mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
533 lines
22 KiB
OpenSCAD
533 lines
22 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: partitions.scad
|
|
// Cut objects with a plane, or partition them into interlocking pieces for easy printing of large objects.
|
|
// Includes:
|
|
// include <BOSL2/std.scad>
|
|
// FileGroup: Advanced Modeling
|
|
// FileSummary: Cut objects with a plane or partition them into interlocking pieces.
|
|
// FileFootnotes: STD=Included in std.scad
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Planar Cutting
|
|
|
|
// Function&Module: half_of()
|
|
//
|
|
// Usage: as module
|
|
// half_of(v, [cp], [s], [planar]) ...
|
|
// Usage: as function
|
|
// result = half_of(p,v,[cp]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a cut plane, and masks away everything that is on one side. The v parameter is either a plane specification or
|
|
// a normal vector. The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// When called as a function, you must supply a vnf, path or region in p. If planar is set to true for the module version the operation
|
|
// is performed in 2D and UP and DOWN are treated as equivalent to BACK and FWD respectively.
|
|
//
|
|
// Arguments:
|
|
// p = path, region or VNF to slice. (Function version)
|
|
// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
|
|
// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0]
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively. (Module version). Default: false.
|
|
//
|
|
// Examples:
|
|
// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
|
|
// half_of(DOWN+LEFT, s=200) sphere(d=150);
|
|
// Example(2D):
|
|
// half_of([1,1], planar=true) circle(d=50);
|
|
module half_of(v=UP, cp, s=100, planar=false)
|
|
{
|
|
cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] :
|
|
is_vector(cp)? cp :
|
|
is_num(cp)? cp*unit(v) :
|
|
[0,0,0];
|
|
v = is_vector(v,4)? plane_normal(v) : v;
|
|
if (cp != [0,0,0]) {
|
|
translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
|
|
} else if (planar) {
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v;
|
|
ang = atan2(v.y, v.x);
|
|
difference() {
|
|
children();
|
|
rotate(ang+90) {
|
|
back(s/2) square(s, center=true);
|
|
}
|
|
}
|
|
} else {
|
|
difference() {
|
|
children();
|
|
rot(from=UP, to=-v) {
|
|
up(s/2) cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function half_of(p, v=UP, cp) =
|
|
is_vnf(p) ?
|
|
assert(is_vector(v) && (len(v)==3 || len(v)==4),str("Must give 3-vector or plane specification",v))
|
|
assert(select(v,0,2)!=[0,0,0], "vector v must be nonzero")
|
|
let(
|
|
plane = is_vector(v,4) ? assert(cp==undef, "Don't use cp with plane definition.") v
|
|
: is_undef(cp) ? [each v, 0]
|
|
: is_num(cp) ? [each v, cp*(v*v)/norm(v)]
|
|
: assert(is_vector(cp,3),"Centerpoint must be a 3-vector")
|
|
[each v, cp*v]
|
|
)
|
|
vnf_halfspace(plane, p)
|
|
: is_path(p) || is_region(p) ?
|
|
let(
|
|
v = (v==UP)? BACK : (v==DOWN)? FWD : v,
|
|
cp = is_undef(cp) ? [0,0]
|
|
: is_num(cp) ? v*cp
|
|
: assert(is_vector(cp,2) || (is_vector(cp,3) && cp.z==0),"Centerpoint must be 2-vector")
|
|
cp
|
|
)
|
|
assert(is_vector(v,2) || (is_vector(v,3) && v.z==0),"Must give 2-vector")
|
|
assert(!all_zero(v), "Vector v must be nonzero")
|
|
let(
|
|
bounds = pointlist_bounds(move(-cp,p)),
|
|
L = 2*max(flatten(bounds)),
|
|
n = unit(v),
|
|
u = [-n.y,n.x],
|
|
box = [cp+u*L, cp+(v+u)*L, cp+(v-u)*L, cp-u*L]
|
|
)
|
|
intersection(box,p)
|
|
: assert(false, "Input must be a region, path or VNF");
|
|
|
|
|
|
|
|
/* This code cut 3d paths but leaves behind connecting line segments
|
|
is_path(p) ?
|
|
//assert(len(p[0]) == d, str("path must have dimension ", d))
|
|
let(z = [for(x=p) (x-cp)*v])
|
|
[ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
|
|
// we assume a closed path here;
|
|
// to make this correct for an open path,
|
|
// just replace this by [] when i==len(p)-1:
|
|
let(j=(i+1)%len(p))
|
|
// the remaining path may have flattened sections, but this cannot
|
|
// create self-intersection or whiskers:
|
|
z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
|
|
:
|
|
*/
|
|
|
|
|
|
// Function&Module: left_half()
|
|
//
|
|
// Usage: as module
|
|
// left_half([s], [x]) ...
|
|
// left_half(planar=true, [s], [x]) ...
|
|
// Usage: as function
|
|
// result = left_half(p, [x]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
//
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, perform a 2D operation. (Module version) Default: false.
|
|
// Examples:
|
|
// left_half() sphere(r=20);
|
|
// left_half(x=-8) sphere(r=20);
|
|
// Example(2D):
|
|
// left_half(planar=true) circle(r=20);
|
|
module left_half(s=100, x=0, planar=false)
|
|
{
|
|
dir = LEFT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
|
|
|
|
|
|
|
|
// Function&Module: right_half()
|
|
//
|
|
// Usage: as module
|
|
// right_half([s], [x]) ...
|
|
// right_half(planar=true, [s], [x]) ...
|
|
// Usage: as function
|
|
// result = right_half(p, [x]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// x = The X coordinate of the cut-plane. Default: 0
|
|
// planar = If true, perform a 2D operation. (Module version) Default: false.
|
|
// Examples(FlatSpin,VPD=175):
|
|
// right_half() sphere(r=20);
|
|
// right_half(x=-5) sphere(r=20);
|
|
// Example(2D):
|
|
// right_half(planar=true) circle(r=20);
|
|
module right_half(s=100, x=0, planar=false)
|
|
{
|
|
dir = RIGHT;
|
|
difference() {
|
|
children();
|
|
translate([x,0,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
|
|
|
|
|
|
|
|
// Function&Module: front_half()
|
|
//
|
|
// Usage:
|
|
// front_half([s], [y]) ...
|
|
// front_half(planar=true, [s], [y]) ...
|
|
// Usage: as function
|
|
// result = front_half(p, [y]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, perform a 2D operation. (Module version) Default: false.
|
|
// Examples(FlatSpin,VPD=175):
|
|
// front_half() sphere(r=20);
|
|
// front_half(y=5) sphere(r=20);
|
|
// Example(2D):
|
|
// front_half(planar=true) circle(r=20);
|
|
module front_half(s=100, y=0, planar=false)
|
|
{
|
|
dir = FWD;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
|
|
|
|
|
|
|
|
// Function&Module: back_half()
|
|
//
|
|
// Usage:
|
|
// back_half([s], [y]) ...
|
|
// back_half(planar=true, [s], [y]) ...
|
|
// Usage: as function
|
|
// result = back_half(p, [y]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// y = The Y coordinate of the cut-plane. Default: 0
|
|
// planar = If true, perform a 2D operation. (Module version) Default: false.
|
|
// Examples:
|
|
// back_half() sphere(r=20);
|
|
// back_half(y=8) sphere(r=20);
|
|
// Example(2D):
|
|
// back_half(planar=true) circle(r=20);
|
|
module back_half(s=100, y=0, planar=false)
|
|
{
|
|
dir = BACK;
|
|
difference() {
|
|
children();
|
|
translate([0,y,0]-dir*s/2) {
|
|
if (planar) {
|
|
square(s, center=true);
|
|
} else {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
function back_half(p,y=0) = half_of(p, BACK, [0,y,0]);
|
|
|
|
|
|
|
|
// Function&Module: bottom_half()
|
|
//
|
|
// Usage:
|
|
// bottom_half([s], [z]) ...
|
|
// Usage: as function
|
|
// result = bottom_half(p, [z]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
// Examples:
|
|
// bottom_half() sphere(r=20);
|
|
// bottom_half(z=-10) sphere(r=20);
|
|
module bottom_half(s=100, z=0)
|
|
{
|
|
dir = DOWN;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]);
|
|
|
|
|
|
|
|
// Function&Module: top_half()
|
|
//
|
|
// Usage:
|
|
// top_half([s], [z]) ...
|
|
// result = top_half(p, [z]);
|
|
//
|
|
// Description:
|
|
// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
|
|
// The s parameter is needed for the module
|
|
// version to control the size of the masking cube. If s is too large then the preview display will flip around and display the
|
|
// wrong half, but if it is too small it won't fully mask your model.
|
|
// Arguments:
|
|
// p = VNF, region or path to slice (function version)
|
|
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
|
|
// z = The Z coordinate of the cut-plane. Default: 0
|
|
// Examples(Spin,VPD=175):
|
|
// top_half() sphere(r=20);
|
|
// top_half(z=5) sphere(r=20);
|
|
module top_half(s=100, z=0)
|
|
{
|
|
dir = UP;
|
|
difference() {
|
|
children();
|
|
translate([0,0,z]-dir*s/2) {
|
|
cube(s, center=true);
|
|
}
|
|
}
|
|
}
|
|
function top_half(p,z=0) = half_of(p,UP,[0,0,z]);
|
|
|
|
|
|
|
|
// Section: Partioning into Interlocking Pieces
|
|
|
|
|
|
function _partition_subpath(type) =
|
|
type=="flat"? [[0,0],[1,0]] :
|
|
type=="sawtooth"? [[0,-0.5], [0.5,0.5], [1,-0.5]] :
|
|
type=="sinewave"? [for (a=[0:5:360]) [a/360,sin(a)/2]] :
|
|
type=="comb"? let(dx=0.5*sin(2)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
|
|
type=="finger"? let(dx=0.5*sin(20)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
|
|
type=="dovetail"? [[0,-0.5], [0.3,-0.5], [0.2,0.5], [0.8,0.5], [0.7,-0.5], [1,-0.5]] :
|
|
type=="hammerhead"? [[0,-0.5], [0.35,-0.5], [0.35,0], [0.15,0], [0.15,0.5], [0.85,0.5], [0.85,0], [0.65,0], [0.65,-0.5],[1,-0.5]] :
|
|
type=="jigsaw"? concat(
|
|
arc(r=5/16, cp=[0,-3/16], start=270, angle=125),
|
|
arc(r=5/16, cp=[1/2,3/16], start=215, angle=-250),
|
|
arc(r=5/16, cp=[1,-3/16], start=145, angle=125)
|
|
) :
|
|
assert(false, str("Unsupported cutpath type: ", type));
|
|
|
|
|
|
function _partition_cutpath(l, h, cutsize, cutpath, gap) =
|
|
let(
|
|
check = assert(is_finite(l))
|
|
assert(is_finite(h))
|
|
assert(is_finite(gap))
|
|
assert(is_finite(cutsize) || is_vector(cutsize,2))
|
|
assert(is_string(cutpath) || is_path(cutpath,2)),
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize],
|
|
cutpath = is_path(cutpath)? cutpath :
|
|
_partition_subpath(cutpath),
|
|
reps = ceil(l/(cutsize.x+gap)),
|
|
cplen = (cutsize.x+gap) * reps,
|
|
path = deduplicate(concat(
|
|
[[-l/2, cutpath[0].y*cutsize.y]],
|
|
[for (i=[0:1:reps-1], pt=cutpath) v_mul(pt,cutsize)+[i*(cutsize.x+gap)+gap/2-cplen/2,0]],
|
|
[[ l/2, cutpath[len(cutpath)-1].y*cutsize.y]]
|
|
)),
|
|
stidxs = [for (i = idx(path)) if (path[i].x < -l/2) i],
|
|
enidxs = [for (i = idx(path)) if (path[i].x > +l/2) i],
|
|
stidx = stidxs? last(stidxs) : 0,
|
|
enidx = enidxs? enidxs[0] : -1,
|
|
trunc = select(path, stidx, enidx)
|
|
) trunc;
|
|
|
|
|
|
// Module: partition_mask()
|
|
// Usage:
|
|
// partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient],);
|
|
// Description:
|
|
// Creates a mask that you can use to difference or intersect with an object to remove half of it, leaving behind a side designed to allow assembly of the sub-parts.
|
|
// Arguments:
|
|
// l = The length of the cut axis.
|
|
// w = The width of the part to be masked, back from the cut plane.
|
|
// h = The height of the part to be masked.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// inverse = If true, create a cutpath that is meant to mate to a non-inverted cutpath.
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
|
// $slop = The amount to shrink the mask by, to correct for printer-specific fitting.
|
|
// Examples:
|
|
// partition_mask(w=50, gap=0, cutpath="jigsaw");
|
|
// partition_mask(w=50, gap=30, cutpath="jigsaw");
|
|
// partition_mask(w=50, gap=30, cutpath="jigsaw", inverse=true);
|
|
// partition_mask(w=50, gap=30, cutsize=15, cutpath="jigsaw");
|
|
// partition_mask(w=50, cutsize=[20,20], gap=30, cutpath="jigsaw");
|
|
// Examples(2D):
|
|
// partition_mask(w=20, cutpath="sawtooth");
|
|
// partition_mask(w=20, cutpath="sinewave");
|
|
// partition_mask(w=20, cutpath="comb");
|
|
// partition_mask(w=20, cutpath="finger");
|
|
// partition_mask(w=20, cutpath="dovetail");
|
|
// partition_mask(w=20, cutpath="hammerhead");
|
|
// partition_mask(w=20, cutpath="jigsaw");
|
|
module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, inverse=false, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
cutsize = is_vector(cutsize)? point2d(cutsize) : [cutsize*2, cutsize];
|
|
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
|
|
midpath = select(path,1,-2);
|
|
sizepath = concat([path[0]+[-$slop,0]], midpath, [last(path)+[$slop,0]], [[+(l/2+$slop), (w+$slop)*(inverse?-1:1)], [-(l/2+$slop), (w+$slop)*(inverse?-1:1)]]);
|
|
bnds = pointlist_bounds(sizepath);
|
|
fullpath = concat(path, [[last(path).x, w*(inverse?-1:1)], [path[0].x, w*(inverse?-1:1)]]);
|
|
attachable(anchor,spin,orient, size=point3d(bnds[1]-bnds[0],h)) {
|
|
linear_extrude(height=h, center=true, convexity=10) {
|
|
intersection() {
|
|
offset(delta=-$slop) polygon(fullpath);
|
|
square([l, w*2], center=true);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: partition_cut_mask()
|
|
// Usage:
|
|
// partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [spin], [orient]);
|
|
// Description:
|
|
// Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled.
|
|
// The `$slop` value is important to get the proper fit and should probably be smaller than 0.2. The examples below
|
|
// use larger values to make the mask easier to see.
|
|
// Arguments:
|
|
// l = The length of the cut axis.
|
|
// w = The width of the part to be masked, back from the cut plane.
|
|
// h = The height of the part to be masked.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5. Default: "jigsaw"
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
|
|
// $slop = The width of the cut mask, to correct for printer-specific fitting. Min: 0.05.
|
|
// Examples:
|
|
// partition_cut_mask(gap=0, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutsize=15, cutpath="dovetail");
|
|
// partition_cut_mask(gap=30, cutsize=[20,20], cutpath="dovetail");
|
|
// Examples(2DMed):
|
|
// partition_cut_mask(cutpath="sawtooth",$slop=0.5);
|
|
// partition_cut_mask(cutpath="sinewave",$slop=0.5);
|
|
// partition_cut_mask(cutpath="comb",$slop=0.5);
|
|
// partition_cut_mask(cutpath="finger",$slop=0.5);
|
|
// partition_cut_mask(cutpath="dovetail",$slop=1);
|
|
// partition_cut_mask(cutpath="hammerhead",$slop=1);
|
|
// partition_cut_mask(cutpath="jigsaw",$slop=0.5);
|
|
module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
|
|
path = _partition_cutpath(l, h, cutsize, cutpath, gap);
|
|
attachable(anchor,spin,orient, size=[l,cutsize.y,h]) {
|
|
linear_extrude(height=h, center=true, convexity=10) {
|
|
stroke(path, width=max(0.1, $slop*2));
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Module: partition()
|
|
// Usage:
|
|
// partition(size, [spread], [cutsize], [cutpath], [gap], [spin]) ...
|
|
// Description:
|
|
// Partitions an object into two parts, spread apart a small distance, with matched joining edges.
|
|
// Arguments:
|
|
// size = The [X,Y,Z] size of the object to partition.
|
|
// spread = The distance to spread the two parts by.
|
|
// cutsize = The width of the cut pattern to be used.
|
|
// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
|
|
// gap = Empty gaps between cutpath iterations. Default: 0
|
|
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
|
|
// Examples(Med):
|
|
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=20, gap=20, cutsize=15, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=25, gap=15, cutsize=[20,20], cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// Examples(2DMed):
|
|
// partition(cutpath="sawtooth") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="sinewave") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="comb") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="finger") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
|
|
// partition(spread=12, cutpath="hammerhead") cylinder(h=50, d=80, center=false);
|
|
// partition(cutpath="jigsaw") cylinder(h=50, d=80, center=false);
|
|
module partition(size=100, spread=10, cutsize=10, cutpath="jigsaw", gap=0, spin=0)
|
|
{
|
|
size = is_vector(size)? size : [size,size,size];
|
|
cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
|
|
rsize = v_abs(rot(spin,p=size));
|
|
vec = rot(spin,p=BACK)*spread/2;
|
|
move(vec) {
|
|
intersection() {
|
|
children();
|
|
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, spin=spin);
|
|
}
|
|
}
|
|
move(-vec) {
|
|
intersection() {
|
|
children();
|
|
partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, inverse=true, spin=spin);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|