
|
|
|
|
// Function: vnf_triangulate()
|
|
// Usage:
|
|
// vnf2 = vnf_triangulate(vnf);
|
|
// Description:
|
|
// Forces triangulation of faces in the VNF that have more than 3 vertices.
|
|
function vnf_triangulate(vnf) =
|
|
let(
|
|
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf
|
|
) [vnf[0], triangulate_faces(vnf[0], vnf[1])];
|
|
|
|
|
|
// Function: vnf_vertex_array()
|
|
// Usage:
|
|
// vnf = vnf_vertex_array(points, [caps], [cap1], [cap2], [reverse], [col_wrap], [row_wrap], [vnf]);
|
|
// Description:
|
|
// Creates a VNF structure from a vertex list, by dividing the vertices into columns and rows,
|
|
// adding faces to tile the surface. You can optionally have faces added to wrap the last column
|
|
// back to the first column, or wrap the last row to the first. Endcaps can be added to either
|
|
// the first and/or last rows.
|
|
// Arguments:
|
|
// points = A list of vertices to divide into columns and rows.
|
|
// caps = If true, add endcap faces to the first AND last rows.
|
|
// cap1 = If true, add an endcap face to the first row.
|
|
// cap2 = If true, add an endcap face to the last row.
|
|
// col_wrap = If true, add faces to connect the last column to the first.
|
|
// row_wrap = If true, add faces to connect the last row to the first.
|
|
// reverse = If true, reverse all face normals.
|
|
// style = The style of subdividing the quads into faces. Valid options are "default", "alt", and "quincunx".
|
|
// vnf = If given, add all the vertices and faces to this existing VNF structure.
|
|
// Example(3D):
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (h = [0:5:180-EPSILON]) [
|
|
// for (t = [0:5:360-EPSILON])
|
|
// cylindrical_to_xyz(100 + 12 * cos((h/2 + t)*6), t, h)
|
|
// ]
|
|
// ],
|
|
// col_wrap=true, caps=true, reverse=true, style="alt"
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Both `col_wrap` and `row_wrap` are true to make a torus.
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (a=[0:5:360-EPSILON])
|
|
// apply(
|
|
// zrot(a) * right(30) * xrot(90),
|
|
// path3d(circle(d=20))
|
|
// )
|
|
// ],
|
|
// col_wrap=true, row_wrap=true, reverse=true
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Möbius Strip. Note that `row_wrap` is not used, and the first and last profile copies are the same.
|
|
// vnf = vnf_vertex_array(
|
|
// points=[
|
|
// for (a=[0:5:360]) apply(
|
|
// zrot(a) * right(30) * xrot(90) * zrot(a/2+60),
|
|
// path3d(square([1,10], center=true))
|
|
// )
|
|
// ],
|
|
// col_wrap=true, reverse=true
|
|
// );
|
|
// vnf_polyhedron(vnf);
|
|
// Example(3D): Assembling a Polyhedron from Multiple Parts
|
|
// wall_points = [
|
|
// for (a = [-90:2:90]) apply(
|
|
// up(a) * scale([1-0.1*cos(a*6),1-0.1*cos((a+90)*6),1]),
|
|
// path3d(circle(d=100))
|
|
// )
|
|
// ];
|
|
// cap = [
|
|
// for (a = [0:0.01:1+EPSILON]) apply(
|
|
// up(90-5*sin(a*360*2)) * scale([a,a,1]),
|
|
// wall_points[0]
|
|
// )
|
|
// ];
|
|
// cap1 = [for (p=cap) down(90, p=zscale(-1, p=p))];
|
|
// cap2 = [for (p=cap) up(90, p=p)];
|
|
// vnf1 = vnf_vertex_array(points=wall_points, col_wrap=true);
|
|
// vnf2 = vnf_vertex_array(points=cap1, col_wrap=true);
|
|
// vnf3 = vnf_vertex_array(points=cap2, col_wrap=true, reverse=true);
|
|
// vnf_polyhedron([vnf1, vnf2, vnf3]);
|
|
function vnf_vertex_array(
|
|
points,
|
|
caps, cap1, cap2,
|
|
col_wrap=false,
|
|
row_wrap=false,
|
|
reverse=false,
|
|
style="default",
|
|
vnf=EMPTY_VNF
|
|
) =
|
|
assert((!caps)||(caps&&col_wrap))
|
|
assert(in_list(style,["default","alt","quincunx"]))
|
|
let(
|
|
pts = flatten(points),
|
|
pcnt = len(pts),
|
|
rows = len(points),
|
|
cols = len(points[0]),
|
|
errchk = [for (row=points) assert(len(row)==cols, "All rows much have the same number of columns.") 0],
|
|
cap1 = first_defined([cap1,caps,false]),
|
|
cap2 = first_defined([cap2,caps,false]),
|
|
colcnt = cols - (col_wrap?0:1),
|
|
rowcnt = rows - (row_wrap?0:1)
|
|
)
|
|
vnf_merge([
|
|
vnf, [
|
|
concat(
|
|
pts,
|
|
style!="quincunx"? [] : [
|
|
for (r = [0:1:rowcnt-1]) (
|
|
for (c = [0:1:colcnt-1]) (
|
|
let(
|
|
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
|
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
|
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
|
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
|
) mean([pts[i1], pts[i2], pts[i3], pts[i4]])
|
|
)
|
|
)
|
|
]
|
|
),
|
|
concat(
|
|
[
|
|
for (r = [0:1:rowcnt-1]) (
|
|
for (c = [0:1:colcnt-1]) each (
|
|
let(
|
|
i1 = ((r+0)%rows)*cols + ((c+0)%cols),
|
|
i2 = ((r+1)%rows)*cols + ((c+0)%cols),
|
|
i3 = ((r+1)%rows)*cols + ((c+1)%cols),
|
|
i4 = ((r+0)%rows)*cols + ((c+1)%cols)
|
|
)
|
|
style=="quincunx"? (
|
|
let(i5 = pcnt + r*colcnt + c)
|
|
reverse? [[i1,i2,i5],[i2,i3,i5],[i3,i4,i5],[i4,i1,i5]] : [[i1,i5,i2],[i2,i5,i3],[i3,i5,i4],[i4,i5,i1]]
|
|
) : style=="alt"? (
|
|
reverse? [[i1,i2,i4],[i2,i3,i4]] : [[i1,i4,i2],[i2,i4,i3]]
|
|
) : (
|
|
reverse? [[i1,i2,i3],[i1,i3,i4]] : [[i1,i3,i2],[i1,i4,i3]]
|
|
)
|
|
)
|
|
)
|
|
],
|
|
!cap1? [] : [
|
|
reverse?
|
|
[for (c = [0:1:cols-1]) c] :
|
|
[for (c = [cols-1:-1:0]) c]
|
|
],
|
|
!cap2? [] : [
|
|
reverse?
|
|
[for (c = [cols-1:-1:0]) (rows-1)*cols + c] :
|
|
[for (c = [0:1:cols-1]) (rows-1)*cols + c]
|
|
]
|
|
)
|
|
]
|
|
]);
|
|
|
|
|
|
// Module: vnf_polyhedron()
|
|
// Usage:
|
|
// vnf_polyhedron(vnf);
|
|
// vnf_polyhedron([VNF, VNF, VNF, ...]);
|
|
// Description:
|
|
// Given a VNF structure, or a list of VNF structures, creates a polyhedron from them.
|
|
// Arguments:
|
|
// vnf = A VNF structure, or list of VNF structures.
|
|
// convexity = Max number of times a line could intersect a wall of the shape.
|
|
module vnf_polyhedron(vnf, convexity=2) {
|
|
vnf = is_vnf_list(vnf)? vnf_merge(vnf) : vnf;
|
|
polyhedron(vnf[0], vnf[1], convexity=convexity);
|
|
}
|
|
|
|
|
|
// Function&Module: vnf_validate()
|
|
// Usage: As Function
|
|
// fails = vnf_validate(vnf);
|
|
// Usage: As Module
|
|
// vnf_validate(vnf);
|
|
// Description:
|
|
// When called as a function, returns a list of non-manifold errors with the given VNF.
|
|
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
|
|
// When called as a module, echoes the non-manifold errors to the console, and color hilites the
|
|
// bad edges and vertices, overlaid on a transparent gray polyhedron of the VNF.
|
|
//
|
|
// Currently checks for these problems:
|
|
// Type | Color | Code | Message
|
|
// ------- | -------- | ------------ | ---------------------------------
|
|
// WARNING | Yellow | BIG_FACE | Face has more than 3 vertices, and may confuse CGAL
|
|
// ERROR | Cyan | NONPLANAR | Face vertices are not coplanar
|
|
// ERROR | Orange | OVRPOP_EDGE | Too many faces attached at edge
|
|
// ERROR | Violet | REVERSAL | Faces reverse across edge
|
|
// ERROR | Red | T_JUNCTION | Vertex is mid-edge on another Face
|
|
// ERROR | Magenta | HOLE_EDGE | Edge bounds Hole
|
|
//
|
|
// Still to implement:
|
|
// - Face intersections.
|
|
// - Overlapping coplanar faces.
|
|
// Arguments:
|
|
// vnf = The VNF to validate.
|
|
// size = The width of the lines and diameter of points used to highlight edges and vertices. Module only. Default: 1
|
|
// Example: BIG_FACE Warnings; Faces with More Than 3 Vertices. CGAL often will fail to accept that a face is planar after a rotation, if it has more than 3 vertices.
|
|
// vnf = skin([
|
|
// path3d(regular_ngon(n=3, d=100),0),
|
|
// path3d(regular_ngon(n=5, d=100),100)
|
|
// ], slices=0, caps=true, method="tangent");
|
|
// vnf_validate(vnf);
|
|
// Example: NONPLANAR Errors; Face Vertices are Not Coplanar
|
|
// a = [ 0, 0,-50];
|
|
// b = [-50,-50, 50];
|
|
// c = [-50, 50, 50];
|
|
// d = [ 50, 50, 60];
|
|
// e = [ 50,-50, 50];
|
|
// vnf = vnf_add_faces(faces=[
|
|
// [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e]
|
|
// ]);
|
|
// vnf_validate(vnf);
|
|
// Example: OVRPOP_EDGE Errors; More Than Two Faces Attached to the Same Edge. This confuses CGAL, and can lead to failed renders.
|
|
// vnf = vnf_triangulate(linear_sweep(union(square(50), square(50,anchor=BACK+RIGHT)), height=50));
|
|
// vnf_validate(vnf);
|
|
// Example: REVERSAL Errors; Faces Reversed Across Edge
|
|
// vnf1 = skin([
|
|
// path3d(square(100,center=true),0),
|
|
// path3d(square(100,center=true),100),
|
|
// ], slices=0, caps=false);
|
|
// vnf = vnf_add_faces(vnf=vnf1, faces=[
|
|
// [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]],
|
|
// [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]],
|
|
// [[-50,-50,100], [-50, 50,100], [ 50, 50,100]],
|
|
// [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]],
|
|
// ]);
|
|
// vnf_validate(vnf);
|
|
// Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face.
|
|
// vnf1 = skin([
|
|
// path3d(square(100,center=true),0),
|
|
// path3d(square(100,center=true),100),
|
|
// ], slices=0, caps=false);
|
|
// vnf = vnf_add_faces(vnf=vnf1, faces=[
|
|
// [[-50,-50,0], [50,50,0], [-50,50,0]],
|
|
// [[-50,-50,0], [50,-50,0], [50,50,0]],
|
|
// [[-50,-50,100], [-50,50,100], [0,50,100]],
|
|
// [[-50,-50,100], [0,50,100], [0,-50,100]],
|
|
// [[0,-50,100], [0,50,100], [50,50,100]],
|
|
// [[0,-50,100], [50,50,100], [50,-50,100]],
|
|
// ]);
|
|
// vnf_validate(vnf);
|
|
// Example: HOLE_EDGE Errors; Edges Adjacent to Holes.
|
|
// vnf = skin([
|
|
// path3d(regular_ngon(n=4, d=100),0),
|
|
// path3d(regular_ngon(n=5, d=100),100)
|
|
// ], slices=0, caps=false);
|
|
// vnf_validate(vnf);
|
|
function vnf_validate(vnf) =
|
|
let(
|
|
vnf = vnf_compact(vnf),
|
|
edges = sort([
|
|
for (face=vnf[1], edge=pair_wrap(face))
|
|
edge[0]<edge[1]? edge : [edge[1],edge[0]]
|
|
]),
|
|
edgecnts = unique_count(edges),
|
|
uniq_edges = edgecnts[0],
|
|
bigfaces = [
|
|
for (face = vnf[1])
|
|
if (len(face) > 3) [
|
|
"WARNING",
|
|
"BIG_FACE",
|
|
"Face has more than 3 vertices, and may confuse CGAL",
|
|
[for (i=face) vnf[0][i]],
|
|
"yellow"
|
|
]
|
|
],
|
|
nonplanars = unique([
|
|
for (face = vnf[1]) let(
|
|
verts = [for (i=face) vnf[0][i]]
|
|
) if (!points_are_coplanar(verts)) [
|
|
"ERROR",
|
|
"NONPLANAR",
|
|
"Face vertices are not coplanar",
|
|
verts,
|
|
"cyan"
|
|
]
|
|
]),
|
|
overpop_edges = unique([
|
|
for (i=idx(uniq_edges))
|
|
if (edgecnts[1][i]>2) [
|
|
"ERROR",
|
|
"OVRPOP_EDGE",
|
|
"Too many faces attached at Edge",
|
|
[for (i=uniq_edges[i]) vnf[0][i]],
|
|
"#f70"
|
|
]
|
|
]),
|
|
reversals = unique([
|
|
for(i = idx(vnf[1]), j = idx(vnf[1])) if(i != j)
|
|
for(edge1 = pair_wrap(vnf[1][i]))
|
|
for(edge2 = pair_wrap(vnf[1][j]))
|
|
if(edge1 == edge2)
|
|
if(_edge_not_reported(edge1, vnf, overpop_edges))
|
|
[
|
|
"ERROR",
|
|
"REVERSAL",
|
|
"Faces Reverse Across Edge",
|
|
[for (i=edge1) vnf[0][i]],
|
|
"violet"
|
|
]
|
|
]),
|
|
t_juncts = unique([
|
|
for (v=idx(vnf[0]), edge=uniq_edges)
|
|
if (v!=edge[0] && v!=edge[1]) let(
|
|
a = vnf[0][edge[0]],
|
|
b = vnf[0][v],
|
|
c = vnf[0][edge[1]],
|
|
pt = segment_closest_point([a,c],b)
|
|
) if (approx(pt,b)) [
|
|
"ERROR",
|
|
"T_JUNCTION",
|
|
"Vertex is mid-edge on another Face",
|
|
[b],
|
|
"red"
|
|
]
|
|
]),
|
|
hole_edges = unique([
|
|
for (i=idx(uniq_edges))
|
|
if (edgecnts[1][i]<2)
|
|
if (_pts_not_reported(uniq_edges[i], vnf, t_juncts))
|
|
[
|
|
"ERROR",
|
|
"HOLE_EDGE",
|
|
"Edge bounds Hole",
|
|
[for (i=uniq_edges[i]) vnf[0][i]],
|
|
"magenta"
|
|
]
|
|
])
|
|
) concat(
|
|
bigfaces,
|
|
nonplanars,
|
|
overpop_edges,
|
|
reversals,
|
|
t_juncts,
|
|
hole_edges
|
|
);
|
|
|
|
|
|
function _pts_not_reported(pts, vnf, reports) =
|
|
[
|
|
for (i = pts, report = reports, pt = report[3])
|
|
if (approx(vnf[0][i], pt)) 1
|
|
] == [];
|
|
|
|
|
|
function _edge_not_reported(edge, vnf, reports) =
|
|
let(
|
|
edge = sort([for (i=edge) vnf[0][i]])
|
|
) [
|
|
for (report = reports) let(
|
|
pts = sort(report[3])
|
|
) if (len(pts)==2 && edge == pts) 1
|
|
] == [];
|
|
|
|
|
|
module vnf_validate(vnf, size=1) {
|
|
faults = vnf_validate(vnf);
|
|
for (fault = faults) {
|
|
typ = fault[0];
|
|
err = fault[1];
|
|
msg = fault[2];
|
|
pts = fault[3];
|
|
clr = fault[4];
|
|
echo(str(typ, " ", err, ": ", msg, " at ", pts));
|
|
color(clr) {
|
|
if (len(pts)==2) {
|
|
stroke(pts, width=size);
|
|
} else if (len(pts)>2) {
|
|
stroke(pts, width=size, closed=true);
|
|
polyhedron(pts,[[for (i=idx(pts)) i]]);
|
|
} else {
|
|
place_copies(pts) sphere(d=size*3, $fn=18);
|
|
}
|
|
}
|
|
}
|
|
color([0.5,0.5,0.5,0.5]) vnf_polyhedron(vnf);
|
|
}
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|