mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
426 lines
12 KiB
OpenSCAD
426 lines
12 KiB
OpenSCAD
//////////////////////////////////////////////////////////////////////
|
|
// LibFile: math.scad
|
|
// Math helper functions.
|
|
// To use, add the following lines to the beginning of your file:
|
|
// ```
|
|
// use <BOSL2/std.scad>
|
|
// ```
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// Section: Math Constants
|
|
|
|
PHI = (1+sqrt(5))/2; // The golden ratio phi.
|
|
|
|
EPSILON = 1e-9; // A really small value useful in comparing FP numbers. ie: abs(a-b)<EPSILON
|
|
|
|
|
|
// Section: Simple Calculations
|
|
|
|
// Function: quant()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding to the nearest multiple.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
function quant(x,y) = floor(x/y+0.5)*y;
|
|
|
|
|
|
// Function: quantdn()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding down to the previous multiple.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
function quantdn(x,y) = floor(x/y)*y;
|
|
|
|
|
|
// Function: quantup()
|
|
// Description:
|
|
// Quantize a value `x` to an integer multiple of `y`, rounding up to the next multiple.
|
|
// Arguments:
|
|
// x = The value to quantize.
|
|
// y = The multiple to quantize to.
|
|
function quantup(x,y) = ceil(x/y)*y;
|
|
|
|
|
|
// Function: constrain()
|
|
// Usage:
|
|
// constrain(v, minval, maxval);
|
|
// Description:
|
|
// Constrains value to a range of values between minval and maxval, inclusive.
|
|
// Arguments:
|
|
// v = value to constrain.
|
|
// minval = minimum value to return, if out of range.
|
|
// maxval = maximum value to return, if out of range.
|
|
function constrain(v, minval, maxval) = min(maxval, max(minval, v));
|
|
|
|
|
|
// Function: approx()
|
|
// Usage:
|
|
// approx(a,b,[eps])
|
|
// Description:
|
|
// Compares two numbers or vectors, and returns true if they are closer than `eps` to each other.
|
|
// Arguments:
|
|
// a = First value.
|
|
// b = Second value.
|
|
// eps = The maximum allowed difference between `a` and `b` that will return true.
|
|
function approx(a,b,eps=EPSILON) = let(c=a-b) (is_num(c)? abs(c) : norm(c)) <= eps;
|
|
|
|
|
|
// Function: min_index()
|
|
// Usage:
|
|
// min_index(vals);
|
|
// Description:
|
|
// Returns the index of the minimal value in the given list.
|
|
function min_index(vals, _minval, _minidx, _i=0) =
|
|
_i>=len(vals)? _minidx :
|
|
min_index(
|
|
vals,
|
|
((_minval == undef || vals[_i] < _minval)? vals[_i] : _minval),
|
|
((_minval == undef || vals[_i] < _minval)? _i : _minidx),
|
|
_i+1
|
|
);
|
|
|
|
|
|
// Function: max_index()
|
|
// Usage:
|
|
// max_index(vals);
|
|
// Description:
|
|
// Returns the index of the maximum value in the given list.
|
|
function max_index(vals, _maxval, _maxidx, _i=0) =
|
|
_i>=len(vals)? _maxidx :
|
|
max_index(
|
|
vals,
|
|
((_maxval == undef || vals[_i] > _maxval)? vals[_i] : _maxval),
|
|
((_maxval == undef || vals[_i] > _maxval)? _i : _maxidx),
|
|
_i+1
|
|
);
|
|
|
|
|
|
// Function: posmod()
|
|
// Usage:
|
|
// posmod(x,m)
|
|
// Description:
|
|
// Returns the positive modulo `m` of `x`. Value returned will be in the range 0 ... `m`-1.
|
|
// This if useful for normalizing angles to 0 ... 360.
|
|
// Arguments:
|
|
// x = The value to constrain.
|
|
// m = Modulo value.
|
|
function posmod(x,m) = (x%m+m)%m;
|
|
|
|
|
|
// Function: modrange()
|
|
// Usage:
|
|
// modrange(x, y, m, [step])
|
|
// Description:
|
|
// Returns a normalized list of values from `x` to `y`, by `step`, modulo `m`. Wraps if `x` > `y`.
|
|
// Arguments:
|
|
// x = The start value to constrain.
|
|
// y = The end value to constrain.
|
|
// m = Modulo value.
|
|
// step = Step by this amount.
|
|
// Examples:
|
|
// modrange(90,270,360, step=45); // Outputs [90,135,180,225,270]
|
|
// modrange(270,90,360, step=45); // Outputs [270,315,0,45,90]
|
|
// modrange(90,270,360, step=-45); // Outputs [90,45,0,315,270]
|
|
// modrange(270,90,360, step=-45); // Outputs [270,225,180,135,90]
|
|
function modrange(x, y, m, step=1) =
|
|
let(
|
|
a = posmod(x, m),
|
|
b = posmod(y, m),
|
|
c = step>0? (a>b? b+m : b) : (a<b? b-m : b)
|
|
) [for (i=[a:step:c]) (i%m+m)%m];
|
|
|
|
|
|
// Function: sqr()
|
|
// Usage:
|
|
// sqr(x);
|
|
// Description: Returns the square of the given number.
|
|
// Examples:
|
|
// sqr(3); // Returns: 9
|
|
// sqr(-4); // Returns: 16
|
|
function sqr(x) = x*x;
|
|
|
|
|
|
// Function: gaussian_rand()
|
|
// Usage:
|
|
// gaussian_rand(mean, stddev)
|
|
// Description:
|
|
// Returns a random number with a gaussian/normal distribution.
|
|
// Arguments:
|
|
// mean = The average random number returned.
|
|
// stddev = The standard deviation of the numbers to be returned.
|
|
function gaussian_rand(mean, stddev) = let(s=rands(0,1,2)) mean + stddev*sqrt(-2*ln(s.x))*cos(360*s.y);
|
|
|
|
|
|
// Function: log_rand()
|
|
// Usage:
|
|
// log_rand(minval, maxval, factor);
|
|
// Description:
|
|
// Returns a single random number, with a logarithmic distribution.
|
|
// Arguments:
|
|
// minval = Minimum value to return.
|
|
// maxval = Maximum value to return. `minval` <= X < `maxval`.
|
|
// factor = Log factor to use. Values of X are returned `factor` times more often than X+1.
|
|
function log_rand(minval, maxval, factor) = -ln(1-rands(1-1/pow(factor,minval), 1-1/pow(factor,maxval), 1)[0])/ln(factor);
|
|
|
|
|
|
// Function: segs()
|
|
// Description:
|
|
// Calculate the standard number of sides OpenSCAD would give a circle based on `$fn`, `$fa`, and `$fs`.
|
|
// Arguments:
|
|
// r = Radius of circle to get the number of segments for.
|
|
function segs(r) =
|
|
$fn>0? ($fn>3? $fn : 3) :
|
|
ceil(max(5, min(360/$fa, abs(r)*2*PI/$fs)));
|
|
|
|
|
|
// Function: lerp()
|
|
// Description: Interpolate between two values or vectors.
|
|
// Arguments:
|
|
// a = First value.
|
|
// b = Second value.
|
|
// u = The proportion from `a` to `b` to calculate. Valid range is 0.0 to 1.0, inclusive.
|
|
function lerp(a,b,u) = (1-u)*a + u*b;
|
|
|
|
|
|
// Function: hypot()
|
|
// Description: Calculate hypotenuse length of a 2D or 3D triangle.
|
|
// Arguments:
|
|
// x = Length on the X axis.
|
|
// y = Length on the Y axis.
|
|
// z = Length on the Z axis.
|
|
function hypot(x,y,z=0) = norm([x,y,z]);
|
|
|
|
|
|
// Function: sinh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic sine of it.
|
|
function sinh(x) = (exp(x)-exp(-x))/2;
|
|
|
|
|
|
// Function: cosh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic cosine of it.
|
|
function cosh(x) = (exp(x)+exp(-x))/2;
|
|
|
|
|
|
// Function: tanh()
|
|
// Description: Takes a value `x`, and returns the hyperbolic tangent of it.
|
|
function tanh(x) = sinh(x)/cosh(x);
|
|
|
|
|
|
// Function: asinh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic sine of it.
|
|
function asinh(x) = ln(x+sqrt(x*x+1));
|
|
|
|
|
|
// Function: acosh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic cosine of it.
|
|
function acosh(x) = ln(x+sqrt(x*x-1));
|
|
|
|
|
|
// Function: atanh()
|
|
// Description: Takes a value `x`, and returns the inverse hyperbolic tangent of it.
|
|
function atanh(x) = ln((1+x)/(1-x))/2;
|
|
|
|
|
|
// Function: sum()
|
|
// Description:
|
|
// Returns the sum of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of sums of each part.
|
|
// Arguments:
|
|
// v = The list to get the sum of.
|
|
// Example:
|
|
// sum([1,2,3]); // returns 6.
|
|
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
|
|
function sum(v, i=0, tot=undef) = i>=len(v)? tot : sum(v, i+1, ((tot==undef)? v[i] : tot+v[i]));
|
|
|
|
|
|
// Function: sum_of_squares()
|
|
// Description:
|
|
// Returns the sum of the square of each element of a vector.
|
|
// Arguments:
|
|
// v = The vector to get the sum of.
|
|
// Example:
|
|
// sum_of_squares([1,2,3]); // returns 14.
|
|
function sum_of_squares(v, i=0, tot=0) = sum(vmul(v,v));
|
|
|
|
|
|
// Function: sum_of_sines()
|
|
// Usage:
|
|
// sum_of_sines(a,sines)
|
|
// Description:
|
|
// Gives the sum of a series of sines, at a given angle.
|
|
// Arguments:
|
|
// a = Angle to get the value for.
|
|
// sines = List of [amplitude, frequency, offset] items, where the frequency is the number of times the cycle repeats around the circle.
|
|
function sum_of_sines(a, sines) =
|
|
sum([
|
|
for (s = sines) let(
|
|
ss=point3d(s),
|
|
v=ss.x*sin(a*ss.y+ss.z)
|
|
) v
|
|
]);
|
|
|
|
|
|
// Function: deltas()
|
|
// Description:
|
|
// Returns a list with the deltas of adjacent entries in the given list.
|
|
// Given [a,b,c,d], returns [b-a,c-b,d-c].
|
|
// Arguments:
|
|
// v = The list to get the deltas of.
|
|
// Example:
|
|
// deltas([2,5,9,17]); // returns [3,4,8].
|
|
// deltas([[1,2,3], [3,6,8], [4,8,11]]); // returns [[2,4,5], [1,2,3]]
|
|
function deltas(v) = [for (p=pair(v)) p.y-p.x];
|
|
|
|
|
|
// Function: product()
|
|
// Description:
|
|
// Returns the product of all entries in the given list.
|
|
// If passed an array of vectors, returns a vector of products of each part.
|
|
// If passed an array of matrices, returns a the resulting product matrix.
|
|
// Arguments:
|
|
// v = The list to get the product of.
|
|
// Example:
|
|
// product([2,3,4]); // returns 24.
|
|
// product([[1,2,3], [3,4,5], [5,6,7]]); // returns [15, 48, 105]
|
|
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
|
|
|
|
|
|
// Function: mean()
|
|
// Description:
|
|
// Returns the mean of all entries in the given array.
|
|
// If passed an array of vectors, returns a vector of mean of each part.
|
|
// Arguments:
|
|
// v = The list of values to get the mean of.
|
|
// Example:
|
|
// mean([2,3,4]); // returns 3.
|
|
// mean([[1,2,3], [3,4,5], [5,6,7]]); // returns [3, 4, 5]
|
|
function mean(v) = sum(v)/len(v);
|
|
|
|
|
|
// Section: Comparisons and Logic
|
|
|
|
|
|
// Function: compare_vals()
|
|
// Usage:
|
|
// compare_vals(a, b);
|
|
// Description:
|
|
// Compares two values. Lists are compared recursively.
|
|
// Results are undefined if the two values are not of similar types.
|
|
// Arguments:
|
|
// a = First value to compare.
|
|
// b = Second value to compare.
|
|
function compare_vals(a, b) =
|
|
(a==b)? 0 :
|
|
(a==undef)? -1 :
|
|
(b==undef)? 1 :
|
|
((a==[] || a=="" || a[0]!=undef) && (b==[] || b=="" || b[0]!=undef))? (
|
|
compare_lists(a, b)
|
|
) : (a<b)? -1 :
|
|
(a>b)? 1 : 0;
|
|
|
|
|
|
// Function: compare_lists()
|
|
// Usage:
|
|
// compare_lists(a, b)
|
|
// Description:
|
|
// Compare contents of two lists.
|
|
// Returns <0 if `a`<`b`.
|
|
// Returns 0 if `a`==`b`.
|
|
// Returns >0 if `a`>`b`.
|
|
// Results are undefined if elements are not of similar types.
|
|
// Arguments:
|
|
// a = First list to compare.
|
|
// b = Second list to compare.
|
|
function compare_lists(a, b, n=0) =
|
|
let(
|
|
// This curious construction enables tail recursion optimization.
|
|
cmp = (a==b)? 0 :
|
|
(len(a)<=n)? -1 :
|
|
(len(b)<=n)? 1 :
|
|
(a==a[n] || b==b[n])? (
|
|
a<b? -1 : a>b? 1 : 0
|
|
) : compare_vals(a[n], b[n])
|
|
)
|
|
(cmp != 0 || a==b)? cmp :
|
|
compare_lists(a, b, n+1);
|
|
|
|
|
|
// Function: any()
|
|
// Description:
|
|
// Returns true if any item in list `l` evaluates as true.
|
|
// If `l` is a lists of lists, `any()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// any([0,false,undef]); // Returns false.
|
|
// any([1,false,undef]); // Returns true.
|
|
// any([1,5,true]); // Returns true.
|
|
// any([[0,0], [0,0]]); // Returns false.
|
|
// any([[0,0], [1,0]]); // Returns true.
|
|
function any(l, i=0, succ=false) =
|
|
(i>=len(l) || succ)? succ :
|
|
any(
|
|
l, i=i+1, succ=(
|
|
is_list(l[i])? any(l[i]) :
|
|
!(!l[i])
|
|
)
|
|
);
|
|
|
|
|
|
// Function: all()
|
|
// Description:
|
|
// Returns true if all items in list `l` evaluate as true.
|
|
// If `l` is a lists of lists, `all()` is applied recursively to each sublist.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// Example:
|
|
// all([0,false,undef]); // Returns false.
|
|
// all([1,false,undef]); // Returns false.
|
|
// all([1,5,true]); // Returns true.
|
|
// all([[0,0], [0,0]]); // Returns false.
|
|
// all([[0,0], [1,0]]); // Returns false.
|
|
// all([[1,1], [1,1]]); // Returns true.
|
|
function all(l, i=0, fail=false) =
|
|
(i>=len(l) || fail)? (!fail) :
|
|
all(
|
|
l, i=i+1, fail=(
|
|
is_list(l[i])? !all(l[i]) :
|
|
!l[i]
|
|
)
|
|
);
|
|
|
|
|
|
// Function: count_true()
|
|
// Usage:
|
|
// count_true(l)
|
|
// Description:
|
|
// Returns the number of items in `l` that evaluate as true.
|
|
// If `l` is a lists of lists, this is applied recursively to each
|
|
// sublist. Returns the total count of items that evaluate as true
|
|
// in all recursive sublists.
|
|
// Arguments:
|
|
// l = The list to test for true items.
|
|
// nmax = If given, stop counting if `nmax` items evaluate as true.
|
|
// Example:
|
|
// count_true([0,false,undef]); // Returns 0.
|
|
// count_true([1,false,undef]); // Returns 1.
|
|
// count_true([1,5,false]); // Returns 2.
|
|
// count_true([1,5,true]); // Returns 3.
|
|
// count_true([[0,0], [0,0]]); // Returns 0.
|
|
// count_true([[0,0], [1,0]]); // Returns 1.
|
|
// count_true([[1,1], [1,1]]); // Returns 4.
|
|
// count_true([[1,1], [1,1]], nmax=3); // Returns 3.
|
|
function count_true(l, nmax=undef, i=0, cnt=0) =
|
|
(i>=len(l) || (nmax!=undef && cnt>=nmax))? cnt :
|
|
count_true(
|
|
l=l, nmax=nmax, i=i+1, cnt=cnt+(
|
|
is_list(l[i])? count_true(l[i], nmax=nmax-cnt) :
|
|
(l[i]? 1 : 0)
|
|
)
|
|
);
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|