mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 11:19:44 +00:00
d3f13ab0dc
Currently, affine2d_skew and affine3d_skew_xy have different behaviour. Similarly, affine3d_skew_xz and affine3d_skew_yz do not skew the same was as affine2d_skew does (if you were to look down the third axis at the relevant plane). This commit brings them into agreement.
594 lines
16 KiB
OpenSCAD
594 lines
16 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: affine.scad
|
|
// Matrix math and affine transformation matrices.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Affine2d 3x3 Transformation Matrices
|
|
|
|
|
|
// Function: affine2d_identity()
|
|
// Usage:
|
|
// mat = affine2d_identify();
|
|
// Topics: Affine, Matrices, Transforms
|
|
// Description:
|
|
// Create a 3x3 affine2d identity matrix.
|
|
// Example:
|
|
// mat = affine2d_identity();
|
|
// // Returns:
|
|
// // [
|
|
// // [1, 0, 0],
|
|
// // [0, 1, 0],
|
|
// // [0, 0, 1]
|
|
// // ]
|
|
function affine2d_identity() = ident(3);
|
|
|
|
|
|
// Function: affine2d_translate()
|
|
// Usage:
|
|
// mat = affine2d_translate(v);
|
|
// Topics: Affine, Matrices, Transforms, Translation
|
|
// See Also: move(), affine3d_translate()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a 2D translation.
|
|
// Arguments:
|
|
// v = 2D Offset to translate by. [X,Y]
|
|
// Example:
|
|
// mat = affine2d_translate([30,40]);
|
|
// // Returns:
|
|
// // [
|
|
// // [1, 0, 30],
|
|
// // [0, 1, 40],
|
|
// // [0, 0, 1]
|
|
// // ]
|
|
function affine2d_translate(v=[0,0]) =
|
|
assert(is_vector(v),2)
|
|
[
|
|
[1, 0, v.x],
|
|
[0, 1, v.y],
|
|
[0 ,0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_scale()
|
|
// Usage:
|
|
// mat = affine2d_scale(v);
|
|
// Topics: Affine, Matrices, Transforms, Scaling
|
|
// See Also: scale(), xscale(), yscale(), zscale(), affine3d_scale()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a 2D scaling transformation.
|
|
// Arguments:
|
|
// v = 2D vector of scaling factors. [X,Y]
|
|
// Example:
|
|
// mat = affine2d_scale([3,4]);
|
|
// // Returns:
|
|
// // [
|
|
// // [3, 0, 0],
|
|
// // [0, 4, 0],
|
|
// // [0, 0, 1]
|
|
// // ]
|
|
function affine2d_scale(v=[1,1]) =
|
|
assert(is_vector(v,2))
|
|
[
|
|
[v.x, 0, 0],
|
|
[ 0, v.y, 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_zrot()
|
|
// Usage:
|
|
// mat = affine2d_zrot(ang);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine3d_zrot()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a rotation of a 2D vector around the Z axis.
|
|
// Arguments:
|
|
// ang = Number of degrees to rotate.
|
|
// Example:
|
|
// mat = affine2d_zrot(90);
|
|
// // Returns:
|
|
// // [
|
|
// // [0,-1, 0],
|
|
// // [1, 0, 0],
|
|
// // [0, 0, 1]
|
|
// // ]
|
|
function affine2d_zrot(ang=0) =
|
|
assert(is_finite(ang))
|
|
[
|
|
[cos(ang), -sin(ang), 0],
|
|
[sin(ang), cos(ang), 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_mirror()
|
|
// Usage:
|
|
// mat = affine2d_mirror(v);
|
|
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
|
// See Also: mirror(), xflip(), yflip(), zflip(), affine3d_mirror()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to perform a reflection of a 2D vector across the line given by its normal vector.
|
|
// Arguments:
|
|
// v = The normal vector of the line to reflect across.
|
|
// Example:
|
|
// mat = affine2d_mirror([0,1]);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 0, 0],
|
|
// // [ 0,-1, 0],
|
|
// // [ 0, 0, 1]
|
|
// // ]
|
|
// Example:
|
|
// mat = affine2d_mirror([1,0]);
|
|
// // Returns:
|
|
// // [
|
|
// // [-1, 0, 0],
|
|
// // [ 0, 1, 0],
|
|
// // [ 0, 0, 1]
|
|
// // ]
|
|
// Example:
|
|
// mat = affine2d_mirror([1,1]);
|
|
// // Returns approximately:
|
|
// // [
|
|
// // [ 0,-1, 0],
|
|
// // [-1, 0, 0],
|
|
// // [ 0, 0, 1]
|
|
// // ]
|
|
function affine2d_mirror(v) =
|
|
assert(is_vector(v,2))
|
|
let(v=unit(point2d(v)), a=v.x, b=v.y)
|
|
[
|
|
[1-2*a*a, 0-2*a*b, 0],
|
|
[0-2*a*b, 1-2*b*b, 0],
|
|
[ 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine2d_skew()
|
|
// Usage:
|
|
// mat = affine2d_skew(xa);
|
|
// mat = affine2d_skew(ya=);
|
|
// mat = affine2d_skew(xa, ya);
|
|
// Topics: Affine, Matrices, Transforms, Skewing
|
|
// See Also: skew(), affine3d_skew()
|
|
// Description:
|
|
// Returns the 3x3 affine2d matrix to skew a 2D vector along the XY plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
|
|
// Example:
|
|
// mat = affine2d_skew(xa=45,ya=-45);
|
|
// // Returns approximately:
|
|
// // [
|
|
// // [ 1, 1, 0],
|
|
// // [-1, 1, 0],
|
|
// // [ 0, 0, 1]
|
|
// // ]
|
|
function affine2d_skew(xa=0, ya=0) =
|
|
assert(is_finite(xa))
|
|
assert(is_finite(ya))
|
|
[
|
|
[1, tan(xa), 0],
|
|
[tan(ya), 1, 0],
|
|
[0, 0, 1]
|
|
];
|
|
|
|
|
|
|
|
// Section: Affine3d 4x4 Transformation Matrices
|
|
|
|
|
|
// Function: affine3d_identity()
|
|
// Usage:
|
|
// mat = affine3d_identity();
|
|
// Topics: Affine, Matrices, Transforms
|
|
// Description:
|
|
// Create a 4x4 affine3d identity matrix.
|
|
// Example:
|
|
// mat = affine2d_identity();
|
|
// // Returns:
|
|
// // [
|
|
// // [1, 0, 0, 0],
|
|
// // [0, 1, 0, 0],
|
|
// // [0, 0, 1, 0],
|
|
// // [0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_identity() = ident(4);
|
|
|
|
|
|
// Function: affine3d_translate()
|
|
// Usage:
|
|
// mat = affine3d_translate(v);
|
|
// Topics: Affine, Matrices, Transforms, Translation
|
|
// See Also: move(), affine2d_translate()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a 3D translation.
|
|
// Arguments:
|
|
// v = 3D offset to translate by. [X,Y,Z]
|
|
// Example:
|
|
// mat = affine2d_translate([30,40,50]);
|
|
// // Returns:
|
|
// // [
|
|
// // [1, 0, 0, 30],
|
|
// // [0, 1, 0, 40],
|
|
// // [0, 0, 1, 50]
|
|
// // [0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_translate(v=[0,0,0]) =
|
|
assert(is_list(v))
|
|
let( v = [for (i=[0:2]) default(v[i],0)] )
|
|
[
|
|
[1, 0, 0, v.x],
|
|
[0, 1, 0, v.y],
|
|
[0, 0, 1, v.z],
|
|
[0 ,0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_scale()
|
|
// Usage:
|
|
// mat = affine3d_scale(v);
|
|
// Topics: Affine, Matrices, Transforms, Scaling
|
|
// See Also: scale(), affine2d_scale()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a 3D scaling transformation.
|
|
// Arguments:
|
|
// v = 3D vector of scaling factors. [X,Y,Z]
|
|
// Example:
|
|
// mat = affine3d_scale([3,4,5]);
|
|
// // Returns:
|
|
// // [
|
|
// // [3, 0, 0, 0],
|
|
// // [0, 4, 0, 0],
|
|
// // [0, 0, 5, 0],
|
|
// // [0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_scale(v=[1,1,1]) =
|
|
assert(is_list(v))
|
|
let( v = [for (i=[0:2]) default(v[i],1)] )
|
|
[
|
|
[v.x, 0, 0, 0],
|
|
[ 0, v.y, 0, 0],
|
|
[ 0, 0, v.z, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_xrot()
|
|
// Usage:
|
|
// mat = affine3d_xrot(ang);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the X axis.
|
|
// Arguments:
|
|
// ang = number of degrees to rotate.
|
|
// Example:
|
|
// mat = affine3d_xrot(90);
|
|
// // Returns:
|
|
// // [
|
|
// // [1, 0, 0, 0],
|
|
// // [0, 0,-1, 0],
|
|
// // [0, 1, 0, 0],
|
|
// // [0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_xrot(ang=0) =
|
|
assert(is_finite(ang))
|
|
[
|
|
[1, 0, 0, 0],
|
|
[0, cos(ang), -sin(ang), 0],
|
|
[0, sin(ang), cos(ang), 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_yrot()
|
|
// Usage:
|
|
// mat = affine3d_yrot(ang);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Y axis.
|
|
// Arguments:
|
|
// ang = Number of degrees to rotate.
|
|
// Example:
|
|
// mat = affine3d_yrot(90);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [-1, 0, 0, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_yrot(ang=0) =
|
|
assert(is_finite(ang))
|
|
[
|
|
[ cos(ang), 0, sin(ang), 0],
|
|
[ 0, 1, 0, 0],
|
|
[-sin(ang), 0, cos(ang), 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_zrot()
|
|
// Usage:
|
|
// mat = affine3d_zrot(ang);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around the Z axis.
|
|
// Arguments:
|
|
// ang = number of degrees to rotate.
|
|
// Example:
|
|
// mat = affine3d_zrot(90);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 0,-1, 0, 0],
|
|
// // [ 1, 0, 0, 0],
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_zrot(ang=0) =
|
|
assert(is_finite(ang))
|
|
[
|
|
[cos(ang), -sin(ang), 0, 0],
|
|
[sin(ang), cos(ang), 0, 0],
|
|
[ 0, 0, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_rot_by_axis()
|
|
// Usage:
|
|
// mat = affine3d_rot_by_axis(u, ang);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector around an axis.
|
|
// Arguments:
|
|
// u = 3D axis vector to rotate around.
|
|
// ang = number of degrees to rotate.
|
|
// Example:
|
|
// mat = affine3d_rot_by_axis([1,1,1], 120);
|
|
// // Returns approx:
|
|
// // [
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 1, 0, 0, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_rot_by_axis(u=UP, ang=0) =
|
|
assert(is_finite(ang))
|
|
assert(is_vector(u,3))
|
|
approx(ang,0)? affine3d_identity() :
|
|
let(
|
|
u = unit(u),
|
|
c = cos(ang),
|
|
c2 = 1-c,
|
|
s = sin(ang)
|
|
) [
|
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_rot_from_to()
|
|
// Usage:
|
|
// mat = affine3d_rot_from_to(from, to);
|
|
// Topics: Affine, Matrices, Transforms, Rotation
|
|
// See Also: rot(), xrot(), yrot(), zrot(), affine2d_zrot()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a rotation of a 3D vector from one vector direction to another.
|
|
// Arguments:
|
|
// from = 3D axis vector to rotate from.
|
|
// to = 3D axis vector to rotate to.
|
|
// Example:
|
|
// mat = affine3d_rot_from_to(UP, RIGHT);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [-1, 0, 0, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_rot_from_to(from, to) =
|
|
assert(is_vector(from))
|
|
assert(is_vector(to))
|
|
assert(len(from)==len(to))
|
|
let(
|
|
from = unit(point3d(from)),
|
|
to = unit(point3d(to))
|
|
) approx(from,to)? affine3d_identity() :
|
|
from.z==0 && to.z==0 ? affine3d_zrot(v_theta(point2d(to)) - v_theta(point2d(from)))
|
|
:
|
|
let(
|
|
u = vector_axis(from,to),
|
|
ang = vector_angle(from,to),
|
|
c = cos(ang),
|
|
c2 = 1-c,
|
|
s = sin(ang)
|
|
) [
|
|
[u.x*u.x*c2+c , u.x*u.y*c2-u.z*s, u.x*u.z*c2+u.y*s, 0],
|
|
[u.y*u.x*c2+u.z*s, u.y*u.y*c2+c , u.y*u.z*c2-u.x*s, 0],
|
|
[u.z*u.x*c2-u.y*s, u.z*u.y*c2+u.x*s, u.z*u.z*c2+c , 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: affine3d_mirror()
|
|
// Usage:
|
|
// mat = affine3d_mirror(v);
|
|
// Topics: Affine, Matrices, Transforms, Reflection, Mirroring
|
|
// See Also: mirror(), xflip(), yflip(), zflip(), affine2d_mirror()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a reflection of a 3D vector across the plane given by its normal vector.
|
|
// Arguments:
|
|
// v = The normal vector of the plane to reflect across.
|
|
// Example:
|
|
// mat = affine3d_mirror([1,0,0]);
|
|
// // Returns:
|
|
// // [
|
|
// // [-1, 0, 0, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
// Example:
|
|
// mat = affine3d_mirror([0,1,0]);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 0, 0, 0],
|
|
// // [ 0,-1, 0, 0],
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_mirror(v) =
|
|
assert(is_vector(v))
|
|
let(
|
|
v=unit(point3d(v)),
|
|
a=v.x, b=v.y, c=v.z
|
|
) [
|
|
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
|
[ -2*b*a, 1-2*b*b, -2*b*c, 0],
|
|
[ -2*c*a, -2*c*b, 1-2*c*c, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew()
|
|
// Usage:
|
|
// mat = affine3d_skew([sxy=], [sxz=], [syx=], [syz=], [szx=], [szy=]);
|
|
// Topics: Affine, Matrices, Transforms, Skewing
|
|
// See Also: skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation.
|
|
// Arguments:
|
|
// sxy = Skew factor multiplier for skewing along the X axis as you get farther from the Y axis. Default: 0
|
|
// sxz = Skew factor multiplier for skewing along the X axis as you get farther from the Z axis. Default: 0
|
|
// syx = Skew factor multiplier for skewing along the Y axis as you get farther from the X axis. Default: 0
|
|
// syz = Skew factor multiplier for skewing along the Y axis as you get farther from the Z axis. Default: 0
|
|
// szx = Skew factor multiplier for skewing along the Z axis as you get farther from the X axis. Default: 0
|
|
// szy = Skew factor multiplier for skewing along the Z axis as you get farther from the Y axis. Default: 0
|
|
// Example:
|
|
// mat = affine3d_skew(sxy=2,szx=3);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 2, 0, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 3, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_skew(sxy=0, sxz=0, syx=0, syz=0, szx=0, szy=0) = [
|
|
[ 1, sxy, sxz, 0],
|
|
[syx, 1, syz, 0],
|
|
[szx, szy, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_xy()
|
|
// Usage:
|
|
// mat = affine3d_skew_xy(xa);
|
|
// mat = affine3d_skew_xy(ya=);
|
|
// mat = affine3d_skew_xy(xa, ya);
|
|
// Topics: Affine, Matrices, Transforms, Skewing
|
|
// See Also: skew(), affine3d_skew(), affine3d_skew_xz(), affine3d_skew_yz(), affine2d_skew()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XY plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
|
|
// Example:
|
|
// mat = affine3d_skew_xy(xa=45,ya=-45);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 0, 1, 0],
|
|
// // [ 0, 1,-1, 0],
|
|
// // [ 0, 0, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_skew_xy(xa=0, ya=0) =
|
|
assert(is_finite(xa))
|
|
assert(is_finite(ya))
|
|
[
|
|
[ 1, tan(xa), 0, 0],
|
|
[tan(ya), 1, 0, 0],
|
|
[ 0, 0, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_xz()
|
|
// Usage:
|
|
// mat = affine3d_skew_xz(xa);
|
|
// mat = affine3d_skew_xz(za=);
|
|
// mat = affine3d_skew_xz(xa, za);
|
|
// Topics: Affine, Matrices, Transforms, Skewing
|
|
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_yz(), affine2d_skew()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the XZ plane.
|
|
// Arguments:
|
|
// xa = Skew angle, in degrees, in the direction of the X axis. Default: 0
|
|
// za = Skew angle, in degrees, in the direction of the Z axis. Default: 0
|
|
// Example:
|
|
// mat = affine3d_skew_xz(xa=45,za=-45);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 1, 0, 0],
|
|
// // [ 0, 1, 0, 0],
|
|
// // [ 0,-1, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_skew_xz(xa=0, za=0) =
|
|
assert(is_finite(xa))
|
|
assert(is_finite(za))
|
|
[
|
|
[ 1, 0, tan(xa), 0],
|
|
[ 0, 1, 0, 0],
|
|
[tan(za), 0, 1, 0],
|
|
[ 0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
// Function: affine3d_skew_yz()
|
|
// Usage:
|
|
// mat = affine3d_skew_yz(ya);
|
|
// mat = affine3d_skew_yz(za=);
|
|
// mat = affine3d_skew_yz(ya, za);
|
|
// Topics: Affine, Matrices, Transforms, Skewing
|
|
// See Also: skew(), affine3d_skew(), affine3d_skew_xy(), affine3d_skew_xz(), affine2d_skew()
|
|
// Description:
|
|
// Returns the 4x4 affine3d matrix to perform a skew transformation along the YZ plane.
|
|
// Arguments:
|
|
// ya = Skew angle, in degrees, in the direction of the Y axis. Default: 0
|
|
// za = Skew angle, in degrees, in the direction of the Z axis. Default: 0
|
|
// Example:
|
|
// mat = affine3d_skew_yz(ya=45,za=-45);
|
|
// // Returns:
|
|
// // [
|
|
// // [ 1, 0, 0, 0],
|
|
// // [ 1, 1, 0, 0],
|
|
// // [-1, 0, 1, 0],
|
|
// // [ 0, 0, 0, 1]
|
|
// // ]
|
|
function affine3d_skew_yz(ya=0, za=0) =
|
|
assert(is_finite(ya))
|
|
assert(is_finite(za))
|
|
[
|
|
[1, 0, 0, 0],
|
|
[0, 1, tan(ya), 0],
|
|
[0, tan(za), 1, 0],
|
|
[0, 0, 0, 1]
|
|
];
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|