mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
106 lines
3.3 KiB
OpenSCAD
106 lines
3.3 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: wiring.scad
|
|
// Rendering for wiring bundles
|
|
// To use, include the following line at the top of your file:
|
|
// ```
|
|
// include <BOSL2/std.scad>
|
|
// include <BOSL2/wiring.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
include <BOSL2/beziers.scad>
|
|
|
|
|
|
// Section: Functions
|
|
|
|
|
|
// Function: hex_offset_ring()
|
|
// Description:
|
|
// Returns a hexagonal ring of points, with a spacing of `d`.
|
|
// If `lev=0`, returns a single point at `[0,0]`. All greater
|
|
// levels return 6 times `lev` points.
|
|
// Usage:
|
|
// hex_offset_ring(d, lev)
|
|
// Arguments:
|
|
// d = Base unit diameter to build rings upon.
|
|
// lev = How many rings to produce.
|
|
// Example:
|
|
// hex_offset_ring(d=1, lev=3); // Returns a hex ring of 18 points.
|
|
function hex_offset_ring(d, lev=0) =
|
|
(lev == 0)? [[0,0]] : [
|
|
for (
|
|
sideang = [0:60:359.999],
|
|
sidenum = [1:1:lev]
|
|
) [
|
|
lev*d*cos(sideang)+sidenum*d*cos(sideang+120),
|
|
lev*d*sin(sideang)+sidenum*d*sin(sideang+120)
|
|
]
|
|
];
|
|
|
|
|
|
// Function: hex_offsets()
|
|
// Description:
|
|
// Returns the centerpoints for the optimal hexagonal packing
|
|
// of at least `n` circular items, of diameter `d`. Will return
|
|
// enough points to fill out the last ring, even if that is more
|
|
// than `n` points.
|
|
// Usage:
|
|
// hex_offsets(n, d)
|
|
// Arguments:
|
|
// n = Number of items to bundle.
|
|
// d = How far to space each point away from others.
|
|
function hex_offsets(n, d, lev=0, arr=[]) =
|
|
(len(arr) >= n)? arr :
|
|
hex_offsets(
|
|
n=n,
|
|
d=d,
|
|
lev=lev+1,
|
|
arr=concat(arr, hex_offset_ring(d, lev=lev))
|
|
);
|
|
|
|
|
|
|
|
// Section: Modules
|
|
|
|
|
|
// Module: wiring()
|
|
// Description:
|
|
// Returns a 3D object representing a bundle of wires that follow a given path,
|
|
// with the corners rounded to a given radius. There are 17 base wire colors.
|
|
// If you have more than 17 wires, colors will get re-used.
|
|
// Usage:
|
|
// wiring(path, wires, [wirediam], [rounding], [wirenum], [bezsteps]);
|
|
// Arguments:
|
|
// path = The 3D polyline path that the wire bundle should follow.
|
|
// wires = The number of wires in the wiring bundle.
|
|
// wirediam = The diameter of each wire in the bundle.
|
|
// rounding = The radius that the path corners will be rounded to.
|
|
// wirenum = The first wire's offset into the color table.
|
|
// bezsteps = The corner roundings in the path will be converted into this number of segments.
|
|
// Example:
|
|
// wiring([[50,0,-50], [50,50,-50], [0,50,-50], [0,0,-50], [0,0,0]], rounding=10, wires=13);
|
|
module wiring(path, wires, wirediam=2, rounding=10, wirenum=0, bezsteps=12) {
|
|
colors = [
|
|
[0.2, 0.2, 0.2], [1.0, 0.2, 0.2], [0.0, 0.8, 0.0], [1.0, 1.0, 0.2],
|
|
[0.3, 0.3, 1.0], [1.0, 1.0, 1.0], [0.7, 0.5, 0.0], [0.5, 0.5, 0.5],
|
|
[0.2, 0.9, 0.9], [0.8, 0.0, 0.8], [0.0, 0.6, 0.6], [1.0, 0.7, 0.7],
|
|
[1.0, 0.5, 1.0], [0.5, 0.6, 0.0], [1.0, 0.7, 0.0], [0.7, 1.0, 0.5],
|
|
[0.6, 0.6, 1.0],
|
|
];
|
|
offsets = hex_offsets(wires, wirediam);
|
|
bezpath = fillet_path(path, rounding);
|
|
poly = simplify3d_path(path3d(bezier_polyline(bezpath, bezsteps)));
|
|
n = max(segs(wirediam), 8);
|
|
r = wirediam/2;
|
|
for (i = [0:1:wires-1]) {
|
|
extpath = [for (j = [0:1:n-1]) let(a=j*360/n) [r*cos(a)+offsets[i][0], r*sin(a)+offsets[i][1]]];
|
|
color(colors[(i+wirenum)%len(colors)]) {
|
|
extrude_2dpath_along_3dpath(extpath, poly);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|