mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
809 lines
29 KiB
OpenSCAD
809 lines
29 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: mutators.scad
|
|
// Functions and modules to mutate children in various ways.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Volume Division Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: bounding_box()
|
|
// Usage:
|
|
// bounding_box() ...
|
|
// Description:
|
|
// Returns the smallest axis-aligned square (or cube) shape that contains all the 2D (or 3D)
|
|
// children given. The module children() is supposed to be a 3d shape when planar=false and
|
|
// a 2d shape when planar=true otherwise the system will issue a warning of mixing dimension
|
|
// or scaling by 0.
|
|
// Arguments:
|
|
// excess = The amount that the bounding box should be larger than needed to bound the children, in each axis.
|
|
// planar = If true, creates a 2D bounding rectangle. Is false, creates a 3D bounding cube. Default: false
|
|
// Example(3D):
|
|
// module shapes() {
|
|
// translate([10,8,4]) cube(5);
|
|
// translate([3,0,12]) cube(2);
|
|
// }
|
|
// #bounding_box() shapes();
|
|
// shapes();
|
|
// Example(2D):
|
|
// module shapes() {
|
|
// translate([10,8]) square(5);
|
|
// translate([3,0]) square(2);
|
|
// }
|
|
// #bounding_box(planar=true) shapes();
|
|
// shapes();
|
|
module bounding_box(excess=0, planar=false) {
|
|
// a 3d (or 2d when planar=true) approx. of the children projection on X axis
|
|
module _xProjection() {
|
|
if (planar) {
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(1, center=true)
|
|
hull()
|
|
children();
|
|
} else {
|
|
xs = excess<.1? 1: excess;
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
rotate([90,0,0])
|
|
linear_extrude(xs, center=true)
|
|
projection()
|
|
hull()
|
|
children();
|
|
}
|
|
}
|
|
|
|
// a bounding box with an offset of 1 in all axis
|
|
module _oversize_bbox() {
|
|
if (planar) {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
}
|
|
} else {
|
|
minkowski() {
|
|
_xProjection() children(); // x axis
|
|
rotate(-90) _xProjection() rotate(90) children(); // y axis
|
|
rotate([0,-90,0]) _xProjection() rotate([0,90,0]) children(); // z axis
|
|
}
|
|
}
|
|
}
|
|
|
|
// offsets a cube by `excess`
|
|
module _shrink_cube() {
|
|
intersection() {
|
|
translate((1-excess)*[ 1, 1, 1]) children();
|
|
translate((1-excess)*[-1,-1,-1]) children();
|
|
}
|
|
}
|
|
|
|
if(planar) {
|
|
offset(excess-1/2) _oversize_bbox() children();
|
|
} else {
|
|
render(convexity=2)
|
|
if (excess>.1) {
|
|
_oversize_bbox() children();
|
|
} else {
|
|
_shrink_cube() _oversize_bbox() children();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Function&Module: half_of()
|
|
//
|
|
// Usage: as module
|
|
// half_of(v, <cp>, <s>) ...
|
|
// Usage: as function
|
|
// half_of(v, <cp>, p, <s>)...
|
|
//
|
|
// Description:
|
|
// Slices an object at a cut plane, and masks away everything that is on one side.
|
|
// * Called as a function with a path in the `p` argument, returns the
|
|
// intersection of path `p` and given half-space.
|
|
// * Called as a function with a 2D path in the `p` argument
|
|
// and a 2D vector `p`, returns the intersection of path `p` and given
|
|
// half-plane.
|
|
//
|
|
// Arguments:
|
|
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
|
|
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. This can be used to shift where it slices the object at. Default: [0,0,0]
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: 100
|
|
// planar = If true, this becomes a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively.
|
|
//
|
|
// Examples:
|
|
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
|
|
// half_of(DOWN+LEFT, s=200) sphere(d=150);
|
|
// Example(2D):
|
|
// half_of([1,1], planar=true) circle(d=50);
|
|
module half_of(v=UP, cp, s=1000, planar=false)
|
|
{
|
|
cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] :
|
|
is_vector(cp)? cp :
|
|
is_num(cp)? cp*unit(v) :
|
|
[0,0,0];
|
|
v = is_vector(v,4)? plane_normal(v) : v;
|
|
if (cp != [0,0,0]) {
|
|
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
|
|
} else if (planar) {
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v;
|
|
ang = atan2(v.y, v.x);
|
|
difference() {
|
|
children();
|
|
rotate(ang+90) {
|
|
back(s/2) square(s, center=true);
|
|
}
|
|
}
|
|
} else {
|
|
difference() {
|
|
children();
|
|
rot(from=UP, to=-v) {
|
|
up(s/2) cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function half_of(_arg1=_undef, _arg2=_undef, _arg3=_undef, _arg4=_undef,
|
|
v=_undef, cp=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3, _arg4],
|
|
[[v,undef,0], [cp,0,2], [p,undef,1], [s, 1e4]]),
|
|
v=args[0], cp0=args[1], p=args[2], s=args[3],
|
|
cp = is_num(cp0) ? cp0*unit(v) : cp0)
|
|
assert(is_vector(v,2)||is_vector(v,3),
|
|
"must provide a half-plane or half-space")
|
|
let(d=len(v))
|
|
assert(len(cp) == d, str("cp must have dimension ", d))
|
|
is_vector(p) ?
|
|
assert(len(p) == d, str("vector must have dimension ", d))
|
|
let(z=(p-cp)*v) (z >= 0 ? p : p - (z*v)/(v*v))
|
|
:
|
|
p == [] ? [] : // special case: empty path remains empty
|
|
is_path(p) ?
|
|
assert(len(p[0]) == d, str("path must have dimension ", d))
|
|
let(z = [for(x=p) (x-cp)*v])
|
|
[ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
|
|
// we assume a closed path here;
|
|
// to make this correct for an open path,
|
|
// just replace this by [] when i==len(p)-1:
|
|
let(j=(i+1)%len(p))
|
|
// the remaining path may have flattened sections, but this cannot
|
|
// create self-intersection or whiskers:
|
|
z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
|
|
:
|
|
is_vnf(p) ?
|
|
// we must put is_vnf() before is_region(), because most triangulated
|
|
// VNFs will pass is_region() test
|
|
vnf_halfspace(halfspace=concat(v,[-v*cp]), vnf=p) :
|
|
is_region(p) ?
|
|
assert(len(v) == 2, str("3D vector not compatible with region"))
|
|
let(u=unit(v), w=[-u[1], u[0]],
|
|
R=[[cp+s*w, cp+s*(v+v), cp+s*(v-w), cp-s*w]]) // half-plane
|
|
intersection(R, p)
|
|
:
|
|
assert(false, "must pass either a point, a path, a region, or a VNF");
|
|
|
|
// Function&Module: left_half()
|
|
//
|
|
// Usage: as module
|
|
// left_half(<s>, <x>) ...
|
|
// left_half(planar=true, <s>, <x>) ...
|
|
// Usage: as function
|
|
// left_half(<s>, <x>, path)
|
|
// left_half(<s>, <x>, region)
|
|
// left_half(<s>, <x>, vnf)
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples:
|
|
// left_half() sphere(r=20);
|
|
// left_half(x=-8) sphere(r=20);
|
|
// Example(2D):
|
|
// left_half(planar=true) circle(r=20);
|
|
module left_half(s=1000, x=0, planar=false)
|
|
{
|
|
dir = LEFT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function left_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[1,0,0], cp=x, p=p);
|
|
|
|
|
|
|
|
// Function&Module: right_half()
|
|
//
|
|
// Usage:
|
|
// right_half([s], [x]) ...
|
|
// right_half(planar=true, [s], [x]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples(FlatSpin):
|
|
// right_half() sphere(r=20);
|
|
// right_half(x=-5) sphere(r=20);
|
|
// Example(2D):
|
|
// right_half(planar=true) circle(r=20);
|
|
module right_half(s=1000, x=0, planar=false)
|
|
{
|
|
dir = RIGHT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[-1,0,0], cp=x, p=p);
|
|
|
|
|
|
|
|
// Function&Module: front_half()
|
|
//
|
|
// Usage:
|
|
// front_half([s], [y]) ...
|
|
// front_half(planar=true, [s], [y]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples(FlatSpin):
|
|
// front_half() sphere(r=20);
|
|
// front_half(y=5) sphere(r=20);
|
|
// Example(2D):
|
|
// front_half(planar=true) circle(r=20);
|
|
module front_half(s=1000, y=0, planar=false)
|
|
{
|
|
dir = FWD;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function front_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[0,1,0], cp=x, p=p);
|
|
|
|
|
|
|
|
// Function&Module: back_half()
|
|
//
|
|
// Usage:
|
|
// back_half([s], [y]) ...
|
|
// back_half(planar=true, [s], [y]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, this becomes a 2D operation.
|
|
//
|
|
// Examples:
|
|
// back_half() sphere(r=20);
|
|
// back_half(y=8) sphere(r=20);
|
|
// Example(2D):
|
|
// back_half(planar=true) circle(r=20);
|
|
module back_half(s=1000, y=0, planar=false)
|
|
{
|
|
dir = BACK;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function back_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[0,-1,0], cp=x, p=p);
|
|
|
|
|
|
|
|
// Function&Module: bottom_half()
|
|
//
|
|
// Usage:
|
|
// bottom_half([s], [z]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples:
|
|
// bottom_half() sphere(r=20);
|
|
// bottom_half(z=-10) sphere(r=20);
|
|
module bottom_half(s=1000, z=0)
|
|
{
|
|
dir = DOWN;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[0,0,-1], cp=x, p=p);
|
|
|
|
|
|
|
|
// Function&Module: top_half()
|
|
//
|
|
// Usage:
|
|
// top_half([s], [z]) ...
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
|
|
//
|
|
// Arguments:
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may be incorrect. Default: 10000
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
//
|
|
// Examples(Spin):
|
|
// top_half() sphere(r=20);
|
|
// top_half(z=5) sphere(r=20);
|
|
module top_half(s=1000, z=0)
|
|
{
|
|
dir = UP;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function right_half(_arg1=_undef, _arg2=_undef, _arg3=_undef,
|
|
x=_undef, p=_undef, s=_undef) =
|
|
let(args=get_named_args([_arg1, _arg2, _arg3],
|
|
[[x, 0,1], [p,undef,0], [s, 1e4]]),
|
|
x=args[0], p=args[1], s=args[2])
|
|
half_of(v=[0,0,1], cp=x, p=p);
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Chain Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: chain_hull()
|
|
//
|
|
// Usage:
|
|
// chain_hull() ...
|
|
//
|
|
// Description:
|
|
// Performs hull operations between consecutive pairs of children,
|
|
// then unions all of the hull results. This can be a very slow
|
|
// operation, but it can provide results that are hard to get
|
|
// otherwise.
|
|
//
|
|
// Side Effects:
|
|
// `$idx` is set to the index value of the first child of each hulling pair, and can be used to modify each child pair individually.
|
|
// `$primary` is set to true when the child is the first in a chain pair.
|
|
//
|
|
// Example:
|
|
// chain_hull() {
|
|
// cube(5, center=true);
|
|
// translate([30, 0, 0]) sphere(d=15);
|
|
// translate([60, 30, 0]) cylinder(d=10, h=20);
|
|
// translate([60, 60, 0]) cube([10,1,20], center=false);
|
|
// }
|
|
// Example: Using `$idx` and `$primary`
|
|
// chain_hull() {
|
|
// zrot( 0) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 45) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot( 90) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(135) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// zrot(180) right(100) if ($primary) cube(5+3*$idx,center=true); else sphere(r=10+3*$idx);
|
|
// }
|
|
module chain_hull()
|
|
{
|
|
union() {
|
|
if ($children == 1) {
|
|
children();
|
|
} else if ($children > 1) {
|
|
for (i =[1:1:$children-1]) {
|
|
$idx = i;
|
|
hull() {
|
|
let($primary=true) children(i-1);
|
|
let($primary=false) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Warp Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: cylindrical_extrude()
|
|
// Usage:
|
|
// cylindrical_extrude(size, ir|id, or|od, [convexity]) ...
|
|
// Description:
|
|
// Extrudes all 2D children outwards, curved around a cylindrical shape.
|
|
// Arguments:
|
|
// or = The outer radius to extrude to.
|
|
// od = The outer diameter to extrude to.
|
|
// ir = The inner radius to extrude from.
|
|
// id = The inner diameter to extrude from.
|
|
// size = The [X,Y] size of the 2D children to extrude. Default: [1000,1000]
|
|
// convexity = The max number of times a line could pass though a wall. Default: 10
|
|
// spin = Amount in degrees to spin around cylindrical axis. Default: 0
|
|
// orient = The orientation of the cylinder to wrap around, given as a vector. Default: UP
|
|
// Example:
|
|
// cylindrical_extrude(or=50, ir=45)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Spin Around the Cylindrical Axis
|
|
// cylindrical_extrude(or=50, ir=45, spin=90)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
// Example: Orient to the Y Axis.
|
|
// cylindrical_extrude(or=40, ir=35, orient=BACK)
|
|
// text(text="Hello World!", size=10, halign="center", valign="center");
|
|
module cylindrical_extrude(or, ir, od, id, size=1000, convexity=10, spin=0, orient=UP) {
|
|
assert(is_num(size) || is_vector(size,2));
|
|
size = is_num(size)? [size,size] : size;
|
|
ir = get_radius(r=ir,d=id);
|
|
or = get_radius(r=or,d=od);
|
|
index_r = or;
|
|
circumf = 2 * PI * index_r;
|
|
width = min(size.x, circumf);
|
|
assert(width <= circumf, "Shape would more than completely wrap around.");
|
|
sides = segs(or);
|
|
step = circumf / sides;
|
|
steps = ceil(width / step);
|
|
rot(from=UP, to=orient) rot(spin) {
|
|
for (i=[0:1:steps-2]) {
|
|
x = (i+0.5-steps/2) * step;
|
|
zrot(360 * x / circumf) {
|
|
fwd(or*cos(180/sides)) {
|
|
xrot(-90) {
|
|
linear_extrude(height=or-ir, scale=[ir/or,1], center=false, convexity=convexity) {
|
|
yflip()
|
|
intersection() {
|
|
left(x) children();
|
|
rect([quantup(step,pow(2,-15)),size.y],center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Offset Mutators
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Module: minkowski_difference()
|
|
// Usage:
|
|
// minkowski_difference() { base_shape(); diff_shape(); ... }
|
|
// Description:
|
|
// Takes a 3D base shape and one or more 3D diff shapes, carves out the diff shapes from the
|
|
// surface of the base shape, in a way complementary to how `minkowski()` unions shapes to the
|
|
// surface of its base shape.
|
|
// Arguments:
|
|
// planar = If true, performs minkowski difference in 2D. Default: false (3D)
|
|
// Example:
|
|
// minkowski_difference() {
|
|
// union() {
|
|
// cube([120,70,70], center=true);
|
|
// cube([70,120,70], center=true);
|
|
// cube([70,70,120], center=true);
|
|
// }
|
|
// sphere(r=10);
|
|
// }
|
|
module minkowski_difference(planar=false) {
|
|
difference() {
|
|
bounding_box(excess=0, planar=planar) children(0);
|
|
render(convexity=20) {
|
|
minkowski() {
|
|
difference() {
|
|
bounding_box(excess=1, planar=planar) children(0);
|
|
children(0);
|
|
}
|
|
for (i=[1:1:$children-1]) children(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: round2d()
|
|
// Usage:
|
|
// round2d(r) ...
|
|
// round2d(or) ...
|
|
// round2d(ir) ...
|
|
// round2d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 2D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 2D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
// Examples(2D):
|
|
// round2d(r=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// round2d(or=16,ir=8) {square([40,100], center=true); square([100,40], center=true);}
|
|
module round2d(r, or, ir)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset(or) offset(-ir-or) offset(delta=ir,chamfer=true) children();
|
|
}
|
|
|
|
|
|
// Module: shell2d()
|
|
// Usage:
|
|
// shell2d(thickness, [or], [ir], [fill], [round])
|
|
// Description:
|
|
// Creates a hollow shell from 2D children, with optional rounding.
|
|
// Arguments:
|
|
// thickness = Thickness of the shell. Positive to expand outward, negative to shrink inward, or a two-element list to do both.
|
|
// or = Radius to round corners on the outside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no outside rounding)
|
|
// ir = Radius to round corners on the inside of the shell. If given a list of 2 radii, [CONVEX,CONCAVE], specifies the radii for convex and concave corners separately. Default: 0 (no inside rounding)
|
|
// Examples(2D):
|
|
// shell2d(10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(-10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d([-10,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=10) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,or=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=[10,0]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(10,ir=[0,10]) {square([40,100], center=true); square([100,40], center=true);}
|
|
// shell2d(8,or=[16,8],ir=[16,8]) {square([40,100], center=true); square([100,40], center=true);}
|
|
module shell2d(thickness, or=0, ir=0)
|
|
{
|
|
thickness = is_num(thickness)? (
|
|
thickness<0? [thickness,0] : [0,thickness]
|
|
) : (thickness[0]>thickness[1])? (
|
|
[thickness[1],thickness[0]]
|
|
) : thickness;
|
|
orad = is_finite(or)? [or,or] : or;
|
|
irad = is_finite(ir)? [ir,ir] : ir;
|
|
difference() {
|
|
round2d(or=orad[0],ir=orad[1])
|
|
offset(delta=thickness[1])
|
|
children();
|
|
round2d(or=irad[1],ir=irad[0])
|
|
offset(delta=thickness[0])
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: offset3d()
|
|
// Usage:
|
|
// offset3d(r, [size], [convexity]);
|
|
// Description:
|
|
// Expands or contracts the surface of a 3D object by a given amount. This is very, very slow.
|
|
// No really, this is unbearably slow. It uses `minkowski()`. Use this as a last resort.
|
|
// This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to expand object by. Negative numbers contract the object.
|
|
// size = Maximum size of object to be contracted, given as a scalar. Default: 100
|
|
// convexity = Max number of times a line could intersect the walls of the object. Default: 10
|
|
module offset3d(r=1, size=100, convexity=10) {
|
|
n = quant(max(8,segs(abs(r))),4);
|
|
if (r==0) {
|
|
children();
|
|
} else if (r>0) {
|
|
render(convexity=convexity)
|
|
minkowski() {
|
|
children();
|
|
sphere(r, $fn=n);
|
|
}
|
|
} else {
|
|
size2 = size * [1,1,1];
|
|
size1 = size2 * 1.02;
|
|
render(convexity=convexity)
|
|
difference() {
|
|
cube(size2, center=true);
|
|
minkowski() {
|
|
difference() {
|
|
cube(size1, center=true);
|
|
children();
|
|
}
|
|
sphere(-r, $fn=n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Module: round3d()
|
|
// Usage:
|
|
// round3d(r) ...
|
|
// round3d(or) ...
|
|
// round3d(ir) ...
|
|
// round3d(or, ir) ...
|
|
// Description:
|
|
// Rounds arbitrary 3D objects. Giving `r` rounds all concave and convex corners. Giving just `ir`
|
|
// rounds just concave corners. Giving just `or` rounds convex corners. Giving both `ir` and `or`
|
|
// can let you round to different radii for concave and convex corners. The 3D object must not have
|
|
// any parts narrower than twice the `or` radius. Such parts will disappear. This is an *extremely*
|
|
// slow operation. I cannot emphasize enough just how slow it is. It uses `minkowski()` multiple times.
|
|
// Use this as a last resort. This is so slow that no example images will be rendered.
|
|
// Arguments:
|
|
// r = Radius to round all concave and convex corners to.
|
|
// or = Radius to round only outside (convex) corners to. Use instead of `r`.
|
|
// ir = Radius to round only inside (concave) corners to. Use instead of `r`.
|
|
module round3d(r, or, ir, size=100)
|
|
{
|
|
or = get_radius(r1=or, r=r, dflt=0);
|
|
ir = get_radius(r1=ir, r=r, dflt=0);
|
|
offset3d(or, size=size)
|
|
offset3d(-ir-or, size=size)
|
|
offset3d(ir, size=size)
|
|
children();
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// Section: Colors
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// Function&Module: HSL()
|
|
// Usage:
|
|
// HSL(h,[s],[l],[a]) ...
|
|
// rgb = HSL(h,[s],[l]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and lightness `l` from the HSL colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// l = The lightness, between 0 and 1. 0 = black, 0.5 = bright colors, 1 = white. Default: 0.5
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSL(h=120,s=1,l=0.5) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSL(h=270,s=0.75,l=0.6);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSL(h,s=1,l=0.5) =
|
|
let(
|
|
h=posmod(h,360)
|
|
) [
|
|
for (n=[0,8,4]) let(
|
|
k=(n+h/30)%12
|
|
) l - s*min(l,1-l)*max(min(k-3,9-k,1),-1)
|
|
];
|
|
|
|
module HSL(h,s=1,l=0.5,a=1) color(HSL(h,s,l),a) children();
|
|
|
|
|
|
// Function&Module: HSV()
|
|
// Usage:
|
|
// HSV(h,[s],[v],[a]) ...
|
|
// rgb = HSV(h,[s],[v]);
|
|
// Description:
|
|
// When called as a function, returns the [R,G,B] color for the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// When called as a module, sets the color to the given hue `h`, saturation `s`, and value `v` from the HSV colorspace.
|
|
// Arguments:
|
|
// h = The hue, given as a value between 0 and 360. 0=red, 60=yellow, 120=green, 180=cyan, 240=blue, 300=magenta.
|
|
// s = The saturation, given as a value between 0 and 1. 0 = grayscale, 1 = vivid colors. Default: 1
|
|
// v = The value, between 0 and 1. 0 = darkest black, 1 = bright. Default: 1
|
|
// a = When called as a module, specifies the alpha channel as a value between 0 and 1. 0 = fully transparent, 1=opaque. Default: 1
|
|
// Example:
|
|
// HSV(h=120,s=1,v=1) sphere(d=60);
|
|
// Example:
|
|
// rgb = HSV(h=270,s=0.75,v=0.9);
|
|
// color(rgb) cube(60, center=true);
|
|
function HSV(h,s=1,v=1) =
|
|
let(
|
|
h=posmod(h,360),
|
|
v2=v*(1-s),
|
|
r=lookup(h,[[0,v], [60,v], [120,v2], [240,v2], [300,v], [360,v]]),
|
|
g=lookup(h,[[0,v2], [60,v], [180,v], [240,v2], [360,v2]]),
|
|
b=lookup(h,[[0,v2], [120,v2], [180,v], [300,v], [360,v2]])
|
|
) [r,g,b];
|
|
|
|
module HSV(h,s=1,v=1,a=1) color(HSV(h,s,v),a) children();
|
|
|
|
|
|
// Module: rainbow()
|
|
// Usage:
|
|
// rainbow(list) ...
|
|
// Description:
|
|
// Iterates the list, displaying children in different colors for each list item.
|
|
// This is useful for debugging lists of paths and such.
|
|
// Arguments:
|
|
// list = The list of items to iterate through.
|
|
// stride = Consecutive colors stride around the color wheel divided into this many parts.
|
|
// Side Effects:
|
|
// Sets the color to progressive values along the ROYGBIV spectrum for each item.
|
|
// Sets `$idx` to the index of the current item in `list` that we want to show.
|
|
// Sets `$item` to the current item in `list` that we want to show.
|
|
// Example(2D):
|
|
// rainbow(["Foo","Bar","Baz"]) fwd($idx*10) text(text=$item,size=8,halign="center",valign="center");
|
|
// Example(2D):
|
|
// rgn = [circle(d=45,$fn=3), circle(d=75,$fn=4), circle(d=50)];
|
|
// rainbow(rgn) stroke($item, closed=true);
|
|
module rainbow(list, stride=1)
|
|
{
|
|
ll = len(list);
|
|
huestep = 360 / ll;
|
|
hues = [for (i=[0:1:ll-1]) posmod(i*huestep+i*360/stride,360)];
|
|
for($idx=idx(list)) {
|
|
$item = list[$idx];
|
|
HSV(h=hues[$idx]) children();
|
|
}
|
|
}
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|