mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
784 lines
35 KiB
OpenSCAD
784 lines
35 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: joiners.scad
|
|
// Snap-together joiners.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/joiners.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <rounding.scad>
|
|
include <skin.scad>
|
|
|
|
|
|
// Section: Half Joiners
|
|
|
|
|
|
// Module: half_joiner_clear()
|
|
// Description:
|
|
// Creates a mask to clear an area so that a half_joiner can be placed there.
|
|
// Usage:
|
|
// half_joiner_clear(h, w, [a], [clearance], [overlap])
|
|
// Arguments:
|
|
// h = Height of the joiner to clear space for.
|
|
// w = Width of the joiner to clear space for.
|
|
// a = Overhang angle of the joiner.
|
|
// clearance = Extra width to clear.
|
|
// overlap = Extra depth to clear.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Example:
|
|
// half_joiner_clear(spin=-90);
|
|
module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
dmnd_height = h*1.0;
|
|
dmnd_width = dmnd_height*tan(a);
|
|
guide_size = w/3;
|
|
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
|
|
|
|
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
|
|
union() {
|
|
ycopies(overlap, n=overlap>0? 2 : 1) {
|
|
difference() {
|
|
// Diamonds.
|
|
scale([w+clearance, dmnd_width/2, dmnd_height/2]) {
|
|
xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true);
|
|
}
|
|
// Blunt point of tab.
|
|
ycopies(guide_width+4) {
|
|
cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true);
|
|
}
|
|
}
|
|
}
|
|
if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: half_joiner()
|
|
// Usage:
|
|
// half_joiner(h, w, l, [a], [screwsize], [guides], [$slop])
|
|
// Description:
|
|
// Creates a half_joiner object that can be attached to half_joiner2 object.
|
|
// Arguments:
|
|
// h = Height of the half_joiner.
|
|
// w = Width of the half_joiner.
|
|
// l = Length of the backing to the half_joiner.
|
|
// a = Overhang angle of the half_joiner.
|
|
// screwsize = Diameter of screwhole.
|
|
// guides = If true, create sliding alignment guides.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// $slop = Printer specific slop value to make parts fit more closely.
|
|
// Example:
|
|
// half_joiner(screwsize=3, spin=-90);
|
|
module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
dmnd_height = h*1.0;
|
|
dmnd_width = dmnd_height*tan(a);
|
|
guide_size = w/3;
|
|
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
|
|
|
|
render(convexity=12)
|
|
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
|
|
difference() {
|
|
union() {
|
|
// Make base.
|
|
difference() {
|
|
// Solid backing base.
|
|
fwd(l/2) cube(size=[w, l, h], center=true);
|
|
|
|
// Clear diamond for tab
|
|
xcopies(2*w*2/3) {
|
|
half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a);
|
|
}
|
|
}
|
|
|
|
difference() {
|
|
// Make tab
|
|
scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45)
|
|
cube(size=[1,sqrt(2),sqrt(2)], center=true);
|
|
|
|
// Blunt point of tab.
|
|
back(guide_width/2+2)
|
|
cube(size=[w*0.99,4,guide_size*2], center=true);
|
|
}
|
|
|
|
|
|
// Guide ridges.
|
|
if (guides == true) {
|
|
xcopies(w/3-$slop*2) {
|
|
// Guide ridge.
|
|
fwd(0.05/2) {
|
|
scale([0.75, 1, 2]) yrot(45)
|
|
cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true);
|
|
}
|
|
|
|
// Snap ridge.
|
|
scale([0.25, 0.5, 1]) zrot(45)
|
|
cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make screwholes, if needed.
|
|
if (screwsize != undef) {
|
|
yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
//half_joiner(screwsize=3);
|
|
|
|
|
|
|
|
// Module: half_joiner2()
|
|
// Usage:
|
|
// half_joiner2(h, w, l, [a], [screwsize], [guides])
|
|
// Description:
|
|
// Creates a half_joiner2 object that can be attached to half_joiner object.
|
|
// Arguments:
|
|
// h = Height of the half_joiner.
|
|
// w = Width of the half_joiner.
|
|
// l = Length of the backing to the half_joiner.
|
|
// a = Overhang angle of the half_joiner.
|
|
// screwsize = Diameter of screwhole.
|
|
// guides = If true, create sliding alignment guides.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Example:
|
|
// half_joiner2(screwsize=3, spin=-90);
|
|
module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
dmnd_height = h*1.0;
|
|
dmnd_width = dmnd_height*tan(a);
|
|
guide_size = w/3;
|
|
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
|
|
|
|
render(convexity=12)
|
|
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
|
|
difference() {
|
|
union () {
|
|
fwd(l/2) cube(size=[w, l, h], center=true);
|
|
cube([w, guide_width, h], center=true);
|
|
}
|
|
|
|
// Subtract mated half_joiner.
|
|
zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0);
|
|
|
|
// Make screwholes, if needed.
|
|
if (screwsize != undef) {
|
|
xcyl(r=screwsize*1.1/2, l=w+1, $fn=12);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Full Joiners
|
|
|
|
|
|
// Module: joiner_clear()
|
|
// Description:
|
|
// Creates a mask to clear an area so that a joiner can be placed there.
|
|
// Usage:
|
|
// joiner_clear(h, w, [a], [clearance], [overlap])
|
|
// Arguments:
|
|
// h = Height of the joiner to clear space for.
|
|
// w = Width of the joiner to clear space for.
|
|
// a = Overhang angle of the joiner.
|
|
// clearance = Extra width to clear.
|
|
// overlap = Extra depth to clear.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Example:
|
|
// joiner_clear(spin=-90);
|
|
module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
dmnd_height = h*0.5;
|
|
dmnd_width = dmnd_height*tan(a);
|
|
guide_size = w/3;
|
|
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
|
|
|
|
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
|
|
union() {
|
|
up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance);
|
|
down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: joiner()
|
|
// Usage:
|
|
// joiner(h, w, l, [a], [screwsize], [guides], [$slop])
|
|
// Description:
|
|
// Creates a joiner object that can be attached to another joiner object.
|
|
// Arguments:
|
|
// h = Height of the joiner.
|
|
// w = Width of the joiner.
|
|
// l = Length of the backing to the joiner.
|
|
// a = Overhang angle of the joiner.
|
|
// screwsize = Diameter of screwhole.
|
|
// guides = If true, create sliding alignment guides.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// $slop = Printer specific slop value to make parts fit more closely.
|
|
// Examples:
|
|
// joiner(screwsize=3, spin=-90);
|
|
// joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT);
|
|
module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
|
|
union() {
|
|
up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
|
|
down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Full Joiners Pairs/Sets
|
|
|
|
|
|
// Module: joiner_pair_clear()
|
|
// Description:
|
|
// Creates a mask to clear an area so that a pair of joiners can be placed there.
|
|
// Usage:
|
|
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
|
|
// Arguments:
|
|
// spacing = Spacing between joiner centers.
|
|
// h = Height of the joiner to clear space for.
|
|
// w = Width of the joiner to clear space for.
|
|
// a = Overhang angle of the joiner.
|
|
// n = Number of joiners (2 by default) to clear for.
|
|
// clearance = Extra width to clear.
|
|
// overlap = Extra depth to clear.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Examples:
|
|
// joiner_pair_clear(spacing=50, n=2);
|
|
// joiner_pair_clear(spacing=50, n=3);
|
|
module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
dmnd_height = h*0.5;
|
|
dmnd_width = dmnd_height*tan(a);
|
|
guide_size = w/3;
|
|
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
|
|
|
|
attachable(anchor,spin,orient, size=[spacing+w, guide_width, h]) {
|
|
xcopies(spacing, n=n) {
|
|
joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: joiner_pair()
|
|
// Usage:
|
|
// joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop])
|
|
// Description:
|
|
// Creates a joiner_pair object that can be attached to other joiner_pairs .
|
|
// Arguments:
|
|
// spacing = Spacing between joiner centers.
|
|
// h = Height of the joiners.
|
|
// w = Width of the joiners.
|
|
// l = Length of the backing to the joiners.
|
|
// a = Overhang angle of the joiners.
|
|
// n = Number of joiners in a row. Default: 2
|
|
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
|
|
// screwsize = Diameter of screwhole.
|
|
// guides = If true, create sliding alignment guides.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// $slop = Printer specific slop value to make parts fit more closely.
|
|
// Examples:
|
|
// joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT);
|
|
// joiner_pair(spacing=50, l=10, n=2, spin=-90);
|
|
// joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90);
|
|
// joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90);
|
|
// joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90);
|
|
module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) {
|
|
left((n-1)*spacing/2) {
|
|
for (i=[0:1:n-1]) {
|
|
right(i*spacing) {
|
|
yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) {
|
|
joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Section: Full Joiners Quads/Sets
|
|
|
|
|
|
// Module: joiner_quad_clear()
|
|
// Description:
|
|
// Creates a mask to clear an area so that a pair of joiners can be placed there.
|
|
// Usage:
|
|
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
|
|
// Arguments:
|
|
// spacing1 = Spacing between joiner centers.
|
|
// spacing2 = Spacing between back-to-back pairs/sets of joiners.
|
|
// h = Height of the joiner to clear space for.
|
|
// w = Width of the joiner to clear space for.
|
|
// a = Overhang angle of the joiner.
|
|
// n = Number of joiners in a row. Default: 2
|
|
// clearance = Extra width to clear.
|
|
// overlap = Extra depth to clear.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Examples:
|
|
// joiner_quad_clear(spacing1=50, spacing2=50, n=2);
|
|
// joiner_quad_clear(spacing1=50, spacing2=50, n=3);
|
|
module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
spacing1 = first_defined([spacing1, xspacing, 100]);
|
|
spacing2 = first_defined([spacing2, yspacing, 50]);
|
|
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
|
|
zrot_copies(n=2) {
|
|
back(spacing2/2) {
|
|
joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Module: joiner_quad()
|
|
// Usage:
|
|
// joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop])
|
|
// Description:
|
|
// Creates a joiner_quad object that can be attached to other joiner_pairs .
|
|
// Arguments:
|
|
// spacing = Spacing between joiner centers.
|
|
// h = Height of the joiners.
|
|
// w = Width of the joiners.
|
|
// l = Length of the backing to the joiners.
|
|
// a = Overhang angle of the joiners.
|
|
// n = Number of joiners in a row. Default: 2
|
|
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
|
|
// screwsize = Diameter of screwhole.
|
|
// guides = If true, create sliding alignment guides.
|
|
// $slop = Printer specific slop value to make parts fit more closely.
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
|
|
// Examples:
|
|
// joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]);
|
|
// joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90);
|
|
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90);
|
|
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90);
|
|
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90);
|
|
module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
|
|
{
|
|
spacing1 = first_defined([spacing1, xspacing, 100]);
|
|
spacing2 = first_defined([spacing2, yspacing, 50]);
|
|
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
|
|
zrot_copies(n=2) {
|
|
back(spacing2/2) {
|
|
joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
// Section: Dovetails
|
|
|
|
// Module: dovetail()
|
|
//
|
|
// Usage:
|
|
// dovetail(l|length, h|height, w|width, slope|angle, taper|back_width, [chamfer], [r|radius], [round], [$slop])
|
|
//
|
|
// Description:
|
|
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
|
|
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
|
|
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
|
|
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
|
|
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
|
|
// in the positive Y direction. The default anchor for dovetails is BOTTOM; the default orientation depends on the gender,
|
|
// with male dovetails oriented UP and female ones DOWN.
|
|
//
|
|
// Arguments:
|
|
// l / length = Length of the dovetail (amount the joint slides during assembly)
|
|
// h / height = Height of the dovetail
|
|
// w / width = Width (at the wider, top end) of the dovetail before tapering
|
|
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
|
|
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
|
|
// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
|
|
// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
|
|
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
|
|
// r / radius = amount to round over the corners of the joint (Default: no rounding)
|
|
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
|
|
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
|
|
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
|
|
// dovetail("male", length=30, width=15, height=8);
|
|
// right(20) dovetail("female", length=30, width=15, height=8);
|
|
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
|
|
// dovetail("male", length=30, width=15, height=8, taper=6);
|
|
// right(20) dovetail("female", length=30, width=15, height=8, taper=6);
|
|
// Example: A block that can link to itself
|
|
// diff("remove")
|
|
// cuboid([50,30,10]){
|
|
// attach(BACK) dovetail("male", length=10, width=15, height=8);
|
|
// attach(FRONT) dovetail("female", length=10, width=15, height=8,$tags="remove");
|
|
// }
|
|
// Example: Setting the dovetail angle. This is too extreme to be useful.
|
|
// diff("remove")
|
|
// cuboid([50,30,10]){
|
|
// attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30);
|
|
// attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,$tags="remove");
|
|
// }
|
|
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
|
|
// diff("remove")
|
|
// cuboid([50,30,10]){
|
|
// attach(BACK) dovetail("male", length=10, width=15, height=8,chamfer=1);
|
|
// attach(FRONT) dovetail("female", length=10, width=15, height=8,chamfer=1,$tags="remove");
|
|
// }
|
|
// Example: Rounding the outside corners is another option
|
|
// diff("remove")
|
|
// cuboid([50,30,10]){
|
|
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1,$fn=32);
|
|
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1,$tags="remove",$fn=32);
|
|
// }
|
|
// Example: Or you can make a fully rounded joint
|
|
// $fn=32;
|
|
// diff("remove")
|
|
// cuboid([50,30,10]){
|
|
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true);
|
|
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove");
|
|
// }
|
|
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
|
|
// cuboid([50,30,10])
|
|
// attach(TOP) dovetail("male", length=50, width=18, height=4, back_width=15, spin=90);
|
|
// fwd(35)
|
|
// diff("remove")
|
|
// cuboid([50,30,10])
|
|
// attach(TOP) dovetail("female", length=50, width=18, height=4, back_width=15, spin=90,$tags="remove");
|
|
// Example: A series of dovtails
|
|
// cuboid([50,30,10])
|
|
// attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, height=4);
|
|
// Example: Mating pin board for a right angle joint. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
|
|
// diff("remove")
|
|
// cuboid([50,30,10])
|
|
// position(TOP+BACK) xcopies(10,5) dovetail("female", length=10, width=7, taper=4, height=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180);
|
|
module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
|
|
{
|
|
radius = get_radius(r1=radius,r2=r);
|
|
lcount = num_defined([l,length]);
|
|
hcount = num_defined([h,height]);
|
|
wcount = num_defined([w,width]);
|
|
assert(lcount==1, "Must define exactly one of l and length");
|
|
assert(wcount==1, "Must define exactly one of w and width");
|
|
assert(hcount==1, "Must define exactly one of h and height");
|
|
h = first_defined([h,height]);
|
|
w = first_defined([w,width]);
|
|
length = first_defined([l,length]);
|
|
orient = is_def(orient) ? orient :
|
|
gender == "female" ? DOWN : UP;
|
|
count = num_defined([angle,slope]);
|
|
assert(count<=1, "Do not specify both angle and slope");
|
|
count2 = num_defined([taper,back_width]);
|
|
assert(count2<=1, "Do not specify both taper and back_width");
|
|
count3 = num_defined([chamfer, radius]);
|
|
assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
|
|
slope = is_def(slope) ? slope :
|
|
is_def(angle) ? 1/tan(angle) : 6;
|
|
width = gender == "male" ? w : w + 2*$slop;
|
|
height = h + (gender == "female" ? 2*$slop : 0);
|
|
|
|
front_offset = is_def(taper) ? -extra * tan(taper) :
|
|
is_def(back_width) ? extra * (back_width-width)/length/2 : 0;
|
|
|
|
size = is_def(chamfer) && chamfer>0 ? chamfer :
|
|
is_def(radius) && radius>0 ? radius : 0;
|
|
type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
|
|
|
|
fullsize = round ? [size,size] :
|
|
gender == "male" ? [size,0] : [0,size];
|
|
|
|
smallend_half = round_corners(
|
|
move(
|
|
[0,-length/2-extra,0],
|
|
p=[
|
|
[0 , 0, height],
|
|
[width/2-front_offset , 0, height],
|
|
[width/2 - height/slope - front_offset, 0, 0 ],
|
|
[width/2 - front_offset + height, 0, 0]
|
|
]
|
|
),
|
|
method=type, cut = fullsize, closed=false
|
|
);
|
|
smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
|
|
offset = is_def(taper) ? -(length+extra) * tan(taper) :
|
|
is_def(back_width) ? (back_width-width) / 2 : 0;
|
|
bigend_points = move([offset,length+2*extra,0], p=smallend_points);
|
|
|
|
adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach()
|
|
|
|
attachable(anchor,spin,orient, size=[width+2*offset, length, height]) {
|
|
down(height/2+adjustment) {
|
|
skin(
|
|
[
|
|
reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))),
|
|
reverse(concat(bigend_points, xflip(p=reverse(bigend_points))))
|
|
],
|
|
slices=0, convexity=4
|
|
);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// h is total height above 0 of the nub
|
|
// nub extends below xy plane by distance nub/2
|
|
module _pin_nub(r, nub, h)
|
|
{
|
|
L = h / 4;
|
|
rotate_extrude(){
|
|
polygon(
|
|
[[ 0,-nub/2],
|
|
[-r,-nub/2],
|
|
[-r-nub, nub/2],
|
|
[-r-nub, nub/2+L],
|
|
[-r, h],
|
|
[0, h]]);
|
|
}
|
|
}
|
|
|
|
|
|
module _pin_slot(l, r, t, d, nub, depth, stretch) {
|
|
yscale(4)
|
|
intersection() {
|
|
translate([t, 0, d + t / 4])
|
|
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
|
|
translate([-t, 0, d + t / 4])
|
|
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
|
|
}
|
|
cube([2 * r, depth, 2 * l], center = true);
|
|
up(l)
|
|
zscale(stretch)
|
|
ycyl(r = r, h = depth);
|
|
}
|
|
|
|
|
|
module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed)
|
|
{
|
|
extra = 0.02;
|
|
rPoint = r / sqrt(2);
|
|
down(extra) cylinder(r = r, h = lStraight + extra);
|
|
up(lStraight) {
|
|
zscale(stretch) {
|
|
sphere(r = r);
|
|
if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint);
|
|
}
|
|
}
|
|
up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d);
|
|
}
|
|
|
|
function _pin_size(size) =
|
|
is_undef(size) ? [] :
|
|
let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"]))
|
|
assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"")
|
|
size=="standard" || size=="large" ?
|
|
struct_set([], ["length", 10.8,
|
|
"diameter", 7,
|
|
"snap", 0.5,
|
|
"nub_depth", 1.8,
|
|
"thickness", 1.8,
|
|
"preload", 0.2]):
|
|
size=="medium" ?
|
|
struct_set([], ["length", 8,
|
|
"diameter", 4.6,
|
|
"snap", 0.45,
|
|
"nub_depth", 1.5,
|
|
"thickness", 1.4,
|
|
"preload", 0.2]) :
|
|
size=="small" ?
|
|
struct_set([], ["length", 6,
|
|
"diameter", 3.2,
|
|
"snap", 0.4,
|
|
"nub_depth", 1.2,
|
|
"thickness", 1.0,
|
|
"preload", 0.16]) :
|
|
size=="tiny" ?
|
|
struct_set([], ["length", 4,
|
|
"diameter", 2.5,
|
|
"snap", 0.25,
|
|
"nub_depth", 0.9,
|
|
"thickness", 0.8,
|
|
"preload", 0.1]):
|
|
undef;
|
|
|
|
|
|
// Module: snap_pin()
|
|
// Usage:
|
|
// snap_pin(size, [pointed], [anchor], [spin], [orient])
|
|
// snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient])
|
|
// Description:
|
|
// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
|
|
// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
|
|
// override the standard parameters by specifying other ones. The pins have flat sides so they can
|
|
// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
|
|
// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
|
|
// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
|
|
// .
|
|
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
|
|
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
|
|
// .
|
|
// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
|
|
// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
|
|
// and distributed under the Creative Commons - Attribution - Share Alike License
|
|
// Arguments:
|
|
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
|
|
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
|
|
// r|radius = radius of the pin
|
|
// d|diameter = diameter of the pin
|
|
// l|length = length of the pin
|
|
// nub_depth = the distance of the nub from the base of the pin
|
|
// snap = how much snap the pin provides (the nub projection)
|
|
// thickness = thickness of the pin walls
|
|
// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
|
|
// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
|
|
// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
|
|
// Example: Pin in native orientation
|
|
// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
|
|
// Example: Pins oriented for printing
|
|
// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
|
|
module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) {
|
|
preload_default = 0.2;
|
|
sizedat = _pin_size(size);
|
|
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
|
|
length = first_defined([l,length,struct_val(sizedat,"length")]);
|
|
snap = first_defined([snap, struct_val(sizedat,"snap")]);
|
|
thickness = first_defined([thickness, struct_val(sizedat,"thickness")]);
|
|
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
|
|
preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]);
|
|
|
|
nubscale = 0.9; // Mysterious arbitrary parameter
|
|
|
|
// The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
|
|
// If the point is enabled the cap length is instead 2*r
|
|
// preload shrinks the length, bringing the nubs closer together
|
|
|
|
rInner = radius - clearance;
|
|
stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced.
|
|
lStraight = length - sqrt(2) * radius - clearance;
|
|
lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius);
|
|
attachable(anchor=anchor,spin=spin, orient=orient,
|
|
size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){
|
|
zflip_copy()
|
|
difference() {
|
|
intersection() {
|
|
cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true);
|
|
_pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed);
|
|
}
|
|
_pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch);
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
// Module: snap_pin_socket()
|
|
// Usage:
|
|
// snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]);
|
|
// snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient])
|
|
// Description:
|
|
// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
|
|
// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
|
|
// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
|
|
// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
|
|
// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
|
|
// .
|
|
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
|
|
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
|
|
// Arguments:
|
|
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
|
|
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
|
|
// r|radius = radius of the pin
|
|
// d|diameter = diameter of the pin
|
|
// l|length = length of the pin
|
|
// nub_depth = the distance of the nub from the base of the pin
|
|
// snap = how much snap the pin provides (the nub projection)
|
|
// fixed = if true the pin cannot rotate, if false it can. Default: true
|
|
// pointed = if true the socket has a pointed tip. Default: true
|
|
// fins = if true supporting fins are included. Default: false
|
|
// Example: The socket shape itself in native orientation.
|
|
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
|
|
// Example: A spinning socket with fins:
|
|
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
|
|
// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
|
|
// $fn=40;
|
|
// diff("socket") cuboid([20,20,20]) {
|
|
// attach(TOP) snap_pin_socket("standard", $tags="socket");
|
|
// position(TOP+FRONT)snap_pin_socket("standard", $tags="socket");
|
|
// }
|
|
module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) {
|
|
sizedat = _pin_size(size);
|
|
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
|
|
length = first_defined([l,length,struct_val(sizedat,"length")]);
|
|
snap = first_defined([snap, struct_val(sizedat,"snap")]);
|
|
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
|
|
|
|
tip = pointed ? sqrt(2) * radius : radius;
|
|
lPin = length + (pointed?(2-sqrt(2))*radius:0);
|
|
lStraight = lPin - (pointed?sqrt(2)*radius:radius);
|
|
attachable(anchor=anchor,spin=spin,orient=orient,
|
|
size=[2*(radius+snap),radius*sqrt(2),lPin])
|
|
{
|
|
down(lPin/2)
|
|
intersection() {
|
|
if (fixed)
|
|
cube([3 * (radius + snap), radius * sqrt(2), 3 * lPin + 3 * radius], center = true);
|
|
union() {
|
|
_pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
|
|
if (fins)
|
|
up(lStraight){
|
|
cube([2 * radius, 0.01, 2 * tip], center = true);
|
|
cube([0.01, 2 * radius, 2 * tip], center = true);
|
|
}
|
|
}
|
|
}
|
|
children();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|